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Abstract

Alkanes are counted as 3D-trees or stereoisomers by means of Fujita’s proligand method
(S. Fujita, Theor. Chem. Acc., 113, 73–79, 80–86 (2005); 115, 37–53 (2006)), where the
3D-trees are categorized into balanced and unbalanced 3D-trees according to the presence
or absence of a balance-edge. Such balanced and unbalanced 3D-trees are enumerated by
presuming that they are dually recognized as uninuclear and binuclear 3D-trees, where a
tetrahedral skeleton of Td-symmetry is used to generate the uninuclear 3D-trees, while a
binuclear skeleton of D∞h-symmetry is examined to generate the binuclear 3D-trees. The
values for binuclear 3D-trees are regarded as contaminants in the enumeration of uninuclear
3D-trees so that the subtraction of the contaminants from the latter enumeration leaves
unbalanced 3D-trees to be counted. The enumeration of balanced 3D-trees is conducted
directly by using the binuclear skeleton of D∞h-symmetry. The enumeration is based on
functional equations derived from cycle indices with chirality fittingness (CI-CFs), where
the functions a(xd), c(xd), and b(xd) (or their modifications) are substituted for three kinds
of sphericity indices (SIs), i.e., ad for homospheric cycles, cd for enantiospheric cycles,
and bd for hemispheric cycles. Thus, respective functional equations for counting alka-
nes as well as for itemizing them into achiral and chiral ones are derived by starting from
recursive functional equations for counting alkyl ligands as planted 3D-trees. They are pro-
grammed by means of the Maple programming language and executed to give respective
stereoisomer numbers, which are collected in tabular forms up to carbon content 100.
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1 Introduction
Pólya’s theorem [1, 2] has been widely applied to chemical combinatorics, as described in re-
views [3–6] and books [7–11]. However, most works on combinatorial enumeration in chem-
istry were concerned with constitutional (structural) isomers, which were regarded as graphs in
a mathematical context.

After the proposal of the USCI (unit-subduced-cycle-index) approach [12], we have devel-
oped various tools for combinatorial enumeration in stereochemistry [13–17], which are capable
of treating stereoisomers as three-dimensional (3D) objects. Throughout the development of the
tools, we have pointed out the importance of the sphericities of orbits, which are characterized
by three kinds of sphericity indices (SIs), i.e., ad for a homospheric orbit, cd for an enantio-
spheric orbit, and bd for a hemispheric orbit, where the integer d represents the size of the orbit
at issue.

As a more simplified version apart from but related implicitly to the USCI approach, we have
developed the proligand method for counting stereoisomers, where the sphericities of orbits
are modified into the sphericities of cycles [18–21]. One of the merits of Fujita’s proligand
method is its capability of treating inner structures of molecules in terms of the sphericities of
cycles. Thereby, stereochemical problems, such as pseudoasymmetry and meso-compounds,
are properly treated by Fujita’s proligand method in contrast to Pólya’s theorem that lacks the
sphericity concept.

To the best of our knowledge, one of the most famous problems which were successfully
solved by Pólya’s theorem is the enumeration of alkanes (equivalently trees) as graph [1, 2].
This problem was first undertaken by Cayley [22, 23], treated more chemically by Henze and
Blair [24, 25], and then solved systematically by Pólya [1, 2] and by Otter [26]. Although
Robinson et al. [27] reported the enumeration of alkanes as stereoisomers by modifying Pólya’s
cycle indices (CIs), their treatment did not involve the sphericity concept so that it was incapable
of treating pseudoasymmetry and meso-compounds properly.

To show the versatility of Fujita’s proligand method, the enumeration of alkanes as stereoiso-
mers should be studied in comparison with the enumeration of alkanes as constitutional isomers
(graphs) by Pólya’s theorem. However, because this study requires a strict mathematical formu-
lation, another practical approach based on personal-computer calculations would be desirable
to grasp essential features of Fujita’s proligand method.

In order to accomplish the enumeration of alkanes as stereoisomers, the present paper deals
with a succinct description of Fujita’s proligand method and with the writing and executing of
programs for counting them by using the Maple programming language. Thereby, the present
paper would involve all of the three elements which MATCH Commun. Math. Comput. Chem.
aims at.

2 Alkyl Ligands as Planted 3D-Trees
Because the present paper aims at counting alkanes, the term trees (or 3D-trees) is mainly used
to refer to trees of degree 4 (or 3D-trees of degree 4), where non-terminal vertices mimic carbon
atoms of tetravalency. Relevant terms such as planted 3D-trees are also used according to this
convention.

To enumerate alkanes, we should first enumerate alkyl ligands as their components. It is
worthwhile here to provide some comments on Pólya’s treatment of this problem. Pólya’s
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Figure 1: Alkyl ligand (2-methylhex-2-yl ligand) as a planted 3D-tree (1) and a planted pro-
molecule (2). A solid circle (•) represents a root, while an open circle (◦) represents a principal
node, which is a carbon atom carrying three substitution positions.

treatment, in which alkyl ligands (or planted trees mathematically) are regarded as graphs, has
used a cycle index (CI) obtained on the basis of the symmetric group of degree 3 and order 6
(S [3]) as follows [1, 2]:

CI(S [3];rd) =
1
6
(r3

1 +2r3 +3r1r2). (1)

Let Rk be the number of alkyl ligands of carbon content k (as graphs), which appears as the
coefficient of the term xk in a generating function (an isomer-counting series):

r(x) =
∞

∑
k=0

Rkxk. (2)

According to Pólya’s treatment [1, 2], the nested nature of alkyl ligands (as graphs) is charac-
terized by the following functional equation:

r(x) = 1+
x
6
(r(x)3 +2r(x3)+3r(x)r(x2)), (3)

which is obtained by substituting r(xd) for the term rd of the CI (eq. 1). Recursive calculations
have been conducted by using eq. 3 [10].

In contrast, Fujita’s proligand method [18–21] regards alkyl ligands as 3D-objects, which
are mathematically treated as planted 3D-trees or chemically as planted promolecules. For
example, a 2-methylhex-2-yl ligand shown in Fig. 1 is regarded mathematically as a planted
3D-tree (1), which is chemically regarded as a planted promolecule (2), where we put A = CH3
(methyl) and B = CH2CH2CH2CH3 (butyl). Thus, the 2-methylhex-2-yl ligand (1 as a planted
3D-tree) is constructed by substituting a methyl ligand (A) and a butyl ligand (B) for the three
positions of a C3v-skeleton (i.e., the three hydrogens of a methyl ligand as a C3v-skeleton).
The nested character of this procedure is found in that the butyl (B) is in turn constructed by
substituting one propyl ligand and two hydrogens for the three positions of a C3v-skeleton.

