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Abstract:

Let G be a simple graph. For v ∈ V (G), k-degree dk(v) of v is the number of walks of
length k of G starting at v. In this paper a lower bounds of the spectral radius of G
in terms of the k-degree of vertices is presented and the upper bounds of energy of a
connected graph is obtained.

1 Introduction

Let G = (V, E) be a finite graph. For v ∈ V (G), the degree of v written by d(v), is the

number of edges incident with v. The number of walks of length k of G starting at v is de-

noted by dk(v), is also called k-degree of the vertex v and
dk(v)

d(v)
is called average k-degree
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of the vertex v. Clearly, one has d0(v) = 1, d1(v) = d(v), and dk+1(v) =
∑

w∈N(v)

dk(w),

where N(v) is the set of all neighbors of the vertex v.

In view of the well-known fact that with j denote the all one vector defined on the set

V (G), the vector Dk = (dk(v))v∈V coincides with Akj, where A = A(G) is the adjacency

matrix of the graph G.

In [3], Dress and Gutman showed an interesting inequality on the number of walks

in a graph, and the discussion of the equality holding resulted classification graphs in

exactly five classes.

A graph G is called regular graph if there exists a constant r such that d(v) = r holds

for every v ∈ V (G), in which case G is also called r-regular. Obviously, this is equivalent

with the assertion that Aj = rj holds. Further, a graph G is called a, b-semiregular if

{d(v), d(w)} = {a, b} holds for all edges vw ∈ E(G). Clearly, this implies A2j = abj.

A semiregular graph that is not regular will henceforth be called strictly semiregular.

Clearly, a connected strictly semiregular graph must be bipartite.

A graph G is called harmonic [3](pseudoregular [13]) if there exists a constants µ such

that d2(v) = µd(v) holds for every v ∈ V (G) in which case G is also called µ-harmonic,

clearly, a graph G is µ-harmonic if and only if A2j = µAj holds.( In other words, A2j

and Aj are linear dependent.)

A graph G is called semiharmonic [3] if there exists a constants µ such that d3(v) =

µd(v) holds for every v ∈ V (G) in which case G is also called µ-semiharmonic, clearly,

a graph G is µ-semiharmonic if and only if A3j = µAj holds. (In other words, A3j and

Aj are linear dependent.) Thus every µ-harmonic graph is µ2-semiharmonic. Also every

a, b-semiregular graph is ab-semiharmonic. A semiharmonic graph that is not harmonic

will henceforth be called strictly semiharmonic.

Finally, a graph G is called (a, b)-pseudosemiregular if {d2(v)

d(v)
,
d2(w)

d(w)
} = {a, b} holds

for all edges vw ∈ E(G). A pseudosemiregular graph that is not pseudoregular will hence-

forth be called strictly pseudosemiregular. Clearly, a connected strictly pseudosemiregu-

lar graph must be bipartite.

In this paper, we present a lower bound for the spectral radius of a connected graph

and give a upper bound for the energy of a graph by using this new lower bound of

spectral radius.

- 342 -



2 The spectral radius a graph and k-degree

Let G be a connected graph. The spectral radius (largest eigenvalue of A(G)) of G is

denoted by ρ(G). In [4], the following theorem was given:

Theorem 1 Let G be a connected graph with degree sequence d1, d2, ..., dn. Then

ρ(G) ≥
√∑

v∈V d2(v)

n
, (1)

with equality if and only if G is regular or a semiregular.

In [13], the following theorem was given:

Theorem 2 Let G be a connected graph. Then

ρ(G) ≥
√∑

v∈V d2
2(v)∑

v∈V d2(v)
, (2)

with equality if and only if G is a pseudo-regular graph or a strictly pseudo-semiregular

graph.

In this section we prove a more general result which generalizes and unifies the above

two results.

Lemma 3 Let G be a connected graph and k ≥ 0. Then

ρ(G) ≥
√∑

v∈V d2
k+1(v)∑

v∈V d2
k(v)

, (3)

with equality if and only if Ak+2(G)j = ρ2(G)Ak(G)j.

