
Alkanes as Stereoisomers. Enumeration by the
Combination of Two Dichotomies for

Three-Dimensional Trees

Shinsaku Fujita
Department of Chemistry and Materials Technology,

Kyoto Institute of Technology,
Matsugasaki, Sakyoku, Kyoto 606-8585, Japan

E-mail: fujitas@chem.kit.ac.jp

(Received October 31, 2006)

Abstract

Alkanes as stereoisomers are categorized according to the dichotomy between cen-
troidal and bicentroidal three-dimensional trees (3D-trees), which are distinctly counted
by means of Fujita’s proligand method (S. Fujita, Theor. Chem. Acc., 113, 73–79, 80–86
(2005); S. Fujita, Theor. Chem. Acc., 115, 37–53 (2006)). The centroidal 3D-trees are enu-
merated by using a tetrahedral skeleton of Td-symmetry, while the bicentroidal 3D-trees
are enumerated by using a binuclear skeleton of D∞h-symmetry. The enumerations based
on the two skeletons are conducted by means of respective functional equations derived
from cycle indices with chirality fittingness (CI-CFs), where the functions a(xd), c(xd),
and b(xd) are substituted for three kinds of sphericity indices (SIs), i.e., ad for homospheric
cycles, cd for enantiospheric cycles, and bd for hemispheric cycles. The 3D-trees are al-
ternatively counted by using the dichotomy between balanced and unbalanced 3D-trees.
The two dichotomies are combined to categorize the 3D-trees into three categories, i.e.,
centroidal & unbalanced 3D-trees, bicentroidal & unbalanced 3D-trees, and bicentroidal &
balanced 3D-trees, which are counted distinctly by using respective functional equations.
These functional equations are programmed by means of the Maple programming language
and executed to give respective stereoisomer numbers, which are collected in tabular forms
up to carbon content 100. These numbers of stereoisomers obtained by Fujita’s proligand
method are compared with those of constitutional isomers (graphs) derived by using Pólya’s
theorem.
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1 Introduction
Enumeration of alkanes is one of typical interdisciplinary problems which have variously been
investigated by chemists and mathematicians, as described in books [1–4] and reviews [5–8].
Among their contributions, we should refer to the works done by Cayley [9, 10], Henze and
Blair [11, 12], Pólya [13, 14], and Otter [15]. In particular, Pólya’s theorem [13, 14] has been
widely used in solving the enumeration problem as well as related ones, where Pólya’s cycle
indices (CIs) were used in connection with permutation groups. The dependence of Pólya’s
theorem upon permutation groups means that enumeration results were concerned with consti-
tutional isomers, which were regarded as trees (graphs) in a mathematical context. Because the
permutation groups disregarded inner structures of ligands, stereochemical problems such as
pseudoasymmetry and meso-compounds were not treated properly. Later, Robinson et al. [16]
reported the enumeration of alkanes as stereoisomers by modifying Pólya’s cycle indices (CIs).
Even their treatment, however, did not take account of problems due to the inner structures of
ligands, e.g., pseudoasymmetry and meso-compounds.

By integrating permutation groups with point groups, we have developed the USCI (unit-
subduced-cycle-index) approach [17], where we put emphasis on conjugate subgroups so as to
give the concept of sphericities of orbits. The integration of the two branches of group theory
has otherwise provided us with an additional approach named the proligand method [18–20],
where we put emphasis on conjugacy classes so as to transform the concept of sphericities of
orbits into the concept of sphericities of cycles. The concept of sphericities of orbits in Fujita’s
USCI approach [17] and the concept of sphericities of cycles in Fujita’s proligand method [18–
20] are both capable of treating the inner structures of ligands properly and of solving such
problems as pseudoasymmetry and meso-compounds.

In this paper, we discuss the aforementioned enumeration of alkanes as a probe for testifying
the versatility of Fujita’s proligand method in comparison with Pólya’s theorem. Thus, we
enumerate alkanes as stereoisomers in contrast to alkanes as constitutional isomers, where we
write and execute programs for counting them by using the Maple programming language after
a succinct description of Fujita’s proligand method. We discuss the enumeration on the basis of
the dichotomy between centroidal and bicentroidal 3D-trees as well as the dichotomy between
balanced and unbalanced 3D-trees. We show that the combination of the two dichotomies
provides us with a versatile tool for counting alkanes as stereoisomers.

2 Two Dichotomies for Categorizing 3D-Trees
In the present paper, we adopt two dichotomies for categorizing trees (or 3D-trees), i.e., the
dichotomy between centroidal and bicentroidal trees (or 3D-trees) and the dichotomy between
balanced and unbalanced trees (or 3D-trees).

2.1 Centroidal and Bicentroidal 3D-Trees
A tree (or a 3D-tree) is defined usually as a graph (or a 3D-object) which has v vertices and e
edges satisfying the relation v = e+1. Let m be the number of vertices contained in the largest
branch among the branches attaching to the vertex. According to Jordan [21], there are two
cases:
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1. A given tree (or 3D-tree) has an exceptional vertex (M) called a centroid if it satisfies
the relationship m < 1

2v. The tree (or 3D-tree) is called a centroidal tree (or centroidal
3D-tree).

2. A given tree (or 3D-tree) has two adjacent vertices (M1 and M2), each of which satisfies
the relationship m = 1

2v. The exceptional graph (M1—M2) composed of the two adjacent
vertices and the relevant edge is called a bicentroid. The tree (or 3D-tree) is called a
bicentroidal tree (or bicentroidal 3D-tree).

Thereby, trees (or 3D-trees) are classified into two categories, i.e., centroidal trees (or 3D-trees)
and bicentroidal trees (or 3D-trees).

All of the vertices of the tree (or 3D-tree) other than the centroid or the bicentroid satisfy the
relationship m > 1

2v. There are no cases in which a given tree (or 3D-tree) has both a centroid
and a bicentroid so that a kind of dichotomy takes place.

According to Jordan [21], there is another dichotomy for categorizing trees. i.e., the di-
chotomy between central and bicentral trees. To the best of our knowledge, this dichotomy has
not been explicitly used for counting trees. Hence, we do not adopt the dichotomy between
central and bicentral trees in the present paper.

2.2 Balanced and Unbalanced 3D-Trees
As a new dichotomy which is applicable to the enumeration of trees or 3D-trees, we have re-
cently developed the dichotomy between balanced and unbalanced trees (or 3D-trees). Because
we have submitted a paper on the new dichotomy to this journal as a successive paper, we will
omit its detailed features in the present paper. However, we should refer to a minimum set of
findings in order to discuss the combination of the two dichotomies, i.e., the dichotomy be-
tween centroidal and bicentroidal trees (or 3D-trees) and the dichotomy between balanced and
unbalanced trees (or 3D-trees).

The crux of the new dichotomy is the absence or presence of a balance-edge, in which the
two branch incident to the balance-edge are congruent to each other under the action of D∞h or
more precisely under the action of the factor group D∞h/C∞. A 3D-tree which has a balance-
edge is called a balanced 3D-tree; otherwise a 3D-tree is called an unbalanced 3D-tree.

Such balanced 3D-trees are represented by X—X, p—p (paired with p—p), or p—p, where
the symbol X represents an achiral proligand or ligand; the symbols p and p represent a pair of
enantiomeric proligands or ligands; and each linking bond is a balance-edge. As found easily,
achiral balanced 3D-trees have the formula X—X or p—p, the latter of which corresponds to
meso-compounds. On the other hand, chiral balanced 3D-trees are represented by the formula
p—p paired with the corresponding enantiomeric formula p—p.

Bicentroidal 3D-trees other than the aforementioned balanced trees are represented by X—
Y, X—p (paired with X—p), and p—q (paired with p—q). Note that the symbols X and Y
represent achiral proligands or ligands, while the symbols p (or p) and q represent chiral proli-
gands, where the pair of ligands in each bicentroidal 3D-tree, i.e., X and Y, X and p, or p and q,
has the same carbon content.
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3 Alkanes as Centroidal and Bicentroidal 3D-Trees

3.1 Alkyl Ligands as 3D-Components
To enumerate alkanes as stereoisomers, the enumeration data of alkyl ligands as components
should be conducted as prerequisites. Although the derivation of the data is not described in
detail, functional equations necessary to count alkyl ligands are described briefly.

We use the symbols a(x), c(x), and b(x) to represent generating functions for counting
respective numbers:

a(x) =
∞

∑
k=0

αkxk (1)

c(x2) =
∞

∑
k=0

γ2kx2k (2)

b(x) =
∞

∑
k=0

βkxk, (3)

where the coefficient (αk) of the term xk in the counting series a(x) represents the number of
achiral alkyl ligands (or planted 3D-trees) of carbon content k; the coefficient (γ2k) of the term
x2k in the counting series c(x2) represents the number of diploids of carbon content 2k, in which
an achiral alkyl ligand or a pair of enantiomeric alkyl ligands (or planted 3D-trees) is counted
once; and finally the coefficient (βk) of the term xk in the counting series b(x) represents the
number of achiral and chiral alkyl ligands (or planted 3D-trees) of carbon content k, in which
two enantiomers of each pair are separately counted. We put α0 = 1, γ0 = 1, and β0 = 1 to treat
trivial cases of terminal vertices (or hydrogen atoms).

�
�

1
2

3 �
�

CH3
CH2CH3

CH2CH2CH3

1 2
C3v-skeleton alkyl ligand
(C3v(/Cs)) planted 3D-tree

Figure 1: C3v-skeleton (1) with three substitution positions and an alkyl ligand (3-methylhex-
3-yl ligand) as a planted 3D-tree (2). A solid circle (•) represents a root, while an open circle
(◦) represents a principal node, which is a carbon atom carrying three substitution positions.

Fujita’s proligand method [18–20] is applied to this case, where we start from a methyl
skeleton (1) belonging to C3v-point group. Any alkyl ligand can be regarded as a planted 3D-
tree, which is constructed by substitution of inner alkyl ligands for the three positions (1–3) of
the methyl skeleton (1), where the process of substitution has nested (recursive) nature. For
example, a 3-methylhex-3-yl ligand (2) is regarded as a methyl skeleton having methyl, ethyl,
and propyl ligands, each of which can be regarded as a methyl skeleton having respective inner
alkyl ligands.
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The three positions (1–3) of the methyl skeleton (1) construct an orbit governed by a coset
representation (CR) C3v(/Cs). Each cycle contained in the permutations of the CR is charac-
terized by sphericity so as to be categorized into a homospheric cycle, an enantiospheric cycle,
or a hemispheric cycle. The sphericity is specified by a sphericity index (SI), i.e., ad for a ho-
mospheric cycle, cd for an enantiospheric cycle, or bd for a hemispheric cycle. Then a product
of SIs is assigned to each permutation of the CR according to its cycle structure. Such prod-
ucts of SIs are summed up to cover all of the symmetry operations of C3v and then averaged
by |C3v| = 6 so as to give the corresponding cycle indices with chirality fittingness (CI-CF).
Other relevant CI-CFs for the C3v-skeleton are obtained according to Fujita’s proligand method
[18–20] and they are transformed into the following functional equations:

a(x) = 1+ xa(x)c(x2) (4)

c(x2) = 1+
x2

3

(
c(x2)3 +2c(x6)

)
(5)

b(x) = 1+
x
3

(
b(x)3 +2b(x3)

)
, (6)

where the sphericity indices (ad , cd , and bd) of the CI-CFs are replaced by a(xd), c(xd), and
b(xd). These equations have recursive nature.

Let Bk be the number of achiral and chiral alkyl ligands (planted promolecules) of carbon
content k, where each pair of enantiomers is counted just once. Let Ck be the number of chiral
alkyl ligands (planted promolecules) only, where each pair of enantiomers is counted just once.
They are represented by the coefficients of the following generating functions:

B(x) =
∞

∑
k=0

Bkxk (7)

C(x) =
∞

∑
k=0

Ckxk, (8)

where we put B0 = 1 and C0 = 0 to treat a trivial case of carbon content 0. Because we can
place Bk = αk +Ck and βk = αk +2Ck, eq. 4 (for a(x)) and eq. 6 (for b(x)) are combined to give
the following equations:

B(x) =
1
2

(a(x)+b(x)) (9)

C(x) =
1
2

(b(x)−a(x)) . (10)

3.2 Enumeration of Centroidal 3D-Trees
3.2.1 CI-CFs for Centroidal 3D-Trees

The four substitution positions (numbered as 1–4) of a tetrahedral skeleton (3) construct an
orbit governed by a CR Td(/C3v). They accommodate a set of ligands to give a centroidal
derivative belonging to a subgroup of Td in agreement with the sphericities of desymmetrized
orbits. For example, 3,3-dimethylhexane (3) is a centroidal alkane derived by the substitution
of two methyl, one ethyl, and one propyl ligands, where the longest branch (the propyl ligand)
satisfies the relationship for centroidal 3D-trees, i.e., 3 < (1/2)×8 in this case.
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1

24
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CH3

CH3CH3CH2CH2
CH3CH2

3 4

Figure 2: Td-skeleton (3) with four substitution positions and a centroidal alkane (3,3-
dimethylhexane) as a 3D-tree (4). An solid circle (•) represents a centroid, which is a carbon
atom carrying four substitution positions.

Following Fujita’s proligand method [18–20], Theorem 1 of [20] is applied to the enumer-
ation of tetrahedral promolecules under the action of Td point group. Thereby, the cycle index
with chirality fittingness (CI-CF) for counting achiral promolecules and enantiomeric pairs of
chiral promolecules is calculated as follows:

CI-CF(Td;ad,bd,cd)

=
1
24

(b4
1 +3b2

2 +8b1b3 +6a2
1c2 +6c4), (11)

where each pair of enantiomers is counted just once in this enumeration.
Theorem 3 of [20] for the enumeration of ligands under the action of the maximum chiral

subgroup (T) can be applied to this case for counting achiral promolecules and chiral pro-
molecules. The following CI-CF is obtained:

CI-CF(T;bd) =
1

12
(b4

1 +3b2
2 +8b1b3), (12)

where two enantiomers of each pair are counted separately.
The first proposition of Theorem 4 for the enumeration of achiral ligands [20] can be applied

to this case for counting achiral promolecules only. The following CI-CFA is obtained:

CI-CFA(Td;ad,bd,cd)
= 2CI-CF(Td,ad,bd,cd)−CI-CF(T,bd)

=
1
2
(a2

1c2 + c4). (13)

The second proposition of Theorem 4 for the enumeration of chiral ligands [20] can be
applied to obtain the following CI-CFC for counting chiral promolecules only:

CI-CFC(Td;ad,bd,cd)
= CI-CF(T;bd)−CI-CF(Td;ad,bd,cd)

=
1

24
(b4

1 +3b2
2 +8b1b3 −6a2

1c2 −6c4) (14)

where each pair of enantiomers is counted just once.

3.2.2 Functional Equations for Counting Centroidal 3D-Trees

Fujita’s proligand method teaches us that eqs. 11–14 are used to count promolecules having
various proligands as substituents. To enumerate alkanes as stereoisomers, such proligands are
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replaced by alkyl ligands represented by the generating functions (eqs. 1–3). These generating
functions are in turn evaluated by using the functional equations (eqs. 4–6).