According to Fujita’s proligand method [18–21], the three positions of the C3v-skeleton
construct an orbit governed by a coset representation (CR), i.e., C3v(/Cs). The CR is composed
of permutations, each of which is represented by a product of cycles. Each of the cycles is
classified into a homospheric, enantiospheric, or hemispheric one, which is characterized by a
sphericity index (SI), i.e., ad for a homospheric cycle, cd for an enantiospheric cycle, and bd for
a hemispheric cycle, where the integer d represents the length of the cycle at issue. Thereby, the

- 267 -



three positions of the C3v-skeleton are characterized by the following cycle index with chirality
fittingness (CI-CF):

CI-CF(C3v;ad,bd,cd) =
1
6
(b3

1 +2b3 +3a1c2) (4)

where the chirality fittingness due to each sphericity index controls the transitivity of chiral or
achiral ligands. Thus, the SI ad permits the transitivity among achiral proligands of the same
kind; the SI cd (d is even) permits the transitivity among diploids of the same kind [19], which
are defined as ordered sets of achiral proligands or as ordered pairs of enantiomeric proligands;
and the SI bd permits the transitivity among achiral proligands of the same kind or among chiral
proligands of the same kind (the same handedness), where the two enantiomers of each pair are
treated separately.

In contrast to Pólya’s CI (eq. 1), Fujita’s CI-CF (eq. 4) assures no recursive nature, because
the evaluation of the left-hand side cannot be used in the successive evaluation of the right-hand
side of eq. 4. Instead, each component of the right-hand side of eq. 4, i.e., ad , cd , and bd , is
expected to have recursive nature, if they are evaluated distinctly. In fact, they can be evaluated
as follows:

CI-CFA(C3v;ad,cd) = a1c2 (5)

CI-CFD(C3;cd) =
1
3
(c3

2 +2c6) (d: even) (6)

CI-CF(C3;bd) =
1
3
(b3

1 +2b3), (7)

where all of them assure recursive nature. Thus, the CI-CFA (eq. 5) corresponding to ad is
used to count achiral proligands; the CI-CFD (eq. 6) corresponding to cd (d is even) is used
to count diploids [19], which are defined as ordered sets of achiral proligands or as ordered
pairs of enantiomeric proligands; and the CI-CF (eq. 7) corresponding to bd is used to count
achiral proligands and chiral proligands, where the two enantiomers of each pair are counted
separately.

Let αk be the number of achiral alkyl ligands of carbon content k (as stereoisomers); let γk
be the number of diploids [19], which are defined as ordered sets of achiral alkyl ligands or
as ordered pairs of enantiomeric alkyl ligands; and let βk be the number of achiral proligands
and chiral proligands, where the two enantiomers of each pair are counted separately. Then,
suppose that they appear as the coefficients of the term xk in the following generating functions:

a(x) =
∞

∑
k=0

αkxk (8)

c(x2) =
∞

∑
k=0

γ2kx2k (9)

b(x) =
∞

∑
k=0

βkxk. (10)

By substituting a(xd), c(xd), and b(xd) for the terms ad , cd , and bd of the CI-CFs (eqs. 5–7), we
obtain the following functional equations:

a(x) = 1+ xa(x)c(x2) (11)

c(x2) = 1+
x2

3
{c(x2)3 +2c(x6)} (12)

b(x) = 1+
x
3
{b(x)3 +2b(x3)}, (13)
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which can be used in recursive calculations to obtain the coefficients of the generating functions
(eqs. 8–10). Note that the multiplication of x for eqs. 11 and 13 and that of x2 for eq. 12
aim at considering the contribution of a principal vertex and the addition of 1 comes from the
participation of a null vertex (a hydrogen atom). It should be emphasized that the functional
equations (eqs. 11–13) for recursive calculations are concerned with three types of SIs; that is to
say, the functional equation a(x) is related to a homospheric cycle via the SI ad , the functional
equation c(x2) is related to an enantiospheric cycle via the SI cd , the functional equation b(x) is
related to a hemispheric cycle via the SI bd .

Once we obtain a(x), c(x2), and b(x) recursively, we are able to obtain L(x)(AC) for counting
achiral and chiral ligands, L(x)(A) for counting achiral ligands, and L(x)(C) for counting chiral
ligands, where the numbers are itemized with respect to carbon content k.

L(x)(AC) =
1
2
(b(x)+a(x)) = 1+

x
6
{b(x)3 +2b(x3)+3a(x)c(x2)} (14)

L(x)(A) = a(x) = 1+ xa(x)c(x2) (15)

L(x)(C) =
1
2
(b(x)−a(x)) =

x
6
{b(x)3 +2b(x3)−3a(x)c(x2)} (16)

It should be noted that eq. 14 based on Fujita’s proligand method can be transformed into eq.
3 based on Pólya’s theorem. Obviously, eq. 3 is a special case of eq. 14 in which we put r(x) =
L(x)(AC) in the left-hand side and r(x) = a(x) = c(x) = b(x) in the right-hand side. Because
eq. 3 lacks the information on sphericity in contrast to eq. 14, the reverse transformation is
impossible.

By replacing b(x) in eq. 10 by s(x), we can obtain a functional equation for counting steric
trees,

s(x) = 1+
x
3
{s(x)3 +2s(x3)}, (17)

which has the same form as obtained by Pólya’s treatment [1, 2]. Note that the combination of
eq. 3 and eq. 17 in Pólya’s treatment is incapable of characterizing enantiomeric relationships.
Obviously, eq. 3 is concerned with graphs or constitutional isomers. The use of eq. 17 results in
that one enantiomer and the other enantiomer of each enantiomeric pair are counted separately.
In other words, a pair of enantiomers cannot be recognized to exhibit enantiomeric nature during
the enumeration of eq. 17.

The sphericity index b(x) of Fujita’s proligand method takes account of the difference be-
tween achiral and chiral proligands in combination with a(x) and c(x). In contrast, the dummy
variables r(x) (eq. 3) and s(x) (eq. 17) of Pólya’s treatment implicitly disregards the difference
between atoms (or achiral ligands) and chiral ligands in determining geometrical configurations.
Although Pólya’s theorem was used to discuss the effect of asymmetric carbon atoms [1, 2], it
did not properly treated pseudoasymmetric cases and meso-compounds.

3 Uninuclear and Binuclear 3D-Trees
Trees as graphs and 3D-trees as 3D-objects are composed of vertices and edges. Hence, any
tree or 3D-tree is dually characterized by a set of uninuclear trees or 3D-trees and by a set of
binuclear trees or 3D-trees. The present section is devoted to clarify the difference between
uninuclear 3D-trees and binuclear 3D-trees.
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3.1 Alkanes as Uninuclear and Binuclear 3D-trees
To emphasize a viewpoint from vertices, we coin the terms uninucleus and binucleus, which
are used to define the terms uninuclear 3D-trees and binuclear 3D-trees. In particular, we put
a focus on the terminal vertices of an edge by using the term binucleus. Alkanes as 3D-objects
can be dually recognized as uninuclear and binuclear 3D-trees, both of which are constructed
by substituting appropriate sets of alkyl ligands, as illustrated in Fig. 2.