Proof. Since DT
k A2Dk = 〈Ak+1j, Ak+1j〉 = 〈Dk+1, Dk+1〉 =

∑
v∈V d2

k+1(v), thus, by

Rayleigh-Ritz Theorem, ρ(G) =
√

ρ(A2) ≥ DT
k A2Dk

〈Dk, Dk〉 ≥
√∑

v∈V d2
k+1(v)∑

v∈V d2
k(v)

, and equality

holds if and only if Dk is a eigenvector of A2(G) corresponding to the eigenvalue ρ(G)2,

that is, if and only if Ak+2(G)j = ρ2(G)Ak(G)j.

For k = 0, the above lemma becomes Theorem 1, this is because that A2(G)j = µj if

and only if G is regular or semiregular (see [3]). By Theorem 1 of [3], every graph G for
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which some integers k, l with 0 ≤ l < k and some constant µ such that dk(v) = µdl(v)

for all v ∈ V (G) (equivalently, Akj = µAlj ) is semiharmonic, and even harmonic in

case k − l is odd.) Therefore, for k ≥ 1, ρ(G) ≥
√∑

v∈V d2
k+1(v)∑

v∈V d2
k(v)

and the equality

holds if and only if G is a semiharmonic graph. In the next lemma we prove that strictly

semiharmonic connected graphs and strictly pseudosemiregular connected graphs are the

same.

Lemma 4 Let G be a connected graph. Then following are equivalent:

(1). G is strictly semiharmonic.

(2). G is strictly pseudosemiregular.

Proof. Let G be a strictly semiharmonic graph. Then G must have a vertex v0 of the

smallest average 2-degree, say a =
d2(v0)

d(v0)
. Let w0 be the vertex that is adjacent to v0

and has the largest average 2-degree among the neighbors of v0, say b =
d2(w0)

d(w0)
. Then

d3(w0) =
∑

u∈N(v0)

d2(u) ≥ d2(v0)

d(v0)
d2(w0) = abd(w0),

with equality holding if and only if all neighbors of w0 have average 2-degree a.

d3(v0) =
∑

u∈N(w0)

d2(u) ≤ d2(w0)

d(w0)
d2(v0) = abd(v0),

with equality holding if and only if all neighbors of v0 have average 2-degree b.

Since G is strictly semiharmonic, a 6= b and d3(v) = µd(v) holds for all v ∈ V (G), all

neighbors of v0 must have average 2-degree b and all neighbors of w0 must have average

2-degree a. Since G is connected, it follows immediately that G is (bipartite) strictly

pseudosemiregular.

If G is strictly pseudosemiregular and let V = V1 ∪ V2 be a bipartition of V (G). Set

a =
d2(u)

d(u)
(u ∈ V1) and b =

d2(v)

d(v)
(v ∈ V2) and a 6= b. Hence G is not harmonic. For all

u ∈ V1, we have

d3(u) =
∑

v∈N(u)

d2(v) =
∑

v∈N(u)

d2(v)

d(v)
d(v) = bd2(u) = abd(u)

and similarly, d3(v) = abd(v) for all v ∈ V2. Thus d3(v) = abd(v) for all v ∈ V and hence

G is a strictly ab-semiharmonic graph.
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Combining lemmas 3 and 4 we have the main result which generalizes Theorem 2.

Theorem 5 Let G be a connected graph and k ≥ 1. Then

ρ(G) ≥
√∑

v∈V d2
k+1(v)∑

v∈V d2
k(v)

,

with equality if and only if G is pseudoregular or strictly pseudosemiregular.

Theorem 6 Let G be a connected graph and

f(k) =

√∑
v∈V d2

k+1(v)∑
v∈V d2

k(v)
, k ≥ 0. (4)

Then f(k) is an increasing sequence and

lim
n→∞

f(k) = ρ(G).

Proof. We prove the monotone increasing of f(k) by showing that f(k + 1) ≥ f(k).

Note that the inner product 〈Akj, Akj〉 = (Akj)T Akj =
∑

v∈V d2
k(v).