Let B̂k be the number of achiral and chiral centroidal 3D-trees (promolecules or alkanes)
of carbon content k, where a pair of enantiomeric 3D-trees is counted just once. Let Âk be
the number of achiral centroidal 3D-trees (promolecules or alkanes) of carbon content k. Let
Ĉk be the number of chiral centroidal 3D-trees (promolecules or alkanes) of carbon content k,
where a pair of enantiomeric 3D-trees is counted just once. In agreement with the definition of
centroidal 3D-trees, the terms up to xv are collected to give the following generating functions:

B̂(x) =
v

∑
k=0

B̂kxk (15)

Â(x) =
v

∑
k=0

Âkxk (16)

Ĉ(x) =
v

∑
k=0

Ĉkxk, (17)

where v runs stepwise from 0 to infinite. Note that eq. 11 corresponds to eq. 15, eq. 13 to eq.
16, and eq. 14 to eq. 17.

Because eq. 11 corresponds to eq. 15, the SIs ad , cd , and bd involved in eq. 11 are replaced
by the terms a(xd), c(xd), and b(xd) respectively. Thereby we obtain the following functional
equation:

B̂(x) =
x

24
{

b(x)4 +3b(x2)2 +8b(x)b(x3)+6a(x)2c(x2)+6c(x4)
}
, (18)

where the multiplying by x is necessary because eq. 11 ignores the centroid of the Td skeleton
tentatively.

Because eq. 13 corresponds to eq. 16, a similar substitution gives the following functional
equation:

Â(x) =
x
2
(
a(x)2c(x2)+ c(x4)

)
. (19)

By the correspondence of eq. 14 to eq. 17, we obtain the following functional equation:

Ĉ(x) =
x

24
{

b(x)4 +3b(x2)2 +8b(x)b(x3)−6a(x)2c(x2)−6c(x4)
}
. (20)

Our target is to evaluate eqs. 18–20 by using eqs. 4–6 under the criterion for centroidal
3D-trees. We should examine the coefficient of the term xv appearing in series generated from
eq. 18, 19, or 20. The criterion for centroidal 3D-trees means that the maximum number (m),
which is the number of non-terminal vertices in the largest proligand, is restricted to satisfy the
following condition:

1
2

v−1 ≤ m <
1
2

v (21)

or equivalently
2m < v ≤ 2m+2 (22)

Suppose that eqs. 4–6 have been evaluated up to the term xm. They are introduced into the
right-hand sides of eqs. 18–20 and the resulting equations are expanded to give respective series
for B̂(x) (eq. 15), Â(x) (eq. 16), and Ĉ(x) (eq. 17). Because of eq. 22, the coefficients of the
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terms x2m+1 and x2m+2 in the series are effective to determine B̂2m+1 and B̂2m+2; Â2m+1 and
Â2m+2; as well as Ĉ2m+1 and Ĉ2m+2.

It should be noted that eqs. 15–17 are evaluated by eqs. 18–20 only if the relationship of eq.
22 is satisfied. Strictly speaking, eqs. 18–20 up to the term x2m+2 are only effective to evaluate
the coefficients of the terms x2m+1 and x2m+2 appearing in eqs. 15–17. Suppose that we have
obtained a(x) = ∑m

k=0 αkxk, c(x2) = ∑m
k=0 γ2kx2k, and b(x) = ∑m

k=0 βkxk, where m is tentatively
fixed. They are introduced into eqs. 18–20 to give B̂(x)(m), Â(x)(m), and Ĉ(x)(m), respectively.
Let the symbol coeff(B̂(x)(m),x2m+1) etc. represent the coefficient of the term x2m+1 appearing
in the equation B̂(x)(m) etc. after expansion. Then, we obtain the following coefficients:

B̂2m+1 = coeff(B̂(x)(m),x2m+1) (23)

Â2m+1 = coeff(Â(x)(m),x2m+1) (24)

Ĉ2m+1 = coeff(Ĉ(x)(m),x2m+1) (25)

for odd carbon contents as well as the following coefficients:

B̂2m+2 = coeff(B̂(x)(m),x2m+2) (26)

Â2m+2 = coeff(Â(x)(m),x2m+2) (27)

Ĉ2m+2 = coeff(Ĉ(x)(m),x2m+2) (28)

for even carbon contents. These requirements should be considered in the following program-
ming.

3.2.3 Implementation and Calculations for Counting Centroidal 3D-Trees

By using the Maple programming language [22], we wrote a program for evaluating a(x) (by
eq. 4), c(x2) (by eq. 5), and b(x) (by eq. 6) and for obtaining the coefficients B̂k (eq. 15), Âk (eq.
16), and Ĉk (eq. 17). The program was stored in a file named “Centroid1-100A.mpl”, which
was executed by by inputting as follows:

read "Centroid1-100A.mpl";

The results are shown in Table 1, where the values of B̂k for centroidal 3D-trees, those of Âk
for achiral centroidal 3D-trees, and those of Ĉk for chiral centroidal 3D-trees are collected up to
carbon content k = 100.

Maple program for counting centroidal 3D-trees, “Centroid1-100A.mpl”:

"Functional Equations for Alkyl Ligands";
ax := 1 + x*a1*c2;
cx := 1+ (1/3)*xˆ2*c2ˆ3 + (2/3)*xˆ2*c6;
bx := 1 + (1/3)*x*b1ˆ3 + (2/3)*x*b3;

"Alkanes as Centroidal 3D-Trees";
Bxh := (x/24)*(b1ˆ4 + 3*b2ˆ2 + 8*b1*b3 + 6*a1ˆ2*c2 + 6*c4):
Axh := (x/2)*(a1ˆ2*c2 + c4):
Cxh := (x/24)*(b1ˆ4 + 3*b2ˆ2 + 8*b1*b3 - 6*a1ˆ2*c2 - 6*c4):

"Initial Values";
a1 := 1; a2 := 1;
b1 := 1; b2 := 1; b3 := 1;
c2 := 1; c4 := 1; c6 := 1;
Bh := x; Ah := x; Ch := 0;
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"Recursive Calculation";
for m from 1 to 50 by 1 do
m:
Cbx:= coeff(bx,xˆm):
Cax:= coeff(ax,xˆm):
Ccx:= coeff(cx,xˆ(m*2)):
a1 := a1 + Cax*xˆm:
a2 := a2 + Cax*xˆ(m*2):
b1 := b1 + Cbx*xˆm:
b2 := b2 + Cbx*xˆ(m*2):
b3 := b3 +Cbx*xˆ(m*3):
c2 := c2 + Ccx*xˆ(m*2):
c4 := c4 + Ccx*xˆ(m*4):
c6 := c6 + Ccx*xˆ(m*6):
n := 2*m +1:
Bh := Bh + coeff(Bxh,xˆn)*xˆn + coeff(Bxh,xˆ(n+1))*xˆ(n+1):
Ah := Ah + coeff(Axh,xˆn)*xˆn + coeff(Axh,xˆ(n+1))*xˆ(n+1):
Ch := Ch + coeff(Cxh,xˆn)*xˆn + coeff(Cxh,xˆ(n+1))*xˆ(n+1):
end do:

"Print-Out";
for m from 1 to 100 by 1 do
printf("%d & %d & %d & %d \\\\ \n",
m, coeff(Bh,xˆm), coeff(Ah,xˆm), coeff(Ch,xˆm));
end do;

The first paragraph of this code “Functional Equations for Alkyl Ligands” declares the func-
tional equations: ax for a(x) (by eq. 4), cx for c(x2) (by eq. 5), and bx for b(x) (by eq. 6).
The second paragraph of this code “Alkanes as Centroidal 3D-Trees” declares the functional
equations: Bxh for B̂(x) (eq. 18), Axh for Â(x) (eq. 19), and Cxh for Ĉ(x) (eq. 20). The third
paragraph “Initial Values” sets initial values for recursive calculations. The fourth paragraph
“Recursive Calculation” shows a do loop for recursive calculations of the functional equations
described above. The variables Bh, Ah, and Ch are used to store the series represented by eqs.
15–17, whose coefficients (for eqs. 23–25 and eqs. 26–28) are printed out in the last paragraph
“Print-Out”.

Note that the do loop of the fourth paragraph moves m from 1 to 50 in oder to calculate B̂k
(eq. 15), Âk (eq. 16), and Ĉk (eq. 17) up to carbon content 100. This stems from the condition
represented by eq. 22 due to the criterion of centroidal 3D-trees.

3.3 Enumeration of Bicentroidal 3D-Trees
3.3.1 CI-CFs or Bicentroidal 3D-Trees

In order to enumerate bicentroidal 3D-trees, we consider a dumbbell skeleton (5) with two
substitution positions, which construct an orbit governed by a CR K(/K′). Note that we take
account of a factor group K = D∞h/C∞ and its subgroup K′ = D∞h/C∞v. The two positions
accommodate a set of ligands to give a bicentroidal derivative belonging to a subgroup of D∞h
or D∞h/C∞ in agreement with the sphericities of desymmetrized orbits. For example, 2,2,4-
trimethylheptane (6) is a bicentroidal alkane derived by the substitution of two alkyl ligands
of the same carbon content 5, which satisfies the relationship for bicentroidal 3D-trees, i.e.,
5 = (1/2)×10 in this case.

Because the CR K(/K′) is isomorphic to C2v(/Cs), the use of Theorem 1 of [20] gives the
following CI-CF:

CI-CF(D∞h/C∞;ad,cd,bd) =
1
4

(
b2

1 +b2 +a2
1 + c2

)
. (29)
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Table 1: Numbers of Centroidal Alkanes as Stereoisomers
k B̂k (Total) Âk (Achiral) Ĉk (Chiral)

1 1 1 0
2 0 0 0
3 1 1 0
4 1 1 0
5 3 3 0
6 2 2 0
7 9 7 2
8 8 7 1
9 38 21 17

10 46 22 24
11 203 61 142
12 283 72 211
13 1299 186 1113
14 2004 220 1784
15 9347 567 8780
16 15758 717 15041
17 72505 1755 70750
18 129281 2209 127072
19 589612 5454 584158
20 1098656 7149 1091507
21 4954686 17070 4937616
22 9576645 22476 9554169
23 42671509 53628 42617881
24 84998202 72656 84925546
25 374749447 169175 374580272
26 765965475 229676 765735799
27 3344714436 535267 3344179169
28 6992429665 743026 6991686639
29 30264120901 1698322 30262422579
30 64538102227 2361476 64535740751
31 277096805630 5400908 277091404722
32 601441729659 7642893 601434086766
33 2563418291362 17211368 2563401079994
34 5652900424627 24394779 5652876029848
35 23931052067297 54947147 23930997120150
36 53534903586744 79009726 53534824577018
37 225226025743122 175702378 225225850040744
38 510446528635659 252964410 510446275671249
39 2135109239262173 562645937 2135108676616236
40 4896889667780240 819922295 4896888847857945
41 20372876580255143 1804088396 20372874776166747
42 47238614063478058 2631820744 47238611431657314
43 195544793394384827 5791497722 195544787602887105
44 457999560484205773 8536377160 457999551947828613
45 1886989279103128211 18611821161 1886989260491307050
46 4461040396950967790 27458156708 4461040369492811082
47 18298681742426380229 59870273288 18298681682556106941
48 43636081544149901047 89120741244 43636081455029159803
49 178246302614039769705 192762694240 178246302421277075465
50 428497965173462968567 287167536146 428497964886295432421
51 1743475977870305954708 621145058010 1743475977249160896698
52 4222957579213874326998 932636649624 4222957578281237677374
53 17118606500538110493165 2003060193783 17118606498535050299382
54 41757573020631974557921 3009644412440 41757573017622330145481
55 168676827177458246245600 6464001746606 168676827170994244498994
56 414192406700454644211608 9780036558542 414192406690674607653066
57 1667507044106396700614662 20873421744449 1667507044085523278870213
58 4120269449060079231919190 31600908341722 4120269449028478323577468
59 16535111535321800418856805 67445191538640 16535111535254355227318165
60 41098222466126905529132145 102743321459580 41098222466024162207672565
61 164431691004690928193898010 218049903481679 164431691004472878290416331
62 410979018222119235952994626 332350277618212 410979018221786885675376414
63 1639544206288762558253253718 705330165952872 1639544206288057228087300846
64 4119529788256533749220428115 1081087049647181 4119529788255452662170780934
65 16388819934893627771459167067 2282686396696017 16388819934891345085062471050
66 41385225782249836799266208327 3500478814410329 41385225782246336320451797998
67 164207682036849477130738064324 7391016289967130 164207682036842086114448097194
68 416635607643584641443966956505 11391634034768010 416635607643573249809932188495
69 1648923729893987703415359750119 23941657967808209 1648923729893963761757391941910
70 4202708638020682863979777378556 36917161577580590 4202708638020645946818199797966
71 16592589875613236090913193392688 77586381466034947 16592589875613158504531727357741
72 42473372537692324926023951462175 120189309691294216 42473372537692204736714260167959
73 167295424464204241785279087528744 251528935349306793 167295424464203990256343738221951
74 430006772381311411463428100669081 389800782399677001 430006772381311021662645700992080
75 1689911835064564750230170718349855 815741140338068227 1689911835064563934489030380281628
76 4360786726830840048241690321351540 1269537925991351156 4360786726830838778703764330000384
77 17100609751074144217174560807768366 2646489896299591485 17100609751074141570684664508176881
78 44294354185222186820769124153521749 4120240983149128308 44294354185222182700528141004393441
79 173335468778163767515568474781956550 8588824555686539622 173335468778163758926743919095416928
80 450600427378156845559982800702584531 13423903573385498107 450600427378156832136079227317086424
81 1759767313496477955950136185436237113 27882748457230290862 1759767313496477928067387728205946251
82 4590528948690471604616529471778183215 43593968512517811907 4590528948690471561022560959260371308
83 17892924987803326824799846194126147310 90545956172141260398 17892924987803326734253890021984886912
84 46830869858741159259966803464456963334 142077351102286455091 46830869858741159117889452362170508243
85 182194157793655704794237473891139390912 294122275423916054352 182194157793655704500115198467223336560
86 478379522345454679309871516802458372263 461655253463248942128 478379522345454678848216263339209430135
87 1857742280338673467557442653721200301589 955666449267540395221 1857742280338673466601776204453659906368
88 4892807796459916529261704647629075403302 1505041735231994609714 4892807796459916527756662912397080793588
89 18967377099179003868970637596678249069674 3105981799108470323147 18967377099179003865864655797569778746527
90 50103146420285113739818866280484547768367 4892884042870228987320 50103146420285113734925982237614318781047
91 193898555422930447001151675263478441556235 10097190706324159336800 193898555422930446991054484557154282219435
92 513654043751710294733679292054184446263260 15955816379863267567356 513654043751710294717723475674321178695904
93 1984557489015003230954102094778322440355924 32832697580700874763572 1984557489015003230921269397197621565592352
94 5271743914770706258012825906425310485383995 51896703593122831089656 5271743914770706257960929202832187654294339
95 20335387509472990198674865937576370042014764 106785552739916704811839 20335387509472990198568080384836453337202925
96 54162175051500719402424219621363121075002053 169281344462058446325058 54162175051500719402254938276901062628676995
97 208602785663318655583000176804691552968239008 347387515383940750498193 208602785663318655582652789289307612217740815
98 557028727906484285339493725195492553290993302 550829851333133859420094 557028727906484285338942895344159419431573208
99 2142136450298921147961693542530974370563522319 1130336590391716286395368 2142136450298921147960563205940582654277126951

100 5734313151200075267210640593555000980047907239 1797192677522993383492050 5734313151200075267208843400877477986664415189
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Figure 3: D∞h-skeleton or D∞h/C∞-skeleton (5) with two substitution positions and a bicen-
troidal alkane (2,2,4-trimethylheptane) as a 3D-tree (6). An two open circles represent a bicen-
troid.

An equation equivalent to eq. 29 has been reported previously on the basis of Fujita’s USCI
approach [23].