Suppose that one vertex (carbon atom) of 2-methylhexane (3) is regarded as a uninucleus
(•), which is tentatively selected as a special vertex. Then, the alkane of carbon content 7 is
expressed by a tetrahedral formula (4) having two hydrogens, an isopropyl ligand (CH(CH3)2),
and a propyl ligand (CH2CH2CH3). This expression (4) is called a uninuclear 3D-tree.

When we put X1 = CH(CH3)2 and X2 = CH2CH2CH3, we obtain a further simplified for-
mula (6), which is called a uninuclear promolecule, where the X1 and the X2 regarded as struc-
tureless objects with achirality are called proligands.

C
C

C•

C

C
C

C

3

C

CH(CH3)2

CH2CH2CH3H
H ��

��
��
��

CH2CH2CH3

CH2CH(CH3)2

4 5

C

X1

X2H
H ��

��
��
��

X2

X3

6 7

Figure 2: Dual recognition of an alkane (3) as a uninuclear (4) and a binuclear 3D-tree (5),
which are further regarded as a uninuclear (6) and a binuclear promolecule (7).

On the other hand, let us regard one bond of 2-methylhexane (3) as a binucleus (marked by
a bold line), which we tentatively select as a special edge. Then, the alkane of carbon content 7
is expressed by a pair of dumbbells (5) having an isobutyl ligand (CH2CH(CH3)2) and a propyl
ligand (CH2CH2CH3). This expression (5) is called a binuclear 3D-tree.

When we put X3 = CH2CH2CH3 and X2 = CH2CH(CH3)2, we obtain a further simplified
formula (7), which is called a binuclear promolecule, where the X2 and the X3 regarded as
structureless objects with achirality are again called proligands.

3.2 Enumeration of Uninuclear and Binuclear 3D-Trees
3.2.1 Uninuclear 3D-Trees for Evaluating Gross Numbers

To enumerate such uninuclear 3D-trees as 4, we consider a tetrahedral skeleton (8), where the
four positions numbered 1 to 4 accommodate a set of proligands. The resulting promolecule is
used to determine achirality/chirality. It is further converted into the corresponding 3D-tree by
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the subsequent procedure in which the proligands are replaced by ligands (e.g., X1 = CH(CH3)2
and X2 = CH2CH2CH3).

•
1

24
3 ��

��
��
��

2

1

8 9

Figure 3: Uninuclear and binuclear skeletons.

Let G(AC)

k be the number of uninuclear 3D-trees of carbon content k, where the number of
achiral ones and the number of enantiomeric pairs of chiral ones are summed up. Because the
number G(AC)

k has a contribution of redundant 3D-trees as exemplified below, it is called the
gross number of 3D-trees. The gross number G(AC)

k is the coefficient of the term xk appearing in
a generating function:

G(x)(AC) =
∞

∑
k=1

G(AC)

k xk. (18)

Because the uninuclear skeleton (8) belongs to Td-symmetry, the four substitution positions are
governed by a CR Td(/C3v) according to the USCI approach [12] and the proligand method
[18, 19, 20]. Theorem 1 of [20] is applied to this case so as to give the following CI-CF:

CI-CF(Td;ad,bd,cd) =
1
24

(b4
1 +3b2

2 +8b1b3 +6a2
1c2 +6c4), (19)

which counts achiral 3D-trees (promolecules) and enantiomeric pairs of chiral 3D-trees (pro-
molecules), where each pair of enantiomers is counted just once.

Let us consider the substitution of the alkyl ligands (the planted promolecules) which have
been counted by eqs. 8–10 (eqs. 11–13). This means the replacement of ad , cd , and bd by a(xd),
c(xd), and b(xd), which converts eq. 19 into the following functional equation:

G(x)(AC) =
x

24
{

b(x)4 +3b(x2)2 +8b(x)b(x3)+6a(x)2c(x2)+6c(x4)
}
. (20)

where the variable x is multiplied to evaluate the central carbon atom of the tetrahedral skeleton
(8).

Although the gross number of alkanes evaluated by G(x)(AC) (eq. 20) is concerned with unin-
uclear 3D-trees (promolecules) of each carbon content k, it suffers from some redundancy. For
example, 2-methylhexane (3) shown in Fig. 2 is otherwise regarded as a tetrahedral skeleton
having two methyl ligands (CH3) and one butyl ligand (CH2CH2CH2CH3). This contributes to
the enumeration result of G(x)(AC) as a redundant 3D-tree (i.e., a contaminant), because it is not
congruent with the 3D-tree (4) under the action of the point group Td . Because the point group
Td is incapable of determining the congruence between them, we should develop an alternative
way to exclude the redundancy after discussing binuclear 3D-trees below.
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3.2.2 Binuclear 3D-Trees for Evaluating Contaminants

To enumerate such binuclear 3D-trees as 5, we consider a binuclear skeleton (9), where the
two positions 1 and 2 accommodate a set of proligands. The resulting promolecule is used
to determine achirality/chirality. It is further converted into the corresponding 3D-tree by the
subsequent procedure in which the proligands are replaced by ligands (e.g., X3 = CH2CH(CH3)2
and X2 = CH2CH2CH3).

Let C(AC)

k be the number of binuclear 3D-trees (promolecules) of carbon content k, where the
number of achiral ones and the number of enantiomeric pairs of chiral ones are summed up.
The number C(AC)

k is the coefficient of the term xk appearing in a generating function:

C(x)(AC) =
∞

∑
k=1

C(AC)

k xk. (21)

Because the binuclear skeleton (9) belongs to D∞h-symmetry, the two substitution positions
are governed by a CR D∞h(/C∞v), which is isomorphic to a CR C2v(/Cs), inclusive of the
sphericities of relevant cycles [18–20]. Theorem 1 of [20] is applied to this case so as to give
the following CI-CF:

CI-CF(D∞h;ad,bd,cd) =
1
4
(b2

1 +b2 +a2
1 + c2), (22)

which counts achiral 3D-trees (promolecules) and enantiomeric pairs of chiral 3D-trees (pro-
molecules), where each pair of enantiomers is counted just once.

Let us consider the substitution of the alkyl ligands (the planted promolecules) which have
been counted by eqs. 8–10 (eqs. 11–13). This procedure means the replacement of ad , cd , and
bd by a(xd)− 1, c(xd)− 1, and b(xd)− 1, where the first term 1 (x0) is subtracted from each
of eqs. 11–13, because a null vertex (a hydrogen atom) is not permitted. Thereby, eq. 22 is
converted into the following functional equation:

C(x)(AC) =
1
4
{(b(x)−1)2 +(b(x2)−1)+(a(x)−1)2 +(c(x2)−1)}. (23)

4 Balanced and Unbalanced 3D-Trees

4.1 New Dichotomy for Classifying 3D-Trees
As shown in Subsection 3.2, the number of alkanes (3D-trees) evaluated by G(x)(AC) (eq. 20) is
contaminated by redundant uninuclear 3D-trees. The aim of this section is to show that such
contaminants can be evaluated by the numbers of binuclear 3D-trees. These are in turn evaluated
by C(x)(AC) (eq. 23), as shown in Fig. 4. For the purpose of evaluating such contaminants, we
shall examine the subtraction G(x)(AC) −C(x)(AC) in detail.