By Cauchy-Schwarz inequality, we have

〈Akj, Akj〉〈Ak+2j, Ak+2j〉 ≥ 〈Akj, Ak+2j〉2 = 〈Ak+1j, Ak+1j〉2.

That is, ∑
v∈V d2

k+2(v)∑
v∈V d2

k+1(v)
≥

∑
v∈V d2

k+1(v)∑
v∈V d2

k(v)
.

Hence, f(k + 1) ≥ f(k) for k ≥ 0.

Since the sequence f(k) is an monotonically increasing sequence and has a upper

bound ρ(G), the limit lim
k→∞

f(k) must exist. In order to prove the limit it suffices to

prove lim
k→∞

f(2k) = ρ(G).

Let ρ(G) = λ1 > λ2 ≥ · · · ≥ λn be all eigenvalues of A(G) and X1, X2, · · · , Xn be

unit eigenvectors corresponding these eigenvalues of A(G). Then X1, X2, · · · , Xn consist

of a orthonormal basis of Rn. Assume that j =
∑n

i=1 θiXi, then θi = jT Xi, i = 1, 2, ..., n.

In order to prove lim
k→∞

f(2k) = ρ(G) it suffices to prove that
D2k√

〈D2k, D2k〉
approaches a

unit eigenvector corresponding the eigenvalue ρ2(G) of A2(G) when k → ∞. Note that
D2k√

〈D2k, D2k〉
=

A2kj√
〈A2kj, A2kj〉 =

A2kj∑
v∈V d2

2k(v)
and

A2kj = A2k

n∑
i=1

θiXi =
n∑

i=1

θiλ
2k
i Xi,
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we have
∑
v∈V

d2
2k(v) =

n∑
i=1

θ2
i λ

4k
i .

If G is nonbipartite, since θ1 > 0 and λ1 > |λi| for all i = 2, 3, ..., n, then the vector
θiλ

2k
i Xi√∑n

i=1 θ2
i λ

4k
i

approaches X1 if i = 1, 0 if i > 1. Thus the eigenvector
D2k√

〈D2k, D2k〉
approaches X1 and the result follows.

If G is bipartite, since θ1 > 0 and λ1 > |λi| for all i = 2, 3, ..., n−1, λn = −λ1, then the

vector
θiλ

2k
i Xi√∑n

i=1 θ2
i λ

4k
i

approaches
θ1X1√
θ2
1 + θ2

n

if i = 1, 0 if 1 < i < n,
θnXn√
θ2
1 + θ2

n

if i = n.

Thus the eigenvector
D2k√

〈D2k, D2k〉
approaches

θ1X1 + θnXn√
θ2
1 + θ2

n

, which is a unit eigenvector

corresponding the eigenvalue ρ2(G) of A2(G) and the result follows.

3 Upper bounds for the energy of a graph

The energy of a graph G, denoted by E(G), is defined as E(G) =
∑n

i=1 |λi|, where

λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of the adjacency matrix of G. This concept was

introduced by I. Gutman and is studied intensively in mathematical chemistry, since it

can be used to approximate the total π-electron energy of a molecule(see [5] ). In 1971

McClelland discovered the first upper bound for E(G) as follows:

E(G) ≤
√

2mn. (5)

Since then, numerous other bounds for E(G) were found (see [1,2,6–10,12,14–16]). Re-

cently, Yu et. al [14] proved the following result:

Theorem 7 Let G be a nonempty graph with n vertices and m edges. Then

E(G) ≤
√∑

v∈V (G) d2
2(v)∑

v∈V (G) d2(v)
+

√√√√(n− 1)

(
2m−

∑
v∈V (G) d2

2(v)∑
v∈V (G) d2(v)

)
. (6)

Equality holds if and only if one of the following statements holds:

(1) G ∼= n
2
K2;

(2) G ∼= Kn;

(3) G is a non-bipartite connected µ-pseudoregular graph with three distinct eigenvalues

µ,
√

2m−µ2

n−1
,−

√
2m−µ2

n−1
, where µ >

√
2m
n

.
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Remark In fact, the graph appears in (3) of above Theorem must be non-completed

strongly regular graph with two nontrivial eigenvalues both with absolute value

√
2m−( 2m

n
)2

n−1
,

for details see the proof of the next Theorem.