By following Fujita’s proligand method [20], we obtain other relevant CI-CFs as follows:

CI-CF(D∞/C∞;bd)

=
1
2

(
b2

1 +b2
)
, (30)

CI-CFA(D∞h/C∞;ad,cd,bd)
= 2CI-CF(D∞h/C∞;ad,cd,bd)−CI-CF(D∞/C∞;bd)

=
1
2

(
a2

1 + c2
)
, (31)

CI-CFC(D∞h/C∞;ad,cd,bd)
= CI-CF(D∞/C∞;bd)−CI-CF(D∞h/C∞;ad,cd,bd)

=
1
4

(
b2

1 +b2 −a2
1 − c2

)
. (32)

The CI-CF(D∞/C∞;bd) (eq. 30) is derived by using Theorem 3 of Fujita’s proligand method
[20] in order to count achiral promolecules and chiral promolecules, where two enantiomers
of each pair are counted separately. The CI-CFA(D∞h/C∞;ad,cd,bd) (eq. 31) which is de-
rived by using the first proposition of Theorem 4 for the enumeration of achiral ligands [20],
counts achiral promolecules only, where each pair of enantiomers is counted just once. The
CI-CFC(D∞h;ad,cd,bd) (eq. 32) is derived by using the second proposition of Theorem 4 for
the enumeration of chiral ligands [20] so as to counts chiral promolecules only, where each pair
of enantiomers is counted just once.

3.3.2 Functional Equations for Bicentroidal 3D-Trees

Let B̃k be the number of achiral bicentroidal promolecules plus enantiomeric pairs of chiral
bicentroidal promolecules of carbon content k; let Ãk be the number of achiral bicentroidal
promolecules of carbon content k; and let C̃k be the number of chiral bicentroidal promolecules
of carbon content k, where each pair of enantiomers is counted just once. Then, they appear as
the coefficients of the following generating functions:

B̃(x) =
v

∑
k=0

B̃kxk (33)
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Ã(x) =
v

∑
k=0

Ãkxk (34)

C̃(x) =
v

∑
k=0

C̃kxk, (35)

each of which contains the terms up to v, where the v runs stepwise from 0 to infinite.
Our target is to calculate the numbers B̃k, Ãk, and C̃k (eqs. 33–35) which satisfy the criterion

of bicentroidal 3D-trees. To do this task, we use Theorem 6 of Fujita’s proligand method [20]
after the selection of the CI-CFs (eqs. 29, 31, and 32).

To evaluate the counting series represented by eqs. 33–35, we derive functional equations
by substituting a(xd), c(xd), and b(xd) for the SIs (ad , cd , and bd) appearing in the CI-CFs (eqs.
29, 31, and 32). Thereby, we obtain the following functional equations:

B̃(x) =
1
4

(
b(x)2 +b(x2)+a(x)2 + c(x2)

)
(36)

Ã(x) =
1
2

(
a(x)2 + c(x2)

)
(37)

C̃(x) =
1
4

(
b(x)2 +b(x2)−a(x)2 − c(x2)

)
. (38)

Because we have evaluated a(x), c(x), and b(x) by using eqs. 4–6, they are introduced into
eqs. 36–38 to evaluate B̃(x), Ã(x), and C̃(x) under the criterion for bicentroidal 3D-trees, which
requires the relationship:

m =
1
2

v (39)

or
2m = v. (40)

Suppose that we have obtained a(x), c(x), and b(x) (eqs. 4–6) up to k = m. They are in-
troduced into eqs. 36–38. The resulting equations are expanded to give generating functions,
which contain no terms having powers larger than 2m, because each of eqs. 4–6 contain no
terms having powers larger than m. Obviously, the term x2m appearing in each of eqs. 36–38
comes from the largest term xm appearing in each of eqs. 4–6.

Strictly speaking, eqs. 36–38 up to the term x2m are only effective to evaluate the coef-
ficients of the term x2m appearing in eqs. 33–35. This means that eqs. 33–35 are evaluated
by eqs. 36–38 only if the relationship of eq. 40 is satisfied. Suppose that we have obtained
a(x) = ∑m

k=0 αkxk, c(x2) = ∑m
k=0 γ2kx2k, and b(x) = ∑m

k=0 βkxk, where m is tentatively fixed.
They are introduced into eqs. 36–38 to give B̃(x)(m), Â(x)(m), and Ĉ(x)(m), respectively. Let
the symbol coeff(B̃(x)(m),x2m) etc. represent the coefficient of the term x2m appearing in the
equation B̃(x)(m) etc. after expansion. Then, we obtain the following coefficients:

B̃2m = coeff(B̃(x)(m),x2m) (41)

Ã2m = coeff(Ã(x)(m),x2m) (42)

C̃2m = coeff(C̃(x)(m),x2m). (43)

Hence, the following programming should take account of these requirements.
More strictly speaking, the substitution of a(xd)− 1, c(xd)− 1, and b(xd)− 1 for the SIs

(ad , cd , and bd) in the CI-CFs (eqs. 29–32) should be considered instead of the derivation of
eqs. 36–38. However, the requirements shown in eqs. 41–43 permit the use of such simplified
equations as shown in eqs. 36–38.
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3.3.3 Implementation and Calculations for Counting Bicentroidal 3D-Trees

The same code for evaluating a(x) (by eq. 4), c(x2) (by eq. 5), and b(x) (by eq. 6) was followed
by the code for evaluating B̃k (eq. 33), Ãk (eq. 34), and C̃k (eq. 35). The following program was
stored in a file named “Bicentroid1-100A.mpl”, which was executed on the Maple system. The
results are shown in Table 2, where the values of B̃k for bicentroidal 3D-trees, those of Ãk for
achiral bicentroidal 3D-trees, and those of C̃k for chiral bicentroidal 3D-trees are collected up
to carbon content k = 100.

Maple program for counting bicentroidal 3D-trees, “Bicentroid1-100A.mpl”:

"Functional Equations for Alkyl Ligands";
ax := 1 + x*a1*c2;
cx := 1 + (1/3)*xˆ2*c2ˆ3 + (2/3)*xˆ2*c6;
bx := 1 + (1/3)*x*b1ˆ3 + (2/3)*x*b3;

"Alkanes as Bicentroidal 3D-Trees";
Bxt := (1/4)*(b1ˆ2 + b2 + a1ˆ2 + c2):
Axt := (1/2)*(a1ˆ2 + c2):
Cxt := (1/4)*(b1ˆ2 + b2 - a1ˆ2 - c2):

"Initial Values";
a1 := 1; a2 := 1;
b1 := 1; b2 := 1; b3 := 1;
c2 := 1; c4 := 1; c6 := 1;

Bt := 0; At := 0; Ct := 0;

"Recursive Calculation";
for m from 1 to 50 by 1 do
m:
Cbx:= coeff(bx,xˆm):
Cax:= coeff(ax,xˆm):
Ccx:= coeff(cx,xˆ(m*2)):
a1 := a1 + Cax*xˆm:
a2 := a2 + Cax*xˆ(m*2):
b1 := b1 + Cbx*xˆm:
b2 := b2 + Cbx*xˆ(m*2):
b3 := b3 +Cbx*xˆ(m*3):
c2 := c2 + Ccx*xˆ(m*2):
c4 := c4 + Ccx*xˆ(m*4):
c6 := c6 + Ccx*xˆ(m*6):
n := 2*m:
Bt := Bt + coeff(Bxt,xˆn)*xˆn:
At := At + coeff(Axt,xˆn)*xˆn:
Ct := Ct + coeff(Cxt,xˆn)*xˆn:
end do:

"Print-Out";
for m from 2 to 100 by 2 do
printf("%d & %d & %d & %d \\\\ \n",
m, coeff(Bt,xˆm), coeff(At,xˆm), coeff(Ct,xˆm));
end do;

3.4 Total Number of 3D-Trees
3.4.1 Summation for Obtaining Total Numbers of 3D-Trees

Because we have evaluated the values of B̂k, Âk, and Ĉk for centroidal 3D-trees in Subsection 3.2
as well as those of B̃k, Ãk, and C̃k for bicentroidal 3D-trees in Subsection 3.3, the corresponding
total numbers are obtained by their summations. Let B(T)

k be the total number of achiral 3D-
trees plus enantiomeric pairs of chiral 3D-trees of carbon content k; let A(T)

k be the total number
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Table 2: Numbers of Bicentroidal Alkanes as Stereoisomers
k B̃k (Total) Ãk (Achiral) C̃k (Chiral)

2 1 1 0
4 1 1 0
6 3 3 0
8 11 7 4

10 42 18 24
12 226 46 180
14 1455 135 1320
16 10132 364 9768
18 76596 1116 75480
20 604919 3157 601762
22 4925463 9660 4915803
24 41182288 28048 41154240
26 351540477 87198 351453279
28 3052718874 257498 3052461376
30 26911575651 807024 26910768627
32 240342103858 2416930 240339686928
34 2171043239281 7615957 2171035623324
36 19810929594366 23049846 19810906544520
38 182415941988708 72998375 182415868990333
40 1693333948230414 222772878 1693333725457536
42 15834518487216684 708229602 15834517778987082
44 149058123647139706 2176253909 149058121470885797
46 1411693345198989804 6940071788 1411693338258918016
48 13444259000085324450 21447095265 13444258978638229185
50 128691508729059112011 68575115832 128691508660483996179
52 1237676126576594750782 212938845214 1237676126363655905568
54 11955155210701470446671 682361154964 11955155210019109291707
56 115946610493627953674082 2127595209954 115946610491500358464128
58 1128738527380959873010625 6830764951225 1128738527374129108059400
60 11026844701965874529190922 21374156991589 11026844701944500372199333
62 108076850325929347339118106 68735616099846 108076850325860611723018260
64 1062546355974859184433303907 215750350143463 1062546355974643434083160444
66 10476479815331791402908804773 694810203326143 10476479815331096592705478630
68 103576425125386740139551603997 2186885259231139 103576425125384553254292372858
70 1026636422872860993299342917081 7051608612790801 1026636422872853941690730126280
72 10200477451834298878750661296831 22248706566076681 10200477451834276630044095220150
74 101581672299213473582179782664595 71821230998745295 101581672299213401760948783919300
76 1013791682525676228576683088291396 227098401776737991 1013791682525676001478281311553405
78 10138463629083017972808924946341975 733830838917910260 10138463629083017238978086028431715
80 101587632316921574251763999702477485 2324913064252782235 101587632316921571926850935449695250
82 1019796001920058521542882241719699280 7519313772353585910 1019796001920058514023568469366113370
84 10255363028472401480641863051040385436 23864756535236123646 10255363028472401456777106515804261790
86 103304260659529997894882067280991825026 77246762086123054349 103304260659529997817635305194868770677
88 1042273130631919368189895707650012227320 245559550069814892615 1042273130631919367944336157580197334705
90 10531975749055818891917647391993815769431 795425023466713343636 10531975749055818891122222368527102425795
92 106579600371335056375718032870298888591898 2532284335946868011910 106579600371335056373185748534352020579988
94 1080057924052835851977837463100215491985144 8208157600050190035463 1080057924052835851969629305500165301949681
96 10959815284871517870373418435789451751642966 26166292215009183994466 10959815284871517870347252143574442567648500
98 111357307668915457889370368365383883484840146 84867504834430057342222 111357307668915457889285500860549453427497924

100 1132846394716372419231583119434015949776511616 270878332458926178189871 1132846394716372419231312241101557023598321745

of achiral 3D-trees of carbon content k; and let C(T)

k be the total number of achiral and chiral
3D-trees of carbon content k, where each pair of enantiomers is counted just once. Then, they
appear as the coefficients of the following generating functions:

B(x)(T) =
∞

∑
k=0

B(T)

k xk (44)

A(x)(T) =
∞

∑
k=0

A(T)

k xk (45)

C(x)(T) =
∞

∑
k=0

C(T)

k xk (46)

By means of eqs. 15–17 and eqs. 33–35, we obtain the following relationships:

B(T)

k = B̂k + B̃k (47)

A(T)

k = Âk + Ãk (48)

C(T)

k = Ĉk +C̃k (49)

It should be noted that the functional equations B̂(x), Â(x), and Ĉ(x) (eqs. 18–20) for cen-
troidal 3D-trees (Subsection 3.2) cannot be added to the functional equations B̃(x), Ã(x), and
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C̃(x) (eqs. 36–38) for bicentroidal 3D-trees (Subsection 3.3). Simple summations of the func-
tional equations (eqs. 18–20) and the functional equations (eqs. 36–38) give erroneous results,
because the integer m runs according to eq. 22 for the former set and differently according to
eq. 40 for the latter set.

3.4.2 Implementation and Calculations of Total Numbers

We used the same code for evaluating a(x) (by eq. 4), c(x2) (by eq. 5), and b(x) (by eq. 6). Then,
the functional equations derived in Subsections 3.2 and 3.3 were programmed. The resulting
program was stored in a file named “Total1-100A.mpl”, which was executed on the Maple
system. The results are shown in Table 3, where the total values of B(T)

k for 3D-trees, those of
A(T)

k for achiral 3D-trees, and those of C(T)

k for chiral 3D-trees are collected up to carbon content
k = 100.

Maple program for counting 3D-trees “Total1-100A.mpl”:

"Functional Equations for Alkyl Ligands";
ax := 1 + x*a1*c2;
cx := 1 + (1/3)*xˆ2*c2ˆ3 + (2/3)*xˆ2*c6;
bx := 1 + (1/3)*x*b1ˆ3 + (2/3)*x*b3;

"Alkanes as Centroidal 3D-Trees";
Bxh := (x/24)*(b1ˆ4 + 3*b2ˆ2 + 8*b1*b3 + 6*a1ˆ2*c2 + 6*c4):
Axh := (x/2)*(a1ˆ2*c2 + c4):
Cxh := (x/24)*(b1ˆ4 + 3*b2ˆ2 + 8*b1*b3 - 6*a1ˆ2*c2 - 6*c4):

"Alkanes as Bicentroidal 3D-Trees";
Bxt := (1/4)*(b1ˆ2 + b2 + a1ˆ2 + c2):
Axt := (1/2)*(a1ˆ2 + c2):
Cxt := (1/4)*(b1ˆ2 + b2 - a1ˆ2 - c2):

"Initial Values";
a1 := 1; a2 := 1;
b1 := 1; b2 := 1; b3 := 1;
c2 := 1; c4 := 1; c6 := 1;
Bh := x; Ah := x; Ch := 0;
Bt := 0; At := 0; Ct := 0;

"Recursive Calculation";
for m from 1 to 50 by 1 do
m:
Cbx:= coeff(bx,xˆm):
Cax:= coeff(ax,xˆm):
Ccx:= coeff(cx,xˆ(m*2)):
a1 := a1 + Cax*xˆm:
a2 := a2 + Cax*xˆ(m*2):
b1 := b1 + Cbx*xˆm:
b2 := b2 + Cbx*xˆ(m*2):
b3 := b3 +Cbx*xˆ(m*3):
c2 := c2 + Ccx*xˆ(m*2):
c4 := c4 + Ccx*xˆ(m*4):
c6 := c6 + Ccx*xˆ(m*6):
n := 2*m +1:
Bh := Bh + coeff(Bxh,xˆn)*xˆn + coeff(Bxh,xˆ(n+1))*xˆ(n+1):
Ah := Ah + coeff(Axh,xˆn)*xˆn + coeff(Axh,xˆ(n+1))*xˆ(n+1):
Ch := Ch + coeff(Cxh,xˆn)*xˆn + coeff(Cxh,xˆ(n+1))*xˆ(n+1):
nn := 2*m:
Bt := Bt + coeff(Bxt,xˆnn)*xˆnn:
At := At + coeff(Axt,xˆnn)*xˆnn:
Ct := Ct + coeff(Cxt,xˆnn)*xˆnn:
end do:

"Total Numbers";
TB := Bh + Bt:
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Table 3: Total Numbers of Alkanes as Stereoisomers
k B(T)

k = B̂k + B̃k (Total) A(T)
k = Âk + Ãk (Achiral) C(T)

k = Ĉk +C̃k (Chiral)
1 1 1 0
2 1 1 0
3 1 1 0
4 2 2 0
5 3 3 0
6 5 5 0
7 9 7 2
8 19 14 5
9 38 21 17

10 88 40 48
11 203 61 142
12 509 118 391
13 1299 186 1113
14 3459 355 3104
15 9347 567 8780
16 25890 1081 24809
17 72505 1755 70750
18 205877 3325 202552
19 589612 5454 584158
20 1703575 10306 1693269
21 4954686 17070 4937616
22 14502108 32136 14469972
23 42671509 53628 42617881
24 126180490 100704 126079786
25 374749447 169175 374580272
26 1117505952 316874 1117189078
27 3344714436 535267 3344179169
28 10045148539 1000524 10044148015
29 30264120901 1698322 30262422579
30 91449677878 3168500 91446509378
31 277096805630 5400908 277091404722
32 841783833517 10059823 841773773694
33 2563418291362 17211368 2563401079994
34 7823943663908 32010736 7823911653172
35 23931052067297 54947147 23930997120150
36 73345833181110 102059572 73345731121538
37 225226025743122 175702378 225225850040744
38 692862470624367 325962785 692862144661582
39 2135109239262173 562645937 2135108676616236
40 6590223616010654 1042695173 6590222573315481
41 20372876580255143 1804088396 20372874776166747
42 63073132550694742 3340050346 63073129210644396
43 195544793394384827 5791497722 195544787602887105
44 607057684131345479 10712631069 607057673418714410
45 1886989279103128211 18611821161 1886989260491307050
46 5872733742149957594 34398228496 5872733707751729098
47 18298681742426380229 59870273288 18298681682556106941
48 57080340544235225497 110567836509 57080340433667388988
49 178246302614039769705 192762694240 178246302421277075465
50 557189473902522080578 355742651978 557189473546779428600
51 1743475977870305954708 621145058010 1743475977249160896698
52 5460633705790469077780 1145575494838 5460633704644893582942
53 17118606500538110493165 2003060193783 17118606498535050299382
54 53712728231333445004592 3692005567404 53712728227641439437188
55 168676827177458246245600 6464001746606 168676827170994244498994
56 530139017194082597885690 11907631768496 530139017182174966117194
57 1667507044106396700614662 20873421744449 1667507044085523278870213
58 5249007976441039104929815 38431673292947 5249007976402607431636868
59 16535111535321800418856805 67445191538640 16535111535254355227318165
60 52125067168092780058323067 124117478451169 52125067167968662579871898
61 164431691004690928193898010 218049903481679 164431691004472878290416331
62 519055868548048583292112732 401085893718058 519055868547647497398394674
63 1639544206288762558253253718 705330165952872 1639544206288057228087300846
64 5182076144231392933653732022 1296837399790644 5182076144230096096253941378
65 16388819934893627771459167067 2282686396696017 16388819934891345085062471050
66 51861705597581628202175013100 4195289017736472 51861705597577432913157276628
67 164207682036849477130738064324 7391016289967130 164207682036842086114448097194
68 520212032768971381583518560502 13578519293999149 520212032768957803064224561353
69 1648923729893987703415359750119 23941657967808209 1648923729893963761757391941910
70 5229345060893543857279120295637 43968770190371391 5229345060893499888508929924246
71 16592589875613236090913193392688 77586381466034947 16592589875613158504531727357741
72 52673849989526623804774612759006 142438016257370897 52673849989526481366758355388109
73 167295424464204241785279087528744 251528935349306793 167295424464203990256343738221951
74 531588444680524885045607883333676 461622013398422296 531588444680524423423594484911380
75 1689911835064564750230170718349855 815741140338068227 1689911835064563934489030380281628
76 5374578409356516276818373409642936 1496636327768089147 5374578409356514780182045641553789
77 17100609751074144217174560807768366 2646489896299591485 17100609751074141570684664508176881
78 54432817814305204793578049099863724 4854071822067038568 54432817814305199939506227032825156
79 173335468778163767515568474781956550 8588824555686539622 173335468778163758926743919095416928
80 552188059695078419811746800405062016 15748816637638280342 552188059695078404062930162766781674
81 1759767313496477955950136185436237113 27882748457230290862 1759767313496477928067387728205946251
82 5610324950610530126159411713497882495 51113282284871397817 5610324950610530075046129428626484678
83 17892924987803326824799846194126147310 90545956172141260398 17892924987803326734253890021984886912
84 57086232887213560740608666515497348770 165942107637522578737 57086232887213560574666558877974770033
85 182194157793655704794237473891139390912 294122275423916054352 182194157793655704500115198467223336560
86 581683783004984677204753584083450197289 538902015549371996477 581683783004984676665851568534078200812
87 1857742280338673467557442653721200301589 955666449267540395221 1857742280338673466601776204453659906368
88 5935080927091835897451600355279087630622 1750601285301809502329 5935080927091835895700999069977278128293
89 18967377099179003868970637596678249069674 3105981799108470323147 18967377099179003865864655797569778746527
90 60635122169340932631736513672478363537798 5688309066336942330956 60635122169340932626048204606141421206842
91 193898555422930447001151675263478441556235 10097190706324159336800 193898555422930446991054484557154282219435
92 620233644123045351109397324924483334855158 18488100715810135579266 620233644123045351090909224208673199275892
93 1984557489015003230954102094778322440355924 32832697580700874763572 1984557489015003230921269397197621565592352
94 6351801838823542109990663369525525977369139 60104861193173021125119 6351801838823542109930558508332352956244020
95 20335387509472990198674865937576370042014764 106785552739916704811839 20335387509472990198568080384836453337202925
96 65121990336372237272797638057152572826645019 195447636677067630319524 65121990336372237272602190420475505196325495
97 208602785663318655583000176804691552968239008 347387515383940750498193 208602785663318655582652789289307612217740815
98 668386035575399743228864093560876436775833448 635697356167563916762316 668386035575399743228228396204708872859071132
99 2142136450298921147961693542530974370563522319 1130336590391716286395368 2142136450298921147960563205940582654277126951

100 6867159545916447686442223712989016929824418855 2068071009981919561681921 6867159545916447686440155641979035010262736934
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TA := Ah + At:
TC := Ch + Ct:

"Print-Out";
for m from 1 to 100 by 1 do
printf("%d & %d & %d & %d \\\\ \n",
m, coeff(TB,xˆm), coeff(TA,xˆm), coeff(TC,xˆm));
end do;

4 Alkanes as Balanced and Unbalanced 3D-Trees
The enumeration of 3D-trees by a single use of the new dichotomy between balanced and un-
balanced 3D-trees will be reported in an accompanying paper submitted to this journal. Hence
this subsection is devoted to a brief description of functional equations which are necessary to
the enumeration by the combination of the new dichotomy with the conventional one between
centroidal and bicentroidal 3D-trees.

4.1 Balanced 3D-Trees and Balance-Edge
As found easily, each balanced 3D-tree is represented by X—X, p—p (paired with p—p) or p—
p, among which X—X and p—p are achiral, while p—p (paired with p—p) is chiral. Hence,
they are respectively ascribed to the following CI-CFs:

X—X, p—p (p—p), p—p :
1
2
(b2 + c2) (50)

X—X, p—p :
1
2
(a2 + c2) (51)

p—p (p—p) :
1
2
(b2 −a2). (52)

Let B(AC)

k be the number of achiral balanced 3D-trees plus enantiomeric pairs of chiral bal-
anced 3D-trees of carbon content k; let B(A)

k be the number of achiral balanced 3D-trees of carbon
content k; and let B(C)

k be the number of achiral and chiral balanced 3D-trees of carbon content
k, where each pair of enantiomers is counted just once. Then, they appear as the coefficients of
the following series:

B(x)(AC) =
∞

∑
k=1

B(AC)

k xk (53)

B(x)(A) =
∞

∑
k=1

B(A)

k xk (54)

B(x)(C) =
∞

∑
k=1

B(C)

k xk, (55)

where the coefficient of xk is equal to 0 if k is odd.
To evaluate the counting series represented by eqs. 53–55, we derive functional equations

by substituting a(xd)−1, c(xd)−1, and b(xd)−1 for the SIs (ad , cd , and bd) appearing in the
CI-CFs (eqs. 50–52). Thereby, we obtain the following functional equations:

B(x)(AC) =
1
2
{(b(x2)−1)+(c(x2)−1)} (56)
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B(x)(A) =
1
2
{(a(x2)−1)+(c(x2)−1)} (57)

B(x)(C) =
1
2
{(b(x2)−1)− (a(x2)−1)} (58)

Because we have already obtained the coefficients of every terms of eqs. 1–3, they are intro-
duced into eqs. 56–58. The resulting equations are expanded to give B(AC)

k , B(A)

k , and B(C)

k .

4.2 Unbalanced 3D-Trees as Residuals
The numbers of unbalanced 3D-trees, i.e., U (AC)

k , U (A)

k , and U (C)

k , can be obtained by dual recog-
nition of 3D-trees as uninuclear 3D-trees and binuclear ones, although the detailed procedure
will be discussed in an accompanied paper submitted to this journal.

Because the total numbers of 3D-trees have been obtained in the present enumeration, the
values of U (AC)

k , U (A)

k , and U (C)

k are alternatively obtained as follows:

U (AC)

k = B(T)

k −B(AC)

k (59)
U (A)

k = A(T)

k −B(A)

k (60)
U (C)

k = C(T)

k −B(C)

k , (61)

where the coefficients appearing in the right-hand sides are obtained by using eqs. 47–49 and
eqs. 53-55.

5 Combination of Two Dichotomies

5.1 Three Categories of 3D-Trees Due to the Two Dichotomies
The combination of the conventional dichotomy between centroidal and bicentroidal 3D-trees
with the new dichotomy between balanced and unbalanced 3D-trees provides us with a versatile
tool for categorizing 3D-trees, as shown in Fig. 4. Among the four possible categories, there
appear three categories, i.e., centroidal & unbalanced, bicentroidal & unbalanced, and bicen-
troidal & balanced. Note that the category of “centroidal & balanced” is not permitted because
of the definitions of the two dichotomies, as shown in Section 2.

The numbers of centroidal & unbalanced 3D-trees of carbon content k are equal to those
of centroidal 3D-trees of carbon content k, i.e., B̂k (total), Âk (achiral), and Ĉk (chiral). The
numbers of bicentroidal & balanced 3D-trees of carbon content k are equal to those of balanced
3D-trees of carbon content k, i.e., B(AC)

k (total), B(A)

k (achiral), and B(C)

k (chiral). It follows that the
numbers of bicentroidal & unbalanced 3D-trees of carbon content k are calculated as follows:

Ũ (AC)

k = B̃k −B(AC)

k (62)

Ũ (A)

k = Ãk −B(A)

k (63)

Ũ (C)

k = C̃k −B(C)

k , (64)

where the symbol Ũ (AC)

k represents the number of achiral and chiral bicentroidal & unbalanced
3D-trees of carbon content k; the symbol Ũ (A)

k represents the number of achiral bicentroidal &
unbalanced 3D-trees of carbon content k; and the symbol Ũ (C)

k represents the number of chiral
bicentroidal & unbalanced 3D-trees of carbon content k.
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Total 3D-trees itemized by two dichotomies
unbalanced 3D-trees balanced 3D-trees

(U (AC)

k ) (B(AC)

k )
centroidal 3D-trees (B̂k) B̂k = U (AC)

k − (B̃k −B(AC)

k ) none
bicentroidal 3D-trees (B̃k) B̃k −B(AC)

k B(AC)

k

Achiral 3D-trees itemized by two dichotomies
unbalanced 3D-trees balanced 3D-trees

(U (A)

k ) (B(A)

k )
centroidal 3D-trees (Âk) Âk = U (A)

k − (Ãk −B(A)

k ) none
bicentroidal 3D-trees (Ãk) Ãk −B(A)

k B(A)

k

Chiral 3D-trees itemized by two dichotomies
unbalanced 3D-trees balanced 3D-trees

(U (C)

k ) (B(C)

k )
centroidal 3D-trees (Ĉk) Ĉk = U (C)

k − (C̃k −B(C)

k ) none
bicentroidal 3D-trees (Ãk) C̃k −B(C)

k B(C)

k

Figure 4: Three categories of 3D-trees on the basis of two dichotomies

The numbers of bicentroidal & unbalanced 3D-trees of carbon content k are alternatively
calculated as follows:

Ũ (AC)

k = U (AC)

k − B̂k (65)

Ũ (A)

k = U (A)

k − Âk (66)

Ũ (C)

k = U (C)

k −Ĉk. (67)

5.2 Implementation and Calculations Based on Two Dichotomies
5.2.1 Alkanes as Bicentroidal/Unbalanced 3D-trees

The functional equation for counting bicentroidal & unbalanced 3D-trees (eq. 62) was pro-
grammed and stored in a file named “CBUBtotal1-100.mpl”. According to the two dichotomies,
the procedures for counting centroidal & unbalanced 3D-trees (the same as eq. 18) and for
counting bicentroidal & balanced 3D-trees (eq. 36) were also stored in this file.