There are two cases in the evaluation of the subtraction represented by G(x)(AC) −C(x)(AC),
so that we shall propose a new dichotomy between balanced 3D-trees and unbalanced 3D-
trees. This dichotomy is more essential to evaluate the subtraction than the two conventional
dichotomies reported by Jordan [28], i.e., the dichotomies between central and bicentral trees
and between centroidal and bicentroidal trees, even if these are extended to cover 3D-trees.

To introduce the new dichotomy, we shall first define a balance-edge. A balance-edge is de-
fined as an edge of which two terminals accommodate planted 3D-trees (planted promolecules)
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Uninuclear 3D-trees (G(x)(AC))

Unbalanced 3D-trees
(U(x)(AC))

Balanced 3D-trees
(B(x)(AC))

Net contaminants
(A(x)(AC))

Binuclear 3D-trees
(C(x)(AC))

Figure 4: The dichotomy of balanced/unbalanced 3D-trees and the dual recognition as un-
inuclear 3D- trees and binuclear 3D-trees. The total number of trees is obtained by sum-
ming up the number of unbalanced 3D-trees and the the number of balanced 3D-trees, i.e.,
N(x)(AC) = U(x)(AC) +B(x)(AC).

congruent under symmetry operations. This means that the two half branches generated by
deleting the balance-edge are of the same kind or of an enantiomeric relationship. Obviously,
any 3D-tree has at most one balance-edge. That is to say, any 3D-tree contains zero or one
balance-edge. Thereby, 3D-trees are classified into two categories: balanced 3D-trees with a
balance-edge and unbalanced 3D-trees with no balance-edge.

The present methodology based on the dichotomy between balanced trees and unbalanced
trees as well as on the dual recognition as uninuclear trees and binuclear trees provides us a suc-
cinct foundation for understanding the mechanism of enumerating 3D-trees. The relationship
between the new terms coined in the present methodology is summarized in Fig. 4.

4.2 Enumeration of Unbalanced Trees
4.2.1 Full Cancellation of Balanced 3D-Trees

The effect of a balanced tree on the enumeration result by G(x)(AC) is shown in Fig. 5, where
the boldfaced edge of a balanced tree 10 is a balance-edge, which is differentiated from other
edges called slant-edges. In the evaluation of 10 by G(x)(AC), each vertex (carbon atom) can be
selected as the central atom of the tetrahedral skeleton (8). When we select vertices (◦) other
than the terminals (•) of the balance-edge, we obtain the formulas shown as 11–16, which are
not congruent under Td-symmetry. Once we select 10 as a 3D-tree to be counted, the uninuclear
3D-trees (11–16) are regarded as contaminants to be excluded.

Let us alternatively regard the uninuclear 3D-trees (11–13) as binuclear 3D-trees, where
the boldfaced edges (slant-edges) are taken into consideration. Note that each of the boldfaced
edges corresponds to each of the vertices (◦) selected for evaluating the uninuclear 3D-trees
(11–13). It follows that each of the uninuclear 3D-trees (11–13 with a nucleus represented by
the symbol ◦) corresponds to each of the binuclear 3D-trees (11–13 with a binucleus represented
by a boldfaced edge).

By examining each of the 3D-trees (11–13) as a binuclear 3D-tree, the ligand at the right-
handed terminal contains the balance-edge selected for 10. Such a ligand as containing a
balance-edge is called a superior ligand. Once we select 10 as a 3D-tree to be counted, each
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Figure 5: Balanced 3D-tree. Cancellation between uninuclear 3D-trees and binuclear 3D-trees
leaves no balanced 3D-tree.

superior ligand can be regarded as being fixed. This condition means that the enumeration as
uninuclear 3D-trees is the same thing as the enumeration as binuclear 3D-trees. Hence, cancel-
lation for the 3D-trees (11–13) occurs so that the subtraction G(x)(AC)−C(x)(AC) does not contain
the 3D-trees (11–13).

This discussion holds true for the 3D-trees (14–16), which are dually recognized as uninu-
clear and binuclear 3D-trees. Note that the 3D-trees (14–16) are based on the right-half branch,
while the 3D-trees (11–13) are based on the left-half branch.

Let us then examine the balanced 3D-tree (10) to be counted. A set of the two terminal
vertices of a balance-edge is called a twin-core in order to emphasize a viewpoint of vertices.
Note that a balanced-edge is regarded as a special binucleus, which is in turn recognized to
be a twin-core from a viewpoint of vertices. The two terminal vertices characterized by the
twin-core are equivalent so that it is sufficient to treat either one as a special uninucleus. In this
meaning, the term twin-core for balanced 3D-trees corresponds to the term core for unbalance
3D-trees.

The enumeration of uninuclear 3D-trees by adopting the left-handed terminal (•) of the
twin-core (i.e., the balance-edge) as a uninucleus gives the result represented by G(x)(AC). On
the same line, the enumeration of uninuclear 3D-trees by adopting the right-handed terminal
(•) of the twin-core as a uninucleus also gives the result represented by G(x)(AC). Note that these
results are identical with each other even under the point group Td , because of the equivalence
of the two terminals.

On the other hand, the enumeration of binuclear 3D-trees by adopting the balance-edge (•—
•) as a binucleus gives the result represented by C(x)(AC). This enumeration has the same effect
as that of G(x)(AC) with respect to the balanced 3D-tree (10). Hence, the cancellation for the
3D-tree (10), which is dually recognized to be a uninuclear and a binuclear tree, takes place so
that the subtraction G(x)(AC) −C(x)(AC) does not contain the 3D-tree (10).

Concretely speaking, the balanced 3D-tree (10) recognized by G(x)(AC) is a uninuclear 3D-
tree having an isopropyl ligand (–CH(CH3)2), an isobutyl ligand (–CH2CH(CH3)2), and two
hydrogens, i.e., isopropylisobutylmethane. On the other hand, the balanced 3D-tree (10) rec-
ognized by C(x)(AC) is a binuclear 3D-tree having two isobutyl lingands, i.e., biisobutyl. Hence,
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the cancellation mechanism for the 3D-tree (10) stems from the fact that the isopropylisobutyl-
methane by G(x)(AC) and the biisobutyl by C(x)(AC) represent the same balanced 3D-tree (10).

When a tree or 3D-tree has v vertices and e edges, it satisfies the relationship v = e + 1 in
general. The discussion for Fig. 5 is based on the modified relationship v−2 = e−1, where the
subtrahend 2 in the left-hand side (v−2) corresponds to the twin-core of the 3D-tree (10), while
the subtrahend 1 in the right-hand side (e− 1) corresponds to the balance-edge of the 3D-tree
(10). As a result, the right-hand side (e−1) indicates the number of slant-edges in the balanced
3D-tree (10). Remember the correspondence between a twin-core from a viewpoint of vertices
and a balance-edge from a viewpoint of edges.