The following is the main results of this section which generalize the above result.

Since general case is not substantially different, we concentrate on the particular case of

connected graph for the sake of readability.

Theorem 8 Let G be a connected graph with n(n ≥ 2) vertices and m edges. Then

E(G) ≤
√∑

v∈V (G) d2
k+1(v)∑

v∈V (G) d2
k(v)

+

√√√√(n− 1)

(
2m−

∑
v∈V (G) d2

k+1(v)∑
v∈V (G) d2

k(v)

)
. (7)

Equality holds if and only if G is the complete graph Kn or G is a strongly regular graph

with two nontrivial eigenvalues both with absolute value

√
2m−( 2m

n
)2

n−1
.

Proof. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of G. By the Cauchy-Scharz inequality

we have

E(G) =
n∑

i=1

|λi| = λ1 +
n∑

i=2

|λi|

≤
√√√√(n− 1)

n∑
i=2

λ2
i =

√
(n− 1)(2m− λ2

1) .

Now since the function F (x) = x+
√

(n− 1)(2m− x2) decreases on the interval
√

2m/n ≤
x ≤ √

2m. By Theorem 6 we have

λ1 ≥ f(k) ≥ f(0) =

√∑
v∈V (G) d2(v)

n
≥

√
2m

n
.

Hence F (λ1) ≤ F (
√∑

v∈V (G) dk+1(v)2/dk(v)2 ) and

E(G) ≤
√∑

v∈V (G) d2
k+1(v)∑

v∈V (G) d2
k(v)

+

√√√√(n− 1)

(
2m−

∑
v∈V (G) d2

k+1(v)∑
v∈V (G) d2

k(v)

)
. (8)

If the connected graph G is a complete graph Kn or a strong regular graph with two

non-trivial eigenvalues both with absolute values

√
2m−( 2m

n
)2

n−1
then it is easy to check that

the equality holds.
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Conversely, if the equality holds, according the above proof, we have

λ1 =

√∑
v∈V (G) d2

k+1∑
v∈V (G) d2

k

,

which implies that G is pseudo-semiregular and |λi| =
√

2m− λ2
1

n− 1
for i = 2, 3, ..., n. Note

that a graph has only one distinct eigenvalue if and only if it has no edges and a graph

has two distinct eigenvalues if and only if it is a complete graph. Since G is connected,

we reduced to the following two cases:

(1) G has two distinct eigenvalues. In this case G ∼= Kn.

(2) G has three distinct eigenvalues. In this case, λ1 =

√∑
v∈V (G) d2

k+1∑
v∈V (G) d2

k

and |λi| =

√
2m− λ2

1

n− 1
for i = 2, 3, ..., n. Since G is connected, λ1 > λi, λi 6= 0 for i = 2, ..., n. Thus

G must be regular (else G has 0 as an eigenvalue) and non-bipartite ( else G has least

four distinct eigenvalues). Hence G is λ1-regular (λ1 =
2m

n
) and has exact three distinct

eigenvalues. Thus G is strong regular graph with two non-trivial eigenvalues both with

absolute value

√√√√√
(

2m− (
2m

n
)2

)

n− 1
.

Similarly, (similar to [7, 14, 15]) we may prove

Theorem 9 Let G be a connected bipartite graph with n(n ≥ 2) vertices and m edges.

Then

E(G) ≤ 2

√∑
v∈V (G) d2

k+1(v)∑
v∈V (G) d2

k(v)
+

√√√√(n− 2)

(
2m− 2

∑
v∈V (G) d2

k+1(v)∑
v∈V (G) d2

k(v)

)
. (9)

Equality holds if and only if G is the complete bipartite graph or G is the incidence graph

of a symmetric 2-(ν, k, λ)-design with k =
2m

n
, n = 2ν and λ =

k(k − 1)

ν − 1
.
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