Maple program for counting alkanes, “CBUBtotal1-100.mpl”:

"Functional Equations for Alkyl Ligands";
ax := 1 + x*a1*c2;
cx := 1 + (1/3)*xˆ2*c2ˆ3 + (2/3)*xˆ2*c6;
bx := 1 + (1/3)*x*b1ˆ3 + (2/3)*x*b3;

"Alkanes as Centroidal 3D-Trees";
Bxh := (x/24)*(b1ˆ4 + 3*b2ˆ2 + 8*b1*b3 + 6*a1ˆ2*c2 + 6*c4):

"Alkanes as Bicentroidal 3D-Trees";
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Table 4: Total Numbers of Alkanes as 3D-Trees Categorized by Two Dichotomies
k B̂k (Centroidal & unbalanced) Ũ (AC)

k (Bicentroidal & unbalanced) B(AC)
k (Bicentroidal & balanced)

1 1 0 0
2 0 0 1
3 1 0 0
4 1 0 1
5 3 0 0
6 2 1 2
7 9 0 0
8 8 6 5
9 38 0 0

10 46 31 11
11 203 0 0
12 283 198 28
13 1299 0 0
14 2004 1381 74
15 9347 0 0
16 15758 9933 199
17 72505 0 0
18 129281 76045 551
19 589612 0 0
20 1098656 603366 1553
21 4954686 0 0
22 9576645 4921027 4436
23 42671509 0 0
24 84998202 41169456 12832
25 374749447 0 0
26 765965475 351502981 37496
27 3344714436 0 0
28 6992429665 3052608374 110500
29 30264120901 0 0
30 64538102227 26911247559 328092
31 277096805630 0 0
32 601441729659 240341123367 980491
33 2563418291362 0 0
34 5652900424627 2171040292392 2946889
35 23931052067297 0 0
36 53534903586744 19810920692475 8901891
37 225226025743122 0 0
38 510446528635659 182415914976422 27012286
39 2135109239262173 0 0
40 4896889667780240 1693333865930139 82300275
41 20372876580255143 0 0
42 47238614063478058 15834518235546121 251670563
43 195544793394384827 0 0
44 457999560484205773 149058122874978784 772160922
45 1886989279103128211 0 0
46 4461040396950967790 1411693342822695764 2376294040
47 18298681742426380229 0 0
48 43636081544149901047 13444258992752041696 7333282754
49 178246302614039769705 0 0
50 428497965173462968567 128691508706370656031 22688455980
51 1743475977870305954708 0 0
52 4222957579213874326998 1237676126506233507858 70361242924
53 17118606500538110493165 0 0
54 41757573020631974557921 11955155210482791181899 218679264772
55 168676827177458246245600 0 0
56 414192406700454644211608 115946610492946934994478 681018679604
57 1667507044106396700614662 0 0
58 4120269449060079231919190 1128738527378835030873075 2124842137550
59 16535111535321800418856805 0 0
60 41098222466126905529132145 11026844701959233190560208 6641338630714
61 164431691004690928193898010 0 0
62 410979018222119235952994626 108076850325908555335816270 20792003301836
63 1639544206288762558253253718 0 0
64 4119529788256533749220428115 1062546355974793990987131006 65193446172901
65 16388819934893627771459167067 0 0
66 41385225782249836799266208327 10476479815331586693555668856 204709353135917
67 164207682036849477130738064324 0 0
68 416635607643584641443966956505 103576425125386096473721765608 643665829838389
69 1648923729893987703415359750119 0 0
70 4202708638020682863979777378556 1026636422872858966837971093915 2026461371823166
71 16592589875613236090913193392688 0 0
72 42473372537692324926023951462175 10200477451834292491113398009478 6387637263287353
73 167295424464204241785279087528744 0 0
74 430006772381311411463428100669081 101581672299213453424633076856030 20157546705808565
75 1689911835064564750230170718349855 0 0
76 4360786726830840048241690321351540 1013791682525676164896492054480070 63680191033811326
77 17100609751074144217174560807768366 0 0
78 44294354185222186820769124153521749 10138463629083017771429048800953331 201379876145388644
79 173335468778163767515568474781956550 0 0
80 450600427378156845559982800702584531 101587632316921573614307703735698056 637456295966779429
81 1759767313496477955950136185436237113 0 0
82 4590528948690471604616529471778183215 1019796001920058519523183252345234581 2019698989374464699
83 17892924987803326824799846194126147310 0 0
84 46830869858741159259966803464456963334 10255363028472401474237063904003094785 6404799147037290651
85 182194157793655704794237473891139390912 0 0
86 478379522345454679309871516802458372263 103304260659529997874554326564470473464 20327740716521351562
87 1857742280338673467557442653721200301589 0 0
88 4892807796459916529261704647629075403302 1042273130631919368125327197348723120746 64568510301289106574
89 18967377099179003868970637596678249069674 0 0
90 50103146420285113739818866280484547768367 10531975749055818891712396562528443631155 205250829465372138276
91 193898555422930447001151675263478441556235 0 0
92 513654043751710294733679292054184446263260 106579600371335056375065102244975385922382 652930625323502669516
93 1984557489015003230954102094778322440355924 0 0
94 5271743914770706258012825906425310485383995 1080057924052835851975758946394434337237994 2078516705781154747150
95 20335387509472990198674865937576370042014764 0 0
96 54162175051500719402424219621363121075002053 10959815284871517870366797313442033145643730 6621122347418605999236
97 208602785663318655583000176804691552968239008 0 0
98 557028727906484285339493725195492553290993302 111357307668915457889349263170983554881575606 21105194400328603264540
99 2142136450298921147961693542530974370563522319 0 0

100 5734313151200075267210640593555000980047907239 1132846394716372419231515803866879770275428450 67315567136179501083166
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Bxt := (1/4)*(b1ˆ2 + b2 + a1ˆ2 + c2):

"Initial Values";
a1 := 1; a2 := 1;
b1 := 1; b2 := 1; b3 := 1;
c2 := 1; c4 := 1; c6 := 1;
Bh := x; Ah := x; Ch := 0;
Bt := 0; At := 0; Ct := 0;

"Recursive Calculation";
for m from 1 to 50 by 1 do
m:
Cbx:= coeff(bx,xˆm):
Cax:= coeff(ax,xˆm):
Ccx:= coeff(cx,xˆ(m*2)):
a1 := a1 + Cax*xˆm:
a2 := a2 + Cax*xˆ(m*2):
b1 := b1 + Cbx*xˆm:
b2 := b2 + Cbx*xˆ(m*2):
b3 := b3 + Cbx*xˆ(m*3):
c2 := c2 + Ccx*xˆ(m*2):
c4 := c4 + Ccx*xˆ(m*4):
c6 := c6 + Ccx*xˆ(m*6):
n := 2*m +1:
Bh := Bh + coeff(Bxh,xˆn)*xˆn + coeff(Bxh,xˆ(n+1))*xˆ(n+1):
nn := 2*m:
Bt := Bt + coeff(Bxt,xˆnn)*xˆnn:
end do:

"Alkanes as Ballanced 3D-trees";
BxAC := (1/2)*((b2-1) + (c2-1)):

"Alkanes as Bicentroidal/Unbalanced 3D-trees":
BUxAC := Bt - BxAC:

"Print-Out";
for m from 1 to 100 by 1 do
printf("%d & %d & %d & %d \\\\ \n",
m, coeff(Bh,xˆm), coeff(BUxAC,xˆm), coeff(BxAC,xˆm));
end do;

The first paragraph “Functional Equations for Alkyl Ligands”, the second paragraph “Alka-
nes as Centroidal 3D-Trees”, the third paragraph “Alkanes as Bicentroidal 3D-Trees”, the fourth
paragraph “Initial Values”, and the fifth paragraph “Recursive Calculation” are cited from the
Maple program for counting 3D-trees “Total1-100A.mpl” described above. The six paragraph
“Alkanes as Balanced 3D-trees” is cited from the paper accompanied with the present paper,
where the symbol BxAC is used to designate B(x)(AC) for obtaining B(AC)

k . The seventh paragraph
“Alkanes as Bicentroidal/Unbalanced 3D-trees” is concerned with the enumeration of bicen-
troidal & unbalanced 3D-trees, where the BUxAC is used to designate Ũ (AC)

k (eq. 62). The last
paragraph describes a print-out step.

The program “CBUBtotal1-100.mpl” was executed on the Maple system. The calculation
results are summarized in Table 4. The summation of B̂k-column (centroidal & unbalanced
trees), Ũ (AC)

k -column (bicentroidal & unbalanced trees), and B(AC)

k -column (bicentroidal & bal-
anced tree) gave the total values shown in the B(T)

k -column of Table 3. The functional equation
(eq. 65) for counting bicentroidal & unbalanced 3D-trees gave the same results as collected in
Table 4.

5.2.2 Achiral Alkanes as Bicentroidal/Unbalanced 3D-trees

The functional equation (eq. 63) for counting achiral bicentroidal & unbalanced 3D-trees was
programmed. The program stored in a file named “CBUBachiral1-100.mpl” is shown below.
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According to the two dichotomies, the procedures for counting achiral centroidal & unbalanced
3D-trees (the same as eq. 19) and for counting achiral bicentroidal & balanced 3D-trees (eq. 37)
were also stored in this file.

Maple program for counting achiral alkanes, “CBUBachiral1-100.mpl”:

"Functional Equaitons for Alkyl Ligands";
ax := 1 + x*a1*c2;
cx := 1 + (1/3)*xˆ2*c2ˆ3 + (2/3)*xˆ2*c6;
bx := 1 + (1/3)*x*b1ˆ3 + (2/3)*x*b3;

"Alkanes as Centroidal 3D-Trees";
Axh := (x/2)*(a1ˆ2*c2 + c4):

"Alkanes as Bicentroidal 3D-Trees";
Axt := (1/2)*(a1ˆ2 + c2):

"Initial Values";
a1 := 1; a2 := 1;
b1 := 1; b2 := 1; b3 := 1;
c2 := 1; c4 := 1; c6 := 1;
Bh := x; Ah := x; Ch := 0;
Bt := 0; At := 0; Ct := 0;

"Recursive Calculation";
for m from 1 to 50 by 1 do
m:
Cbx:= coeff(bx,xˆm):
Cax:= coeff(ax,xˆm):
Ccx:= coeff(cx,xˆ(m*2)):
a1 := a1 + Cax*xˆm:
a2 := a2 + Cax*xˆ(m*2):
b1 := b1 + Cbx*xˆm:
b2 := b2 + Cbx*xˆ(m*2):
b3 := b3 + Cbx*xˆ(m*3):
c2 := c2 + Ccx*xˆ(m*2):
c4 := c4 + Ccx*xˆ(m*4):
c6 := c6 + Ccx*xˆ(m*6):
n := 2*m +1:
Ah := Ah + coeff(Axh,xˆn)*xˆn + coeff(Axh,xˆ(n+1))*xˆ(n+1):
nn := 2*m:
At := At + coeff(Axt,xˆnn)*xˆnn:
end do:

"Achiral Alkanes as Ballanced 3D-trees";
BxA := (1/2)*((a2-1) + (c2-1)):

"Achiral Alkanes as Bicentroidal/Unbalanced 3D-trees";
BUxA := At - BxA:

"Print-Out";
for m from 1 to 100 by 1 do
printf("%d & %d & %d & %d \\\\ \n",
m, coeff(Ah,xˆm), coeff(BUxA,xˆm), coeff(BxA,xˆm));
end do;

The first paragraph “Functional Equations for Alkyl Ligands” to the fifth paragraph “Recur-
sive Calculation” are cited from the Maple program for counting 3D-trees “Total1-100A.mpl”
described above. The six paragraph “Achiral Alkanes as Balanced 3D-trees” is cited from the
paper accompanied with the present paper, where the symbol BxA is used to designate B(x)(A) for
obtaining B(A)

k . The seventh paragraph “Achiral Alkanes as Bicentroidal/Unbalanced 3D-trees”
is concerned with the enumeration of bicentroidal & unbalanced 3D-trees, where the BUxA is
used to designate Ũ (A)

k (eq. 63). The last paragraph describes a print-out step.
The program “CBUBachiral1-100.mpl” was executed on the Maple system to give the re-

sults summarized in Table 5. The summation of Âk-column (achiral centroidal & unbalanced
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Table 5: Numbers of Achiral Alkanes Categorized by Two Dichotomies
k Âk (Centroidal & unbalanced) Ũ (A)

k (Bicentroidal & unbalanced) B(A)
k (Bicentroidal & balanced)

1 1 0 0
2 0 0 1
3 1 0 0
4 1 0 1
5 3 0 0
6 2 1 2
7 7 0 0
8 7 3 4
9 21 0 0

10 22 10 8
11 61 0 0
12 72 28 18
13 186 0 0
14 220 91 44
15 567 0 0
16 717 253 111
17 1755 0 0
18 2209 820 296
19 5454 0 0
20 7149 2346 811
21 17070 0 0
22 22476 7381 2279
23 53628 0 0
24 72656 21528 6520
25 169175 0 0
26 229676 68265 18933
27 535267 0 0
28 743026 201930 55568
29 1698322 0 0
30 2361476 642411 164613
31 5400908 0 0
32 7642893 1925703 491227
33 17211368 0 0
34 24394779 6140760 1475197
35 54947147 0 0
36 79009726 18595851 4453995
37 175702378 0 0
38 252964410 59486778 13511597
39 562645937 0 0
40 819922295 181613211 41159667
41 1804088396 0 0
42 2631820744 582377256 125852346
43 5791497722 0 0
44 8536377160 1790143530 386110379
45 18611821161 0 0
46 27458156708 5751871140 1188200648
47 59870273288 0 0
48 89120741244 17780359600 3666735665
49 192762694240 0 0
50 287167536146 57230718681 11344397151
51 621145058010 0 0
52 932636649624 177757925626 35180919588
53 2003060193783 0 0
54 3009644412440 573020987311 109340167653
55 6464001746606 0 0
56 9780036558542 1787084924878 340510285076
57 20873421744449 0 0
58 31600908341722 5768342184165 1062422767060
59 67445191538640 0 0
60 102743321459580 18053484671778 3320672319811
61 218049903481679 0 0
62 332350277618212 58339609048020 10396007051826
63 705330165952872 0 0
64 1081087049647181 183153617487435 32596732656028
65 2282686396696017 0 0
66 3500478814410329 592455509546916 102354693779227
67 7391016289967130 0 0
68 11391634034768010 1865052313774653 321832945456486
69 23941657967808209 0 0
70 36917161577580590 6038377871932071 1013230740858730
71 77586381466034947 0 0
72 120189309691294216 19054887836824378 3193818729252303
73 251528935349306793 0 0
74 389800782399677001 61742457470138910 10078773528606385
75 815741140338068227 0 0
76 1269537925991351156 195258305947375686 31840095829362305
77 2646489896299591485 0 0
78 4120240983149128308 633140900282570001 100689938635340259
79 8588824555686539622 0 0
80 13423903573385498107 2006184915267847485 318728148984934750
81 27882748457230290862 0 0
82 43593968512517811907 6509464275862265941 1009849496491319969
83 90545956172141260398 0 0
84 142077351102286455091 20662356958503263256 3202399576732860390
85 294122275423916054352 0 0
86 461655253463248942128 67082891722070880846 10163870364052173503
87 955666449267540395221 0 0
88 1505041735231994609714 213275294908843788720 32284255160971103895
89 3105981799108470323147 0 0
90 4892884042870228987320 692799608715415455555 102625414751297888081
91 10097190706324159336800 0 0
92 15955816379863267567356 2205819023251906595676 326465312694961416234
93 32832697580700874763572 0 0
94 51896703593122831089656 7168899247099742388600 1039258352950447646863
95 106785552739916704811839 0 0
96 169281344462058446325058 22855731041192979799716 3310561173816204194750
97 347387515383940750498193 0 0
98 550829851333133859420094 74314907634072993022128 10552597200357064320094
99 1130336590391716286395368 0 0

100 1797192677522993383492050 237220548890492029224300 33657783568434148965571
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trees), Ũ (A)

k -column (achiral bicentroidal & unbalanced trees), and B(A)

k -column (achiral bicen-
troidal & balanced trees) gave the total values shown in the A(T)

k -column of Table 3. The func-
tional equation (eq. 66) for counting achiral bicentroidal & unbalanced 3D-trees gave the same
results as collected in Table 5.

5.2.3 Chiral Alkanes as Bicentroidal/Unbalanced 3D-trees

A program for executing the functional equation (eq. 64) for counting chiral bicentroidal &
unbalanced 3D-trees (named “CBUBchiral1-100.mpl”) is shown below. To show the corre-
spondence to the two dichotomies, the procedures for counting chiral centroidal & unbalanced
3D-trees (the same as eq. 20) and for counting chiral bicentroidal & balanced 3D-trees (eq. 38)
were also programmed in this code.