Consequently, the cancellation between uninuclear 3D-trees and binuclear 3D-trees leaves
no balanced 3D-tree, as shown in Fig. 5. This cancellation holds true for any balanced 3D-trees
so that the subtraction G(x)(AC) −C(x)(AC) does not contain balanced 3D-trees in general (cf. Fig.
4).

4.2.2 Partial Cancellation of Unbalanced 3D-Trees

The effect of an unbalanced tree on the enumeration result by G(x)(AC) is exemplified in Fig. 6,
where there is no balanced edge. Let us select an unbalanced 3D-tree (3) to be counted. In the
evaluation of 3 by G(x)(AC), however, each vertex (carbon atom) can be selected as the central
atom of the tetrahedral skeleton (8). When we select vertices (◦) other than the core (•) of
3, we obtain the formulas shown as 17–22. Once we select 3 as a 3D-tree to be counted, the
uninuclear 3D-trees (17–22) are regarded as contaminants to be excluded. Note that each of the
uninuclear 3D-trees (17–22) is not congruent to the 3D-tree (3) under the action of Td .
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Figure 6: Unbalanced 3D-tree. Cancellation between uninuclear 3D-trees and binuclear 3D-
trees leaves an unbalanced 3D-tree (3).

By examining each of the 3D-trees (17–22) as a binuclear 3D-tree, we take account of a
boldfaced edge incident to each uninucleus (◦), where the other terminal vertex of the boldfaced
edge accommodates a ligand containing the core (•) of 3. Such a ligand as containing a balance-
edge is called a superior ligand for an unbalanced 3D-tree. Because the presence of such a
superior ligand means that the edge at issue is not balanced, it is called a slant-edge. Once we
select 3 as a 3D-tree to be counted, each superior ligand can be regarded as being fixed. On the
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same line as pointed out in the discussions for Fig. 5, this condition means that the enumeration
as uninuclear 3D-trees is the same thing as the enumeration as binuclear 3D-trees. Hence, the
cancellation of the 3D-trees (17–22) takes place so that the subtraction G(x)(AC)−C(x)(AC) cancels
the 3D-trees (17–22) out, but leaves 3 as an unbalanced 3D-tree to be counted.

The discussion for Fig. 6 is based on the relationship v− 1 = e, which holds true for trees
or 3D-trees in general. The subtrahend 1 in the left-hand side (v− 1) corresponds to the core
of the 3D-tree (3). No subtrahend in the right-hand side (e) implies that the 3D-tree (3) has
no balance-edge. As a result, the right-hand side (e) indicates the number of slant-edges in the
unbalanced 3D-tree (3).

It should be noted that the retained unbalanced 3D-tree (3) is uniquely determined because
the core (•) can be selected to be identical with its centroid or with either one vertex of its
bicenter. In general, such a core (•) in an unbalanced 3D-tree can be selected to be identical
with a centroid or either one vertex of its bicentroid; or with a center or either one vertex of its
bicenter. The selection of such a core is assured by the dichotomy of centroidal and bicentroidal
3D-trees or by the dichotomy of central and bicentral 3D-trees.

4.2.3 Unbalanced 3D-Trees as Residual 3D-Trees

The discussions developed for balanced 3D-trees (Fig. 5) and unbalanced 3D-trees (Fig. 6) show
that the subtraction G(x)(AC) −C(x)(AC) leaves unbalanced 3D-trees to be counted. See Fig. 4.

Let U (AC)

k be the number of unbalanced 3D-trees of carbon content k, where the number of
achiral ones and the number of enantiomeric pairs of chiral ones are summed up. The number
U (AC)

k is the coefficient of the term xk appearing in a generating function:

U(x)(AC) =
∞

∑
k=1

U (AC)

k xk. (24)

This generating function is evaluated by the following relationship:

U(x)(AC) = G(x)(AC) −C(x)(AC). (25)

Because of eq. 20 for G(x)(AC) and eq. 23 for C(x)(AC), eq. 25 is converted into a functional
equation:

U(x)(AC) =
x

24
{

b(x)4 +3b(x2)2 +8b(x)b(x3)+6a(x)2c(x2)+6c(x4)
}

− 1
4
{(b(x)−1)2 +(b(x2)−1)+(a(x)−1)2 +(c(x2)−1)}. (26)

By using the coefficients of G(x)(AC) and C(x)(AC), we obtain the following relationship:

U (AC)

k = G(AC)

k −C(AC)

k , (27)

where the right-hand side is derived by using G(AC)

k (eq. 18) and C(AC)

k (eq. 21).

4.3 Enumeration of Balanced 3D-Trees
Let B(AC)

k be the number of balanced 3D-trees of carbon content k, where the number of achiral
ones and the number of enantiomeric pairs of chiral ones are summed up. The number B(AC)

k is
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the coefficient of the term xk appearing in a generating function:

B(x)(AC) =
∞

∑
k=1

B(AC)

k xk. (28)

Because a balanced 3D-tree is regarded as a symmetric uninuclear 3D-tree (promolecule), it has
a set of two achiral ligands of the same kind (A—A), a set of two chiral ligands of the same
kind (p—p/p—p), or a pair of enantiomeric ligands (p—p). In order to satisfy these modes of
chirality fittingness, the terms b2 and c2 are selected among the terms contained in the right-
hand side of eq. 22 so as to give the following CI-CF:

CI-CFS(D∞h;bd,cd) =
1
4
(b2 + c2), (29)

which counts achiral balanced 3D-trees (promolecules) and enantiomeric pairs of chiral bal-
anced 3D-trees, where each pair of enantiomers is counted just once.

Let us consider the derivation of balanced 3D-trees by the substitution of the alkyl ligands
(the planted promolecules) which have been counted by eqs. 8–10 (eqs. 11–13). This procedure
means the replacement of cd and bd by c(xd)− 1 and b(xd)− 1, where the first term 1 (x0) is
subtracted from each of eqs. 11–13, because a null vertex (a hydrogen atom) is not permitted.
Thereby, eq. 29 is converted into the following functional equation:

B(x)(AC) =
1
2
{(b(x2)−1)+(c(x2)−1)}. (30)

By combining eq. 30 with eq. 23, net contaminants are evaluated by the following functional
equation:

A(x)(AC) = C(x)(AC) −B(x)(AC)

=
1
4
{(b(x)−1)2 − (b(x2)−1)+(a(x)−1)2 − (c(x2)−1)}. (31)

4.4 Enumeration of 3D-Trees
Let N (AC)

k be the total number of 3D-trees of carbon content k, where the number of achiral ones
and the number of enantiomeric pairs of chiral ones are summed up. The number N (AC)

k is the
coefficient of the term xk appearing in a generating function:

N(x)(AC) =
∞

∑
k=1

N (AC)

k xk. (32)

The generating function can be evaluated by summing up U(x)(AC) and B(x)(AC) or by subtracting
A(x)(AC) from G(x)(AC). By summing up eq. 26 and eq. 30, we obtain the following functional
equation:

N(x)(AC) = G(x)(AC) −A(x)(AC)

= U(x)(AC) +B(x)(AC)

=
x

24
{

b(x)4 +3b(x2)2 +8b(x)b(x3)+6a(x)2c(x2)+6c(x4)
}

− 1
4
{(b(x)−1)2 − (b(x2)−1)+(a(x)−1)2 − (c(x2)−1)}, (33)

which gives the total number of 3D-trees of carbon content k as the coefficient of the term xk.
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4.5 Implementation of a Program for Counting 3D-Trees
The functional equations U(x)(AC) (eq. 26), B(x)(AC) (eq. 30), and N(x)(AC) (eq. 33) are programmed
by means of the Maple programming language to give the following code, which is stored in a
file named “NUB-AC1-100.mpl” tentatively.