Maple program for counting chiral alkanes, “CBUBchiral1-100.mpl”:

"Functional Equations for Alkyl Ligands";
ax := 1 + x*a1*c2;
cx := 1 + (1/3)*xˆ2*c2ˆ3 + (2/3)*xˆ2*c6;
bx := 1 + (1/3)*x*b1ˆ3 + (2/3)*x*b3;

"Alkanes as Centroidal 3D-Trees";
Cxh := (x/24)*(b1ˆ4 + 3*b2ˆ2 + 8*b1*b3 - 6*a1ˆ2*c2 - 6*c4):

"Alkanes as Bicentroidal 3D-Trees";
Cxt := (1/4)*(b1ˆ2 + b2 - a1ˆ2 - c2):

"Initial Values";
a1 := 1; a2 := 1;
b1 := 1; b2 := 1; b3 := 1;
c2 := 1; c4 := 1; c6 := 1;

Bh := x; Ah := x; Ch := 0;
Bt := 0; At := 0; Ct := 0;

"Recursive Calculation";
for m from 1 to 50 by 1 do
m:
Cbx:= coeff(bx,xˆm):
Cax:= coeff(ax,xˆm):
Ccx:= coeff(cx,xˆ(m*2)):
a1 := a1 + Cax*xˆm:
a2 := a2 + Cax*xˆ(m*2):
b1 := b1 + Cbx*xˆm:
b2 := b2 + Cbx*xˆ(m*2):
b3 := b3 + Cbx*xˆ(m*3):
c2 := c2 + Ccx*xˆ(m*2):
c4 := c4 + Ccx*xˆ(m*4):
c6 := c6 + Ccx*xˆ(m*6):
n := 2*m +1:
Ch := Ch + coeff(Cxh,xˆn)*xˆn + coeff(Cxh,xˆ(n+1))*xˆ(n+1):
nn := 2*m:
Ct := Ct + coeff(Cxt,xˆnn)*xˆnn:
end do:

"Chiral Alkanes as Ballanced 3D-trees";
BxC := (1/2)*((b2-1) - (a2-1)):

"Chiral Alkanes as Bicentroidal/Unbalanced 3D-trees":
BUxC := Ct - BxC:

"Print-Out";
for m from 1 to 100 by 1 do
printf("%d & %d & %d & %d \\\\ \n",
m, coeff(Ch,xˆm), coeff(BUxC,xˆm), coeff(BxC,xˆm));
end do;
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Table 6: Numbers of Chiral Alkanes Categorized by Two Dichotomies
k Ĉk (Centroidal & unbalanced) Ũ (C)

k (Bicentroidal & unbalanced) B(C)
k (Bicentroidal & balanced)

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 2 0 0
8 1 3 1
9 17 0 0

10 24 21 3
11 142 0 0
12 211 170 10
13 1113 0 0
14 1784 1290 30
15 8780 0 0
16 15041 9680 88
17 70750 0 0
18 127072 75225 255
19 584158 0 0
20 1091507 601020 742
21 4937616 0 0
22 9554169 4913646 2157
23 42617881 0 0
24 84925546 41147928 6312
25 374580272 0 0
26 765735799 351434716 18563
27 3344179169 0 0
28 6991686639 3052406444 54932
29 30262422579 0 0
30 64535740751 26910605148 163479
31 277091404722 0 0
32 601434086766 240339197664 489264
33 2563401079994 0 0
34 5652876029848 2171034151632 1471692
35 23930997120150 0 0
36 53534824577018 19810902096624 4447896
37 225225850040744 0 0
38 510446275671249 182415855489644 13500689
39 2135108676616236 0 0
40 4896888847857945 1693333684316928 41140608
41 20372874776166747 0 0
42 47238611431657314 15834517653168865 125818217
43 195544787602887105 0 0
44 457999551947828613 149058121084835254 386050543
45 1886989260491307050 0 0
46 4461040369492811082 1411693337070824624 1188093392
47 18298681682556106941 0 0
48 43636081455029159803 13444258974971682096 3666547089
49 178246302421277075465 0 0
50 428497964886295432421 128691508649139937350 11344058829
51 1743475977249160896698 0 0
52 4222957578281237677374 1237676126328475582232 35180323336
53 17118606498535050299382 0 0
54 41757573017622330145481 11955155209909770194588 109339097119
55 168676827170994244498994 0 0
56 414192406690674607653066 115946610491159850069600 340508394528
57 1667507044085523278870213 0 0
58 4120269449028478323577468 1128738527373066688688910 1062419370490
59 16535111535254355227318165 0 0
60 41098222466024162207672565 11026844701941179705888430 3320666310903
61 164431691004472878290416331 0 0
62 410979018221786885675376414 108076850325850215726768250 10395996250010
63 1639544206288057228087300846 0 0
64 4119529788255452662170780934 1062546355974610837369643571 32596713516873
65 16388819934891345085062471050 0 0
66 41385225782246336320451797998 10476479815330994238046121940 102354659356690
67 164207682036842086114448097194 0 0
68 416635607643573249809932188495 103576425125384231421407990955 321832884381903
69 1648923729893963761757391941910 0 0
70 4202708638020645946818199797966 1026636422872852928460099161844 1013230630964436
71 16592589875613158504531727357741 0 0
72 42473372537692204736714260167959 10200477451834273436225561185100 3193818534035050
73 167295424464203990256343738221951 0 0
74 430006772381311021662645700992080 101581672299213391682175606717120 10078773177202180
75 1689911835064563934489030380281628 0 0
76 4360786726830838778703764330000384 1013791682525675969638186107104384 31840095204449021
77 17100609751074141570684664508176881 0 0
78 44294354185222182700528141004393441 10138463629083017138288148518383330 100689937510048385
79 173335468778163758926743919095416928 0 0
80 450600427378156832136079227317086424 101587632316921571608122788467850571 318728146981844679
81 1759767313496477928067387728205946251 0 0
82 4590528948690471561022560959260371308 1019796001920058513013718976482968640 1009849492883144730
83 17892924987803326734253890021984886912 0 0
84 46830869858741159117889452362170508243 10255363028472401453574706945499831529 3202399570304430261
85 182194157793655704500115198467223336560 0 0
86 478379522345454678848216263339209430135 103304260659529997807471434842399592618 10163870352469178059
87 1857742280338673466601776204453659906368 0 0
88 4892807796459916527756662912397080793588 1042273130631919367912051902439879332026 32284255140318002679
89 18967377099179003865864655797569778746527 0 0
90 50103146420285113734925982237614318781047 10531975749055818891019596953813028175600 102625414714074250195
91 193898555422930446991054484557154282219435 0 0
92 513654043751710294717723475674321178695904 106579600371335056372859283221723479326706 326465312628541253282
93 1984557489015003230921269397197621565592352 0 0
94 5271743914770706257960929202832187654294339 1080057924052835851968590047147334594849394 1039258352830707100287
95 20335387509472990198568080384836453337202925 0 0
96 54162175051500719402254938276901062628676995 10959815284871517870343941582400840165844014 3310561173602401804486
97 208602785663318655582652789289307612217740815 0 0
98 557028727906484285338942895344159419431573208 111357307668915457889274948263349481888553478 10552597199971538944446
99 2142136450298921147960563205940582654277126951 0 0

100 5734313151200075267208843400877477986664415189 1132846394716372419231278583317989278246204150 33657783567745352117595
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The first paragraph “Functional Equations for Alkyl Ligands” to the fifth paragraph “Recur-
sive Calculation” are cited from the Maple program for counting 3D-trees “Total1-100A.mpl”
described above. The six paragraph “Chiral Alkanes as Balanced 3D-trees” is cited from the pa-
per accompanied with the present paper, where the symbol BxC is used to designate B(x)(C) for
obtaining B(C)

k . The seventh paragraph “Chiral Alkanes as Bicentroidal/Unbalanced 3D-trees” is
concerned with the enumeration of chiral bicentroidal & unbalanced 3D-trees, where the BUxC
is used to designate Ũ (C)

k (eq. 64). The last paragraph describes a print-out step.
The program “CBUBchiral1-100.mpl” was executed on the Maple system to give the results

summarized in Table 6. The summation of Ĉk-column (chiral centroidal & unbalanced trees),
Ũ (C)

k -column (chiral bicentroidal & unbalanced trees), and B(C)

k -column (chiral bicentroidal &
balanced trees) gave the total values shown in the C(T)

k -column of Table 3. The functional equa-
tion (eq. 67) for counting chiral bicentroidal & unbalanced 3D-trees gave the same results as
collected in Table 6.

6 Alkanes as Constitutional Isomers
The enumeration problems discussed in this section have once been discussed by Pólya [13, 14]
by using Pólya’s theorem. In this section, we shall discuss these enumeration problems as
special cases of Fujita’s proligand method [18–20]. The comparison of the two methodologies
demonstrates that the sphericity concept contained in Fujita’s proligand method is, in fact, what
Pólya’s theorem is deficient in for stereoisomer enumeration.

6.1 Constitutional Isomers as Graphs
6.1.1 Alkyl Ligands as Planted Trees

In contrast to Subsection 3.1 which has discussed alkyl ligands as 3D-components, this sub-
section is devoted to the treatment of alkyl ligands as planted trees, which are graphs in a
mathematical context and in turn constitutional isomers in a chemical context.

In place of the generating functions for counting alkyl ligands as 3D-components (eqs. 1–3),
we use the symbols r(x) for counting planted trees and s(x) for counting steric planted trees as
follows:

r(x) =
∞

∑
k=0

ρkxk (68)

s(x) =
∞

∑
k=0

σkxk, (69)

where the coefficient (ρk) of the term xk of r(x) represents the number of alkyl ligands (or
planted trees) of carbon content k; and the coefficient (σk) of the term xk of s(x) represents
the number of steric alkyl ligands (or planted 3D-trees) of carbon content k, in which two
enantiomers of each pair are separately counted. We put ρ0 = 1 and σ0 = 1 to treat trivial cases
of terminal vertices (or hydrogen atoms).

By introducing eqs. 4–6 into eq. 9, we obtain the following functional equation:

B(x) = 1+
x
6

(
b(x)3 +2b(x3)+3a(x)c(x2)

)
. (70)
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When we put B(x) = r(x) and a(xd) = b(xd) = c(xd) = r(xd), the functional equation (eq. 70)
derived by Fujita’s proligand method is converted into the following functional equation for
r(x). By putting b(x) = s(x), eq. 6 is converted into the following equation function for s(x):

r(x) = 1+
x
6

(
r(x)3 +2r(x3)+3r(x)r(x2)

)
(71)

s(x) = 1+
x
3

(
s(x)3 +2s(x3)

)
. (72)

The functional equations (eqs. 71 and 72) have recursive nature so as to be capable of calculating
the coefficients ρk and σk appearing in eq. 68 and eq. 69.

The derivation of these equations implies the omission of sphericities so that the CR C3v(/Cs)
is reduced into the symmetric group of degree 3 (S [3]) and the CR C3(/C1) is reduced into the
alternating group of degree 3 (A [3]). The equations (eqs. 71 and 72) were first noted by Pólya
[13, 14], who directly used S [3] and A [3]. Thus, according to Pólya’s treatment [13, 14], the
three positions of the methyl skeleton are permuted by the symmetric group of degree 3 (i.e.,
S [3]) or by the alternating group of degree 3 (i.e., A [3]), where they are characterized by the
corresponding cycle indices (CIs). The CIs are transformed into the functional equations (eqs.
71 and 72), which have now been obtained alternatively by the omission of sphericities. These
results mean that Fujita’s proligand method contains Pólya’s theorem as a special case, where
the latter lacks the sphericity concept.

6.1.2 Alkanes as Centroidal Trees

The CI-CFs for Td (eq. 11) and for T (eq. 12), which are derived by Fujita’s proligand method,
can be converted into the following CIs:

CI(S [4];rd) =
1

24
(r4

1 +3r2
2 +8r1r3 +6r2

1r2 +6r4), (73)

CI(A [4];sd) =
1

12
(s4

1 +3s2
2 +8s1s3), (74)

where we put rd = ad = bd = cd and sd = bd by omitting the sphericities of cycles. The deriva-
tion of these equations with the omission of sphericities means that the CR Td(/C3v) is reduced
into the symmetric group of degree 4 (S [4]) and the CR T(/C3) is reduced into the alternating
group of degree 4 (A [4]). These equations (eqs. 73 and 74) were first noted by Pólya [13, 14],
who directly used S [4] and A [4].

Let R̂k be the number of centroidal trees (alkanes as constitutional isomers) of carbon con-
tent k. Let Ŝk be the number of steric centroidal trees carbon content k. In agreement with the
definition of centroidal trees, the terms up to xv are collected to give the following generating
functions:

R̂(x) =
v

∑
k=0

R̂kxk (75)

Ŝ(x) =
v

∑
k=0

Ŝkxk (76)

where v runs stepwise from 0 to infinite.
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To evaluate these generating functions, the dummy variable rd (in eq. 73) and sd (in eq.
74) are replaced by the terms r(xd) and s(xd), respectively. Thereby we obtain the following
functional equations:

R̂(x) =
x

24
{

r(x)4 +3r(x2)2 +8r(x)r(x3)+6r(x)2r(x2)+6r(x4)
}

(77)

Ŝ(x) =
x

12
{

s(x)4 +3s(x2)2 +8s(x)s(x3)
}
, (78)

where the multiplying by x is required to take account of the centroid of the S [4]- or A [4]-
skeleton. Obviously, eq. 77 is a special case of eq. 18 and eq. 78 is a special case of the
functional equation in which the bd of eq. 12 is replaced by b(xd). Because we have evaluated
r(x) (eq. 71) and s(x) (eq. 72), we are able to evaluate the functional equations (eqs. 77 and 78)
under the condition represented by eq. 22 due to the criterion of centroidal trees.

6.1.3 Alkanes as Bicentroidal Trees

The CI-CFs for the factor group D∞h/C∞ (eq. 29) and for the factor group D∞/C∞ (eq. 30),
which are derived by Fujita’s proligand method, can be converted into the following CIs by
omitting the sphericities of cycles:

CI(S [2];rd) =
1
2

(
r2

1 + r2
)

(79)

CI(S [2];sd) =
1
2

(
s2

1 + s2
)
, (80)

where we place rd = ad = cd = bd and sd = bd .
Let R̃k be the number of bicentroidal trees of carbon content k (alkanes as constitutional

isomers). Let S̃k be the number of steric bicentroidal trees carbon content k. In agreement of the
definition of bicentroidal trees, the terms up to xv are collected to give the following generating
functions:

R̃(x) =
v

∑
k=0

R̃kxk (81)

S̃(x) =
v

∑
k=0

S̃kxk (82)

where v runs stepwise from 0 to infinite.
To evaluate the counting series represented by eqs. 81 and 82, we derive functional equations

by substituting r(xd) and s(xd) for the dummy variable (rd and sd) appearing in the CIs (eqs. 79
and 80). Thereby, we obtain the following functional equations:

R̃(x) =
1
2

(
r(x)2 + r(x2)

)
(83)

S̃(x) =
1
2

(
s(x)2 + s(x2)

)
(84)

Because we have evaluated r(x) (eq. 71) and s(x) (eq. 72), the functional equations (eqs. 83
and 84) can be evaluated under the condition represented by eq. 40 due to the criterion of
bicentroidal trees.
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6.1.4 Total Number of Alkanes as Constitutional Isomers

Because we have evaluated the values of R̂k and Ŝk for centroidal trees as well as those of R̃k and
S̃k for bicentroidal trees, the corresponding total numbers are obtained by their summations. Let
R(T)

k be the total number of trees of carbon content k. Let S(T)

k be the total number of steric trees
of carbon content k. By means of eqs. 75 and 76 and of eqs. 81 and 82, we obtain the following
relationships:

R(T)

k = R̂k + R̃k (85)

S(T)

k = Ŝk + S̃k (86)

6.2 Implementation and Calculations of Trees
The functional equations derived in Subsection 6.1 were programmed by using Maple program-
ming language. The resulting program was stored in a file named “Graph1-100.mpl”, which was
executed on the Maple system. The results are shown in Table 7, where the values of R(T)

k and
those of S(T)

k are collected up to carbon content 100.

Maple program for counting alkanes as graphs, “Graph1-100.mpl”:

"Functional Equaitons
for Alkyl Ligands as Graphs";
rx := 1 + (1/6)*x*r1ˆ3 + (1/3)*x*r3 + (1/2)*x*r1*r2;;
sx := 1 + (1/3)*x*s1ˆ3 + (2/3)*x*s3;

"Alkanes as Centroidal Trees or Steric Trees";
Rx := (x/24)*(r1ˆ4 + 3*r2ˆ2 + 8*r1*r3 + 6*r1ˆ2*r2 + 6*r4):
Sx := (x/12)*(s1ˆ4 + 3*s2ˆ2 + 8*s1*s3):

"Alkanes as Bicentroidal Trees or Steric Trees";
Rxb := (1/2)*(r1ˆ2 + r2):
Sxb := (1/2)*(s1ˆ2 + s2):

"Initial Values";
r1 := 1; r2 := 1; r3 := 1; r4 := 1;
s1 := 1; s2 := 1; s3 := 1;
Rc := x; Sc := x;
Rb := 0; Sb := 0;

"Recursive Calculation";
for m from 1 to 50 by 1 do
m:
Crx:= coeff(rx,xˆm):
Csx:= coeff(sx,xˆm):
r1 := r1 + Crx*xˆm:
r2 := r2 + Crx*xˆ(m*2):
r3 := r3 + Crx*xˆ(m*3):
r4 := r4 + Crx*xˆ(m*4):
s1 := s1 + Csx*xˆm:
s2 := s2 + Csx*xˆ(m*2):
s3 := s3 + Csx*xˆ(m*3):
n := 2*m +1:
Rc := Rc + coeff(Rx,xˆn)*xˆn + coeff(Rx,xˆ(n+1))*xˆ(n+1):
Sc := Sc + coeff(Sx,xˆn)*xˆn + coeff(Sx,xˆ(n+1))*xˆ(n+1):
nn := 2*m:
Rb := Rb + coeff(Rxb,xˆnn)*xˆnn:
Sb := Sb + coeff(Sxb,xˆnn)*xˆnn:
end do:

"Total Numbers";
TR := Rc + Rb:
TS := Sc + Sb:
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Table 7: Total Numbers of Alkanes as Constitutional Isomers
k R(T)

k = R̂k + R̃k (Constitutional isomers) S(T)
k = Ŝk + S̃k (Steric isomers)

1 1 1
2 1 1
3 1 1
4 2 2
5 3 3
6 5 5
7 9 11
8 18 24
9 35 55

10 75 136
11 159 345
12 355 900
13 802 2412
14 1858 6563
15 4347 18127
16 10359 50699
17 24894 143255
18 60523 408429
19 148284 1173770
20 366319 3396844
21 910726 9892302
22 2278658 28972080
23 5731580 85289390
24 14490245 252260276
25 36797588 749329719
26 93839412 2234695030
27 240215803 6688893605
28 617105614 20089296554
29 1590507121 60526543480
30 4111846763 182896187256
31 10660307791 554188210352
32 27711253769 1683557607211
33 72214088660 5126819371356
34 188626236139 15647855317080
35 493782952902 47862049187447
36 1295297588128 146691564302648
37 3404490780161 450451875783866
38 8964747474595 1385724615285949
39 23647478933969 4270217915878409
40 62481801147341 13180446189326135
41 165351455535782 40745751356421890
42 438242894769226 126146261761339138
43 1163169707886427 391089580997271932
44 3091461011836856 1214115357550059889
45 8227162372221203 3773978539594435261
46 21921834086683418 11745467449901686692
47 58481806621987010 36597363424982487170
48 156192366474590639 114160680977902614485
49 417612400765382272 356492605035316845170
50 1117743651746953270 1114378947449301509178
51 2994664179967370611 3486951955119466851406
52 8031081780535296591 10921267410435362660722
53 21557771913572630901 34237212999073160792547
54 57919180873148437753 107425456458974884441780
55 155745431857549699124 337353654348452490744594
56 419149571193411829372 1060278034376257564002884
57 1128939578361332867936 3335014088191919979484875
58 3043043571906827182530 10498015952843646536566683
59 8208615366863753915949 33070223070576155646174970
60 22158734535770411074184 104250134336061442638194965
61 59858097847706865855186 328863382009163806484314341
62 161805725349297357221898 1038111737095696080690507406
63 437671691526158936922623 3279088412576819786340554564
64 1184616185385310843585573 10364152288461489029907673400
65 3208285066181475821271463 32777639869784972856521638117
66 8694130712024868414002815 103723411195159061115332289728
67 23573796134448175745408811 328415364073691563245186161518
68 63955159527348138708694312 1040424065537929184647743121855
69 173603007393950249896865875 3297847459787951465172751692029
70 471484798515330363034639871 10458690121787043745788050219883
71 1281151315764638215613845510 33185179751226394595444920750429
72 3482965749140691245110434511 105347699979053105171532968147115
73 9473447386804490449091871124 334590848928408232041622825750695
74 25779306238954404972323916397 1063176889361049308469202368245056
75 70183211512214096492433058105 3379823670129128684719201098631483
76 191156381393249393027319384769 10749156818713031057000419051196725
77 520874195248906781713044332539 34201219502148285787859225315945247
78 1419908915343952137338409797325 108865635628610404733084276132688880
79 3872282575137005474139119076135 346670937556327526442312393877373478
80 10564476906946675106953415600016 1104376119390156823874676963171843690
81 28833609436277333169440806135431 3519534626992955884017523913642183364
82 78725585464391037293036629979444 11220649901221060201205541142124367173
83 215027809474796675607407513633870 35785849975606653559053736216111034222
84 587531723826577193455385789266377 114172465774427121315275225393472118803
85 1605913778494711520354663202536756 364388315587311409294352672358362727472
86 4391002908093323425994602631972445 1163367566009969353870605152617528398101
87 12010257907756938974208750945664835 3715484560677346934159218858174860207957
88 32861295558120887536942123568548502 11870161854183671793152599425256365758915
89 89940959024891576997396491928932689 37934754198358007734835293394248027816201
90 246245150242821439632304475956113295 121270244338681865257784718278619784744640
91 674391606297983432514229725117306224 387797110845860893992206159820632723775670
92 1847515048012613337782670842346319120 1240467288246090702200306549133156534131050
93 5062818112121161180862827915688625902 3969114978030006461875371491975944005948276
94 13877857529584521384324419956411729295 12703603677647084219921221877857878933613159
95 38051836070803837001309074456088423358 40670775018945980397242946322412823379217689
96 104363664561059273927704242814298678658 130243980672744474545399828477628078022970514
97 286312976836850192359345859166390622180 417205571326637311165652966093999165185979823
98 785684759853087702778573182234297830503 1336772071150799486457092489765585309634904580
99 2156596319845084996862701478402986311496 4284272900597842295922256748471557024840649270

100 5921072038125809849884993369103538010139 13734319091832895372882379354968051940087155789
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"Print-Out";
for m from 1 to 100 by 1 do
printf("%d & %d & %d \\\\ \n",
m, coeff(TR,xˆm), coeff(TS,xˆm));
end do;

In this code, the first paragraph “Functional Equations for Alkyl Ligands as Graphs” de-
clares the functional equations for counting alkyl ligands as graphs (eqs. 71 and 72). The
symbols rx and sx are used to designate r(x) and s(x). The second paragraph “Alkanes as
Centroidal Trees or Steric Trees” declares the functional equations for counting centroidal trees
or steric centroidal trees (eqs. 77 and 78). The symbols Rx and Sx are used to designate R̂(x)
and Ŝ(x). The third paragraph “Alkanes as Bicentroidal Trees or Steric Trees” declares the
functional equations for counting bicentroidal trees or steric bicentroidal trees (eqs. 83 and 84).
The symbols Rxb and Sxb are used to designate R̃(x) and S̃(x). The fourth paragraph “Initial
Values” sets initial values for recursive calculations. The fifth paragraph “Recursive Calcula-
tion” is composed of a do loop for recursive calculations. We use the following symbols: Rc
for storing R̂k (eq. 75), Sc for storing Ŝk (eq. 76), Rb for storing R̃k (eq. 81), and Sb for storing
S̃k (eq. 82). The six paragraph “Total Numbers” involves TR for calculation by means of eq. 85
and TS for calculation by means of eq. 86. The last paragraph “Print-Out” is to print out the
calculation results.

6.3 Combination of Two Dichotomies for Categorizing Trees
6.3.1 Three Categories of Trees

The combination of the two dichotomies described in Section 5 is also effective to itemize trees
as graphs, where the sphericities for describing 3D-trees are omitted in accord with the shift
of a viewpoint from 3D-objects to graphs (Fig. 5). Hence, there appear three categories, i.e.,
centroidal & unbalanced trees, bicentroidal & unbalanced trees, and bicentroidal & balanced
trees, where the category of “centroidal & balanced” is not permitted because of the definitions
of the two dichotomies.

unbalanced trees balanced trees
(U (G)

k ) (B(G)

k )
centroidal trees (R̂k) R̂k = U (G)

k − (R̃k −B(G)

k ) none
bicentroidal trees (R̃k) R̃k −B(G)

k B(G)

k

Figure 5: Alkanes as trees (graphs) categorized by two dichotomies

The number of centroidal & unbalanced trees of carbon content k is equal to that of cen-
troidal trees of carbon content k, i.e., R̂k. The number of bicentroidal & balanced trees of carbon
content k is equal to that of balanced trees of carbon content k, where the number is denoted by
the symbol B(G)

k . It follows that the number of bicentroidal & unbalanced tree of carbon content
k is calculated as follows:

Ũ (G)

k = R̃k −B(G)

k , (87)

where the symbol Ũ (G)

k represents the number of bicentroidal & unbalanced trees of carbon
content k.
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6.3.2 Implementation for Itemized Calculations

The functional equation for counting bicentroidal & unbalanced trees (eq. 87) was programmed
and stored in a file named “CBUBgraph1-100.mpl”.

Maple program for counting alkanes, “CBUBgraph1-100.mpl”:

"Functional Equations for Alkyl Ligands as Graphs";
rx := 1 + (1/6)*x*r1ˆ3 + (1/3)*x*r3 + (1/2)*x*r1*r2:

"Alkanes as Centroidal Trees or Steric Trees";
Rx := (x/24)*(r1ˆ4 + 3*r2ˆ2 + 8*r1*r3 + 6*r1ˆ2*r2 + 6*r4):

"Alkanes as Bicentroidal Trees or Steric Trees";
Rxb := (1/2)*(r1ˆ2 + r2):

"Initial Values";
r1 := 1; r2 := 1; r3 := 1; r4 := 1;
Rc := x; Rb := 0;

"Recursive Calculation";
for m from 1 to 50 by 1 do
m:
Crx:= coeff(rx,xˆm):
r1 := r1 + Crx*xˆm:
r2 := r2 + Crx*xˆ(m*2):
r3 := r3 + Crx*xˆ(m*3):
r4 := r4 + Crx*xˆ(m*4):
n := 2*m +1:
Rc := Rc + coeff(Rx,xˆn)*xˆn + coeff(Rx,xˆ(n+1))*xˆ(n+1):
nn := 2*m:
Rb := Rb + coeff(Rxb,xˆnn)*xˆnn:
end do:

"Alkanes as Balanced Trees";
BxG := r2-1:
"Bicentroidal and Balanced Trees";
BUxG := Rb - BxG:

"Print-Out";
for m from 1 to 100 by 1 do
printf("%d & %d & %d & %d \\\\ \n",
m, coeff(Rc,xˆm), coeff(BUxG,xˆm), coeff(BxG,xˆm));
end do;

As found easily, the paragraphs “Functional Equations for Alkyl Ligands as Graphs” to “Re-
cursive Calculation” in the program “CBUBgraph1-100.mpl” are composed of codes selected
adequately from the program shown in Subsection 6.2 (CBUBtotal1-100.mpl). The subsequent
paragraph “Alkanes as Balanced Trees” is added to calculate the number of bicentroidal & bal-
anced trees, where the symbol B(G)

k is abbreviated as BxG. The paragraph “Bicentroidal and
Balanced Trees” aims at calculating the number of bicentroidal & unbalanced trees, where the
symbol Ũ (G)

k (eq. 87) is represented by BUxG.
The calculation results are shown in Table 8, where the numbers of trees are itemized as

follows: R̂k (centroidal & unbalanced), Ũ (G)

k (bicentroidal & unbalanced), and B(G)

k (bicentroidal
& balanced) (cf. Fig. 5).
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Table 8: Numbers of Alkanes as Trees Categorized by Two Dichotomies
k R̂k (Centroidal & unbalanced) Ũ (G)

k (Bicentroidal & unbalanced) B(G)
k (Bicentroidal & balanced)

1 1 0 0
2 0 0 1
3 1 0 0
4 1 0 1
5 3 0 0
6 2 1 2
7 9 0 0
8 8 6 4
9 35 0 0

10 39 28 8
11 159 0 0
12 202 136 17
13 802 0 0
14 1078 741 39
15 4347 0 0
16 6354 3916 89
17 24894 0 0
18 38157 22155 211
19 148284 0 0
20 237541 128271 507
21 910726 0 0
22 1511717 765703 1238
23 5731580 0 0
24 9816092 4671096 3057
25 36797588 0 0
26 64658432 29173341 7639
27 240215803 0 0
28 431987953 185098420 19241
29 1590507121 0 0
30 2917928218 1193869680 48865
31 10660307791 0 0
32 19910436898 7800691965 124906
33 72214088660 0 0
34 137041997938 51583917003 321198
35 493782952902 0 0
36 950665379038 344631378871 830219
37 3404490780161 0 0
38 6640556836540 2324188482045 2156010
39 23647478933969 0 0
40 46677743532346 15804051992886 5622109
41 165351455535782 0 0
42 329965311285835 108277568767578 14715813
43 1163169707886427 0 0
44 2344582517352728 746878455834976 38649152
45 8227162372221203 0 0
46 16737981626775790 5183852358085701 101821927
47 58481806621987010 0 0
48 120009045820117784 36183320385462370 269010485
49 417612400765382272 0 0
50 863868095187587242 253875555846799461 712566567
51 2994664179967370611 0 0
52 6241262372719148751 1789819405924154496 1891993344
53 21557771913572630901 0 0
54 45245054518087830547 12674126350025902378 5034704828
55 155745431857549699124 0 0
56 329032677134210143651 90116894045776567915 13425117806
57 1128939578361332867936 0 0
58 2399838836269611579515 643204735601349052146 35866550869
59 8208615366863753915949 0 0
60 17551563430795289730068 4607171104879129978828 95991365288
61 59858097847706865855186 0 0
62 128695623771737013477627 33110101577303010879765 257332864506
63 437671691526158936922623 0 0
64 945925190131843244233008 238690995252776670998460 690928354105
65 3208285066181475821271463 0 0
66 6968380624869684767461795 1725750087153325825189461 1857821351559
67 23573796134448175745408811 0 0
68 51443628833668465573508031 12511530693674670829579128 5002305607153
69 173603007393950249896865875 0 0
70 380542765558018188591703256 90942032957298688002860946 13486440075669
71 1281151315764638215613845510 0 0
72 2820326219075706272153640730 662639530064948568574363503 36404382430278
73 9473447386804490449091871124 0 0
74 20939917383878361076979181211 4839388855075945514565564903 98380779170283
75 70183211512214096492433058105 0 0
76 155736193991753950318739270766 35420187401495176550028113526 266158552000477
77 520874195248906781713044332539 0 0
78 1160126845612029859367497324697 259782069731921557162935641181 720807976831447
79 3872282575137005474139119076135 0 0
80 8655414899951377197004438074726 1909062006995295955946926863471 1954002050661819
81 28833609436277333169440806135431 0 0
82 64670244894100928025403542397928 14055340570290103965682395564453 5301950692017063
83 215027809474796675607407513633870 0 0
84 483866244117748414180271706010224 103665479708828764876122472116936 14398991611139217
85 1605913778494711520354663202536756 0 0
86 3625120436671718862353794041776817 765882471421604524503039838729876 39137768751465752
87 12010257907756938974208750945664835 0 0
88 27193795807444648606634691041759657 5667499750676238823841477868257380 106465954658531465
89 89940959024891576997396491928932689 0 0
90 204241134823246231673454450083001304 42004015419575207669008636766672578 289841389106439413
91 674391606297983432514229725117306224 0 0
92 1535747711108903353585330669197686679 311767336903709983407698055599536680 789642117549095761
93 5062818112121161180862827915688625902 0 0
94 11560551433785050267926870803673066949 2317306095799471114244734206767006790 2152814945971655556
95 38051836070803837001309074456088423358 0 0
96 87116273863058463335214480687627283623 17247390698000810586616536318310063081 5873225808361331954
97 286312976836850192359345859166390622180 0 0
98 657148274926370623920529007067537922228 128536484926717078842010679919202869201 16033495247557039074
99 2156596319845084996862701478402986311496 0 0

100 4961959128679789479667095353444545912459 959112909446020370174100460717054519920 43797554941937577760
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7 Discussion

7.1 Effective Categorization by Two Dichotomies
In order to show the effectiveness of the two dichotomies in the enumeration of alkanes as 3D-
trees, let us examine alkanes of carbon content 8. They are depicted in Fig. 6 (14 achiral alkanes)
and Fig. 7 (5 chiral alkanes), where they are itemized with respect to the two dichotomies, i.e.,
the dichotomy of centroidal/bicentroidal 3D trees and the dichotomy of unbalanced/balanced
3D trees. The total numbers appear in Table 3, in which the (k = 8)-row indicates B(T)

8 = B̂8 + B̃8

= 19 (total number), A(T)
8 = Â8 + Ã8 = 14 (the number of achiral alkanes), and C(T)

8 = Ĉ8 +C̃8 = 5
(the number of chiral alkanes).