A Maple program for counting alkanes, “NUB-AC1-100.mpl”:

"Functional Equations for Alkyl Ligands";
ax := 1 + x*a1*c2;
cx := 1+ (1/3)*xˆ2*c2ˆ3 + (2/3)*xˆ2*c6;
bx := 1 + (1/3)*x*b1ˆ3 + (2/3)*x*b3;

"Initial Values";
a1 := 1; a2 := 1;
b1 := 1; b2 := 1; b3 := 1;
c2 := 1; c4 := 1; c6 := 1;

"Recursive Calculation";
for ccntt from 1 to 100 by 1 do
ccntt:
Cbx:= coeff(bx,xˆccntt):
Cax:= coeff(ax,xˆccntt):
Ccx:= coeff(cx,xˆ(ccntt*2)):
a1 := a1 + Cax*xˆccntt:
a2 := a2 + Cax*xˆ(ccntt*2):
b1 := b1 + Cbx*xˆccntt:
b2 := b2 + Cbx*xˆ(ccntt*2):
b3 := b3 +Cbx*xˆ(ccntt*3):
c2 := c2 + Ccx*xˆ(ccntt*2):
c4 := c4 + Ccx*xˆ(ccntt*4):
c6 := c6 + Ccx*xˆ(ccntt*6):
end do:

"Achiral Alkanes + Enantiomeric Pairs";
UxAC := (x/24)*(b1ˆ4 + 3*b2ˆ2 + 8*b1*b3 + 6*a1ˆ2*c2 + 6*c4)
- (1/4)*((b1-1)ˆ2 + (b2-1) + (a1-1)ˆ2 + (c2-1)):
BxAC := (1/2)*((b2-1) + (c2-1)):
NxAC := (x/24)*(b1ˆ4 + 3*b2ˆ2 + 8*b1*b3 + 6*a1ˆ2*c2 + 6*c4)
- (1/4)*((b1-1)ˆ2 - (b2-1) + (a1-1)ˆ2 - (c2-1)):

"Print-Out of Results";
for ccntt from 1 to 100 by 1 do
printf("%d & %d & %d & %d \\\\ \n",
ccntt,
coeff(UxAC,xˆccntt),
coeff(BxAC,xˆccntt),
coeff(NxAC,xˆccntt));
end do;

In this code, the abbreviated symbols for functional equations are used as follows: a1 for
a(x), a2 for a(x2), b1 for b(x), and so on. The first paragraph (“Functional Equations for
Alkyl Ligands”) declares three functional equations (eqs. 11–13). In the 2nd paragraph (“Initial
Values”), the initial values for the initial (trivial) planted 3D-tree are set to be α0 = 1, γ0 = 1,
and β0 = 1 by encoding a1 := 1; a2 := 1; and so on. The 3rd paragraph (“Recursive
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Calculation”) involves a do loop for calculating αk, γk, and βk recursively (1 ≤ k ≤ 100) by
using a Maple command coeff. After escaping from the do loop, the 4th paragraph (“Achiral
Alkanes + Enantiomeric Pairs”) declares the calculation of UxAC for U(x)(AC) (eq. 26), BxAC
for B(x)(AC) (eq. 30), and NxAC for N(x)(AC) (eq. 33). The 5th paragraph (the final do loop named
“Print-Out of Results”) shows the print-out step of the calculation results.

The code is executed by inputting the following command on the Maple inputting window:

read "NUB-AC1-100.mpl";

Thereby, we obtain the coefficients U (AC)

k for eq. 24, B(AC)

k for eq. 28, and N (AC)

k for eq. 32, which
are collected in Table 1.

5 Achiral and Chiral 3D-Trees

5.1 Itemization into Achiral and Chiral 3D-Trees
The methodology described for evaluating the total number of 3D-Trees (Fig. 4) is modified
in order to itemize 3D-trees into achiral and chiral ones. The functional equation Ĝ(x)(A) for
counting achiral uninuclear 3D-trees the functional equation Ĝ(x)(C) for counting chiral uninu-
clear 3D-trees exhibit irregular behaviors, which should be corrected to realize the achiral/chiral
itemization, as shown in Fig. 7. The dichotomy between achiral balanced 3D-trees and achiral
unbalanced ones as well as the dichotomy between chiral balanced 3D-trees and chiral unbal-
anced ones are useful guides to the itemized calculations.

5.2 Achiral 3D-Trees
5.2.1 Achiral Unbalanced 3D-Trees

To evaluate the gross number of achiral uninuclear 3D-trees, the first proposition of Theorem 4
for the enumeration of achiral ligands [20] is used to derive the following CI-CFA:

CI-CFA(Td;ad,bd,cd) = 2CI-CF(Td;ad,bd,cd)−CI-CF(T;bd)

=
1
2
(a2

1c2 + c4), (34)

which counts achiral promolecules only. By substituting a(xd), c(xd), and b(xd) for ad , cd , and
bd in eq. 34, we obtain the following functional equation:

G(x)(A) =
x
2
{

a(x)2c(x2)+ c(x4)
}
. (35)

However, eq. 34 and the corresponding functional equation (eq. 35) underestimate meso-
cases, which should be corrected as follows:

1
2
(c2 −a2). (36)

Note that the sphericity index c2 evaluates a set of achiral ligands of the same kind along with
a pair of enantiomeric ligands (i.e., a pseudoasymmetric case), while the sphericity index a2
alternatively evaluates the set of achiral ligands of the same kind. Hence, the subtraction 1

2(c2−
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Table 1: Numbers of 3D-Trees or Alkanes as Stereoisomers

k U (AC)
k (Unbalanced 3D-trees) B(AC)

k (Balanced 3D-trees) N(AC)
k (Total 3D-trees)