Among the fourteen achiral stereoisomers of alkanes of carbon content 8 shown in Fig.
6 (7–20), there exist seven achiral centroidal alkanes (7–13) in agreement with the number
Â8 = 7 (Achiral) listed in the (k = 8)-row of Table 1. In addition, Fig. 6 involves seven achiral
bicentroidal alkanes (14–20) in agreement with the number Ã8 = 7 (Achiral) listed in the (k = 8)-
row of Table 2. The seven achiral bicentroidal alkanes (14–20) shown in Fig. 6 are categorized
into three bicentroidal & unbalanced alkanes (14–16) and four bicentroidal & balanced alkanes
(17–20) in agreement with the numbers (Ũ (A)

8 = 3 and B(A)
8 = 4) listed in the (k = 8)-row of Table

5.
Among the five chiral stereoisomers of alkanes of carbon content 8 shown in Fig. 7 (21–

25), there exists one chiral centroidal alkane (21) in agreement with the number Ĉ8 = 1 (Chiral)
listed in the (k = 8)-row of Table 1. In addition, Fig. 7 involves four chiral bicentroidal alkanes
(22–25) in agreement with the number C̃8 = 4 (Chiral) listed in the (k = 8)-row of Table 2. The
four chiral bicentroidal alkanes (22–25) shown in Fig. 7 are categorized into three bicentroidal
& unbalanced alkanes (22–24) and one bicentroidal & balanced alkane (25) in agreement with
the numbers (Ũ (C)

8 = 3 and B(C)
8 = 1) listed in the (k = 8)-row of Table 6.

By combining Fig. 6 with Fig. 7, the total number of each category is confirmed to be equal
to the value listed in Table 4, i.e., B̂8 = 8 (centroidal & unbalanced alkanes: 7–13 and 21),
Ũ (AC)

8 = 6 (bicentroidal & unbalanced alkanes: 14–16 and 22–24), and B(AC)
8 = 5 (bicentroidal &

balanced alkanes: 17–20 and and 25).

7.2 Stereoisomers vs. Constitutional Isomers
The number of alkanes of carbon content 8 is found to be B(T)

8 = 19 as stereoisomers (3D-trees
or 3D-objects) in the (k = 8)-row of Table 3, while it is found to be R(T)

8 = 18 as constitutional
isomers (trees or graphs) in the (k = 8)-row of Table 7. To examine the difference systematically,
relevant values are picked up from Tables 4–6 and Table 8. They are listed in Fig. 8, where
they are itemized in terms of the two dichotomies. By examining the data listed in Fig. 8, the
difference, i.e., B(T)

8 −R(T)
8 = 19−18 = 1, is found to stem from the difference in the numbers of

bicentroidal & balanced (3D)-trees, i.e., B(AC)
8 −B(G)

8 = 5−4 = 1.
The comparison between Fig. 6 and Fig. 7 indicates that the meso-form (20) and the chiral

form (25) of 3,4-dimethylhexane coalesce to give a single constitutional isomer (a single graph)
in agreement with the value B(AC)

8 −B(G)
8 = 5−4 = 1. Note that each pair of enantiomers is counted

just once in the present enumeration, where the formula 25 is depicted as a representative of
such a pair of enantiomers. Stereochemically speaking, the relationship between 20 and 25 is
diastereomeric.
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Figure 6: Fourteen achiral stereoisomers of alkanes of carbon content 8. They are itemized
with respect to two kinds of dichotomies, i.e., the dichotomy of centroidal/bicentroidal 3D
trees and the dichotomy of unbalanced/balanced 3D trees. A wedged edge is used to show the
configuration of the carbon node if necessary. Each carbon with an asterisk is a centroid, while
an adjacent pair of carbons with asterisks represents a bicentroid.
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Figure 7: Five chiral stereoisomers of alkanes of carbon content 8. An appropriate enantiomer
of each enantiomeric pair is depicted as a representative. The stereoisomers are itemized with
respect to two kinds of dichotomies, i.e., the dichotomy of centroidal/bicentroidal 3D trees and
the dichotomy of unbalanced/balanced 3D trees. A wedged edge is used to show the config-
uration of carbon nodes. Each carbon with an asterisk is a centroid, while an adjacent pair of
carbons with asterisks represents a bicentroid.

The value B(T)
9 = 38 for alkanes of carbon content 9 as stereoisomers (3D-trees or 3D-objects)

found in the (k = 9)-row of Table 3 is different by 3 from the value R(T)
9 = 35 as constitutional

isomers (trees or graphs) found in the (k = 9)-row of Table 7. By examining Fig. 9 which
lists relevant values, the difference stems from the difference in the numbers of centroidal &
unbalanced (3D)-trees, because there are no bicentroidal (3D)-trees in this case.

Among the 38 alkanes as stereoisomers of carbon content 9, the formulas that cause the
difference (B̂9 − R̂9 = 38−35 = 3) are depicted in Fig. 10.

1. The achiral form (26) of 3,5-dimethylheptane and the corresponding chiral form (27) have
the same constitutional formula so that their coalescence takes place to give a single con-
stitutional isomer. Stereochemically speaking, the relationship between them is diastere-
omeric. When we focus our attention on the centroid (marked with an asterisk) and we
put p = R-CH(CH3)CH2CH3 and p = S-CH(CH3)CH2CH3 (a linking bond is regarded as
having lowest priority), the achiral form (26) is regarded as a promolecule CH2pp, while
the chiral form (27) is regarded as a promolecule CH2p2 (paired with CH2p2). Because
such a pair of proligands p and p has the same constitutional formula, it generally causes
a difference by 1 between the number of stereoisomers and the number of constitutional
isomers (graphs).

2. Two chiral 3,4-dimethylheptanes which are diastereomeric, i.e., 28 (paired its enantiomer)
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Figure 8: Itemized numbers of 3D-trees (left) vs. trees (right) for alkanes of carbon content 8.
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Figure 9: Itemized numbers of 3D-trees (left) vs. trees (right) for alkanes of carbon content 9.

and 29 (paired with its enantiomer), coalesce to give a single constitutional isomer so that
they contribute by 1 to the difference (B̂9 − R̂9 = 38−35 = 3).

3. On the same line, two chiral 2,3,4-trimethylpentanes (30 paired its enantiomer and 31
paired with its enantiomer), cause a difference by 1 in the present enumeration.

Totally, the number 6 for stereoisomers (Fig. 10) are reduced into the number 3 for constitutional
isomers in agreement with the aforementioned difference (B̂9 − R̂9 = 38−35 = 3).

The number of alkanes of carbon content 10 enumerated as stereoisomers B(T)
10 = 88 is larger

by 13 than the value enumerated as constitutional isomers (R(T)
10 = 75). To examine the difference

systematically, relevant values are collected from Tables 4–6 and Table 8 and listed in Fig.
11. By examining the data listed in Fig. 11, the difference by 13 is divided into three factors:
B̂10 − R̂10 = 46−39 = 7 for the numbers of centroidal & unbalanced (3D)-trees; Ũ (AC)

10 −Ũ (G)
10 =

31−28 = 3 for the numbers of bicentroidal & unbalanced (3D)-trees; and B(AC)
10 −B(G)

10 = 11−8 =
3 for the numbers of bicentroidal & balanced (3D)-trees.

1. Among them, alkanes of pseudoasymmetric and meso-type cases are depicted in Fig. 12.
Two diastereomers of 3,4,5-trimethylheptane, 32 and 33, exhibit pseudoasymmetric na-
ture. Together with the corresponding chiral stereoisomer (34 paired with its enantiomer),
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Figure 10: Stereoisomers as 3D-trees vs. constitutional isomers as trees. Respective sets of di-
astereomers are depicted with respect alkanes of carbon content 9. Wedged edges and boldfaced
dashed edges are used to show the configurations of carbon nodes. Each carbon with an asterisk
is a centroid.
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Figure 11: Itemized numbers of 3D-trees (left) vs. trees (right) for alkanes of carbon content
10.

they are regarded as a single constitutional isomer so that a difference by 2 (= 3−1) con-
tributes to B̂10 − R̂10 = 46−39 = 7.

2. The remaining three sets of diastereomers depicted in Fig. 12 are concerned with meso-
cases. For example, the achiral stereoisomer of 3,4-dimethyloctane (35) is a meso-compound,
which is diastereomeric to the chiral stereoisomer (36). They are regarded as a single
constitutional isomer so that a difference by 1 contributes to the difference Ũ (AC)

10 −Ũ (G)
10 =

31−28 = 3. On a similar line, the other sets of chiral diastereomers (37 and 38 as well as
39 and 40), each of which is regarded as a single constitutional isomer, contribute to the
difference.

Consequently, the three sets of meso/chiral diastereomers shown in the second and third rows
of Fig. 12 contribute to the whole of the difference Ũ (AC)

10 −Ũ (G)
10 = 31−28 = 3.

The remaining 8 sets of diastereomers contributing to B(T)
10 −R(T)

10 (= 13) are depicted in Fig.
13, where each structure having two asymmetric carbons is a representative of an enantiomeric
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Figure 12: Stereoisomers as 3D-trees vs. constitutional isomers as Trees. Respective sets of
diastereomers are depicted with respect to pseudoasymmetric cases and meso-cases of alkanes
of carbon content 10. Wedged edges and boldfaced dashed edges are used to show the config-
urations of carbon nodes. Each carbon with an asterisk is a centroid, while an adjacent pair of
carbons with asterisks represents a bicentroid.

pair.

1. Because each of the sets is counted just once as a single constitutional isomer (as a graph),
it causes a difference by 1 to the value B(T)

10 −R(T)
10. Among them, the five sets, i.e., 41/42,

45/46, 47/48, 53/54, and 55/56, contribute to B̂10 − R̂10 = 46−39 = 7 for the numbers of
centroidal & unbalanced (3D)-trees.

2. On the other hand, the three sets, i.e., 43/44, 49/50, and 51/52, contribute to Ũ (AC)
10 −Ũ (G)

10 =
31−28 = 3 for the numbers of bicentroidal & unbalanced (3D)-trees.

Consequently, there are at least three cases that cause the difference between the number of
stereoisomers and the number of constitutional isomers.

1. Meso-cases and related cases: A meso-promolecule represented by p—p and the corre-
sponding chiral promolecule p—p (paired with p—p) are counted separately as stereoiso-
mers but regarded as a single constitutional isomer. See Fig. 12 (35/36, 37/38, and 39/40).
The same situation holds true for an achiral promolecule CH2pp and the corresponding
chiral promolecule CH2p2 (paired with CH2p2). See Fig. 10 (26/27).
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Figure 13: Stereoisomers as 3D-trees vs. constitutional isomers as trees (continued). Respective
sets of diastereomers are depicted with respect to chiral alkanes of carbon content 10. Wedged
edges and boldfaced dashed edges are used to show the configurations of carbon nodes. Each
carbon with an asterisk is a centroid, while an adjacent pair of carbons with asterisks represents
a bicentroid.

2. Pseudoasymmetric cases: Two achiral promolecules CXYpp and CXYpp (pseudoasym-
metry) as well as the corresponding chiral promolecule CXYp2 (paired with CXYp2) are
counted separately as three stereoisomers but regarded as a single constitutional isomer.
See Fig. 12 (32/33/34 as one constitutional isomer)

3. Other chiral cases having two or more asymmetric carbons. See Fig. 13.

8 Conclusion
Alkanes are counted as 3D-trees or stereoisomers by means of Fujita’s proligand method [18–
20], where the 3D-trees are categorized according to the dichotomy between centroidal and
bicentroidal 3D-trees. The centroidal 3D-trees are enumerated by using a tetrahedral skeleton
of Td-symmetry under the criterion of defining such centroidal 3D-trees. On the other hand, the
bicentroidal 3D-trees are enumerated by using a binuclear skeleton of D∞h-symmetry under the
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criterion of defining such bicentroidal 3D-trees. Both the enumerations are based on functional
equations derived from cycle indices with chirality fittingness (CI-CFs), where the functions
a(xd), c(xd), and b(xd) (or their modifications) are substituted for three kinds of sphericity in-
dices (SIs), i.e., ad for homospheric cycles, cd for enantiospheric cycles, and bd for hemispheric
cycles. In addition, 3D-trees are alternatively counted under the dichotomy between balanced
and unbalanced 3D-trees. The two dichotomies are combined so as to provide a tool of enumer-
ation using three categories, i.e., centroidal & unbalanced 3D-trees, bicentroidal & unbalanced
3D-trees, and bicentroidal & balanced 3D-trees, where the category of centroidal & balanced
3D-trees is not permitted. Respective functional equations based on the two dichotomies are
programmed by means of the Maple programming language and executed to give respective
stereoisomer numbers, which are collected in tabular forms up to carbon content 100. Thus,
the combination of the two dichotomies provides us with a versatile tool for counting alkanes,
which satisfies theoretical requirements as well as practical usabilities for personal-computer
calculations. The numbers of stereoisomers obtained by Fujita’s proligand method are com-
pared with those of constitutional isomers (graphs) derived by using Pólya’s theorem so that we
derive the conclusion that Pólya’s theorem lacks the sphericity concept.

We gratefully acknowledge the financial support given to our recent project by the Japan
Society for the Promotion of Science: Grant-in-Aid for Scientific Research B (No. 18300033,
2006).
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