1 1 0 1
2 0 1 1
3 1 0 1
4 1 1 2
5 3 0 3
6 3 2 5
7 9 0 9
8 14 5 19
9 38 0 38

10 77 11 88
11 203 0 203
12 481 28 509
13 1299 0 1299
14 3385 74 3459
15 9347 0 9347
16 25691 199 25890
17 72505 0 72505
18 205326 551 205877
19 589612 0 589612
20 1702022 1553 1703575
21 4954686 0 4954686
22 14497672 4436 14502108
23 42671509 0 42671509
24 126167658 12832 126180490
25 374749447 0 374749447
26 1117468456 37496 1117505952
27 3344714436 0 3344714436
28 10045038039 110500 10045148539
29 30264120901 0 30264120901
30 91449349786 328092 91449677878
31 277096805630 0 277096805630
32 841782853026 980491 841783833517
33 2563418291362 0 2563418291362
34 7823940717019 2946889 7823943663908
35 23931052067297 0 23931052067297
36 73345824279219 8901891 73345833181110
37 225226025743122 0 225226025743122
38 692862443612081 27012286 692862470624367
39 2135109239262173 0 2135109239262173
40 6590223533710379 82300275 6590223616010654
41 20372876580255143 0 20372876580255143
42 63073132299024179 251670563 63073132550694742
43 195544793394384827 0 195544793394384827
44 607057683359184557 772160922 607057684131345479
45 1886989279103128211 0 1886989279103128211
46 5872733739773663554 2376294040 5872733742149957594
47 18298681742426380229 0 18298681742426380229
48 57080340536901942743 7333282754 57080340544235225497
49 178246302614039769705 0 178246302614039769705
50 557189473879833624598 22688455980 557189473902522080578
51 1743475977870305954708 0 1743475977870305954708
52 5460633705720107834856 70361242924 5460633705790469077780
53 17118606500538110493165 0 17118606500538110493165
54 53712728231114765739820 218679264772 53712728231333445004592
55 168676827177458246245600 0 168676827177458246245600
56 530139017193401579206086 681018679604 530139017194082597885690
57 1667507044106396700614662 0 1667507044106396700614662
58 5249007976438914262792265 2124842137550 5249007976441039104929815
59 16535111535321800418856805 0 16535111535321800418856805
60 52125067168086138719692353 6641338630714 52125067168092780058323067
61 164431691004690928193898010 0 164431691004690928193898010
62 519055868548027791288810896 20792003301836 519055868548048583292112732
63 1639544206288762558253253718 0 1639544206288762558253253718
64 5182076144231327740207559121 65193446172901 5182076144231392933653732022
65 16388819934893627771459167067 0 16388819934893627771459167067
66 51861705597581423492821877183 204709353135917 51861705597581628202175013100
67 164207682036849477130738064324 0 164207682036849477130738064324
68 520212032768970737917688722113 643665829838389 520212032768971381583518560502
69 1648923729893987703415359750119 0 1648923729893987703415359750119
70 5229345060893541830817748472471 2026461371823166 5229345060893543857279120295637
71 16592589875613236090913193392688 0 16592589875613236090913193392688
72 52673849989526617417137349471653 6387637263287353 52673849989526623804774612759006
73 167295424464204241785279087528744 0 167295424464204241785279087528744
74 531588444680524864888061177525111 20157546705808565 531588444680524885045607883333676
75 1689911835064564750230170718349855 0 1689911835064564750230170718349855
76 5374578409356516213138182375831610 63680191033811326 5374578409356516276818373409642936
77 17100609751074144217174560807768366 0 17100609751074144217174560807768366
78 54432817814305204592198172954475080 201379876145388644 54432817814305204793578049099863724
79 173335468778163767515568474781956550 0 173335468778163767515568474781956550
80 552188059695078419174290504438282587 637456295966779429 552188059695078419811746800405062016
81 1759767313496477955950136185436237113 0 1759767313496477955950136185436237113
82 5610324950610530124139712724123417796 2019698989374464699 5610324950610530126159411713497882495
83 17892924987803326824799846194126147310 0 17892924987803326824799846194126147310
84 57086232887213560734203867368460058119 6404799147037290651 57086232887213560740608666515497348770
85 182194157793655704794237473891139390912 0 182194157793655704794237473891139390912
86 581683783004984677184425843366928845727 20327740716521351562 581683783004984677204753584083450197289
87 1857742280338673467557442653721200301589 0 1857742280338673467557442653721200301589
88 5935080927091835897387031844977798524048 64568510301289106574 5935080927091835897451600355279087630622
89 18967377099179003868970637596678249069674 0 18967377099179003868970637596678249069674
90 60635122169340932631531262843012991399522 205250829465372138276 60635122169340932631736513672478363537798
91 193898555422930447001151675263478441556235 0 193898555422930447001151675263478441556235
92 620233644123045351108744394299159832185642 652930625323502669516 620233644123045351109397324924483334855158
93 1984557489015003230954102094778322440355924 0 1984557489015003230954102094778322440355924
94 6351801838823542109988584852819744822621989 2078516705781154747150 6351801838823542109990663369525525977369139
95 20335387509472990198674865937576370042014764 0 20335387509472990198674865937576370042014764
96 65121990336372237272791016934805154220645783 6621122347418605999236 65121990336372237272797638057152572826645019
97 208602785663318655583000176804691552968239008 0 208602785663318655583000176804691552968239008
98 668386035575399743228842988366476108172568908 21105194400328603264540 668386035575399743228864093560876436775833448
99 2142136450298921147961693542530974370563522319 0 2142136450298921147961693542530974370563522319

100 6867159545916447686442156397421880750323335689 67315567136179501083166 6867159545916447686442223712989016929824418855
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Achiral uninuclear 3D-trees (Ĝ(x)(A))

Achiral
unbalanced 3D-trees

(U(x)(A))

Achiral balanced 3D-trees
(B(x)(A))

Net achiral contaminants
(Â(x)(A))

Achiral binuclear 3D-trees
(Ĉ(x)(A))

Chiral uninuclear 3D-trees (Ĝ(x)(C))

Chiral
unbalanced 3D-trees

(U(x)(C))

Chiral balanced 3D-trees
(B(x)(C))

Net chiral contaminants
(Â(x)(C))

Chiral binuclear 3D-trees
(Ĉ(x)(C))

Figure 7: The dichotomy of balanced/unbalanced 3D-trees and for the dual recognition as un-
inuclear 3D-trees and binuclear 3D-trees. The total number of achiral or chiral trees is obtained
by summing up the number of unbalanced 3D-trees and the the number of 3D-balanced trees,
i.e., N(x)(A) = U(x)(A) +B(x)(A) or N(x)(C) = U(x)(C) +B(x)(C).

a2) leaves each pair of enantiomeric ligands, where the average by 1/2 is necessary because
such a pair of enantiomeric ligands is doubly counted in terms of the enantiospheric character
of c2. This underestimation will be exemplified in the discussion of Fig. 8 later.

Let Ĝ(A)

k be the gross number of achiral uninuclear 3D-trees of carbon content k, which
appears as each coefficient of the following generating function:

Ĝ(x)(A) =
∞

∑
k=0

Ĝ(A)

k xk. (37)

By substituting a(xd), c(xd), and b(xd) for ad , cd , and bd in eq. 34 as well as by substituting
a(xd)−1 and c(xd)−1 for ad and cd in eq. 36, we obtain the following functional equation:

Ĝ(x)(A) =
x
2
{

a(x)2c(x2)+ c(x4)
}

+
1
2
{
(c(x2)−1)− (a(x2)−1)

}
, (38)

in which the underestimation due to meso-cases has been corrected by adding the term shown
in the second pair of braces. Note that, because eq. 34 for CI-CFA(Td;ad,bd,cd) ignores the
nucleus of the parent promolecule tentatively (cf. 8), the term in the first pair of braces of the
functional equation (eq. 38) is obtained by multiplying by x.

To evaluate achiral binuclear 3D-trees as contaminants, the first proposition of Theorem 4
for the enumeration of achiral ligands [20] is applied to this case so as to derive the following
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CI-CFA:

CI-CFA(D∞h;ad,bd,cd) = 2CI-CF(D∞h;ad,bd,cd)−CI-CF(D∞;bd)

=
1
2

(
a2

1 + c2
)
, (39)

which counts achiral uninuclear 3D-trees only.
Let Ĉ(A)

k be the number of achiral binuclear 3D-trees of carbon content k:

Ĉ(x)(A) =
∞

∑
k=1

Ĉ(A)

k xk (40)

By substituting a(xd)− 1 and c(xd)− 1 for ad and cd in eq. 39, we obtain the following func-
tional equation:

Ĉ(x)(A) =
1
2

{
(a(x)−1)2 +(c(x2)−1)

}
. (41)

Let U (A)

k be the number of achiral unbalanced 3D-trees of carbon content k, which appears
as each coefficient of the following subtraction:

U(x)(A) =
∞

∑
k=0

U (A)

k xk. (42)

According to the relationship shown in Fig. 7, eq. 42 is evaluated by the following functional
equation:

U(x)(A) = Ĝ(x)(A) −Ĉ(x)(A). (43)

By introducing eq. 38 and eq. 41 into eq. 43, we obtain the following functional equation:

U(x)(A) =
x
2
{

a(x)2c(x2)+ c(x4)
}

+
1
2
{
(c(x2)−1)− (a(x2)−1)

}

− 1
2

{
(a(x)−1)2 +(c(x2)−1)

}

=
x
2
{

a(x)2c(x2)+ c(x4)
}
− 1

2
{
(a(x)−1)2 +(a(x2)−1)

}
. (44)

The underestimation of meso-cases by eq. 34 or by the corresponding functional equa-
tion G(x)(A) (eq. 35) is exemplified by Fig. 8, where meso-3,4-dimethylhexane is depicted in
terms of the dual recognition as uninuclear and binuclear 3D-trees. Note that the meso-3,4-
dimethylhexane is an achiral balanced 3D-tree.

Although meso-3,4-dimethylhexane is achiral, the formulas (24–29) are recognized to be
chiral uninuclear 3D-trees so that they do not contribute to G(x)(A) (eq. 35) nor to Ĝ(x)(A) (eq.
38). At the same time, the formulas (24–29) are recognized to be chiral binuclear 3D-trees so
that they do not contribute to Ĉ(x)(A) (eq. 40). As the result, the cancellation mechanism shown
in Fig. 7 works well in eq. 43, where even the incorrect determination of the achirality/chirality
for 24–29 causes no erroneous effects.

In contrast, the formula (23) causes an irregular effect. The formula (23) is irregularly
determined to be chiral if it is recognized as a uninuclear 3D-tree. This means that it does
not contribute to the evaluation of achiral stereoisomers by G(x)(A) (eq. 35) so as to cause the
underestimation of G(x)(A) (eq. 35) by one unit. Hence, the functional equation G(x)(A) should
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Figure 8: Balanced 3D-tree of meso-type. Cancellation between uninuclear 3D-trees and bin-
uclear 3D-trees causes an irregular effect because the achirality/chirality of 23 is recognized
irregularly.

be corrected to cover the underestimation by 1 due to each of such meso-cases as 23, so that the
correction of G(x)(A) (eq. 35) results in Ĝ(x)(A) (eq. 38).

If it is recognized as a binuclear tree, on the other hand, the formula (23) is determined to
be achiral (i.e., as a pseudoasymmetric case). Hence, it contributes by 1 to Ĉ(x)(A) (eq. 40). It
follows that the functional equation U(x)(A) (eq. 43) gives correct values of achiral unbalanced
3D-trees only when Ĝ(x)(A) is corrected as found in eq. 38.

5.2.2 Achiral Balanced 3D-Trees

Achiral balanced 3D-trees are symmetric binuclear 3D-trees represented by X—X (D∞h) or p—
p (C∞h), which are characterized by 2-cycles (i.e., a2 and c2). Although we here omit the details
of the derivation, we obtain the following CI-CF:

1
2

(a2 + c2) , (45)

where the top fraction (1/2) represents the average of the results due to the two terms at issue.
Let B(A)

k be the number of achiral balanced 3D-trees of carbon content k, which appears as
the coefficient of xk in the following generating function:

B(x)(A) =
∞

∑
k=1

B(A)

k xk. (46)

By substituting a(xd)−1 and c(xd)−1 for ad and cd in the right-hand side of eq. 45, we obtain
the corresponding functional equation:

B(x)(A) =
1
2

{
(a(x2)−1)+(c(x2)−1)

}
. (47)

- 283 -



By combining eq. 41 with eq. 47, net contaminants are evaluated by the following functional
equation:

Â(x)(A) = Ĉ(x)(A) −B(x)(A)

=
1
4
{(a(x)−1)2 − (a(x2)−1)}. (48)

See Fig. 7 again to grasp this relationship.

5.2.3 Enumeration of Achiral 3D-Trees

Let N (A)

k be the total number of achiral 3D-trees of carbon content k, where the number of achiral
3D-trees and the number of enantiomeric pairs of chiral ones are summed up. The number N (A)

k
is the coefficient of the term xk appearing in a generating function:

N(x)(A) =
∞

∑
k=1

N (A)

k xk. (49)

The generating function can be evaluated by summing up U(x)(A) and B(x)(A) or by subtracting
Â(x)(A) from Ĝ(x)(A). By summing up eq. 44 and eq. 47 or by subtracting eq. 48 from eq. 38, we
obtain the following functional equation:

N(x)(A) = Ĝ(x)(A) − Â(x)(A)

= U(x)(A) +B(x)(A)

=
x
2
{

a(x)2c(x2)+ c(x4)
}
− 1

2
{
(a(x)−1)2 − (c(x2)−1)

}
. (50)

which gives the total number of achiral 3D-trees of carbon content k as the coefficient of the
term xk.

5.2.4 Implementation of a Program for Counting Achiral 3D-Trees

The functional equations U(x)(A) (eq. 44), B(x)(A) (eq. 47), and N(x)(A) (eq. 50) are programmed
by means of the Maple programming language to give the following code, which is stored in a
file named “NUB-A1-100.mpl” tentatively.

A Maple program for counting achiral alkanes, “NUB-A1-100.mpl”:

"Functional Equaitons for Alkyl Ligands";
(omitted)

"Initial Values";
(omitted)

"Recursive Calculation";
(omitted)

"Achiral Alkanes";
UxA := (x/2)*(a1ˆ2*c2 + c4) - (1/2)*((a1-1)ˆ2 + (a2-1)):
BxA := (1/2)*((a2-1) + (c2-1)):
NxA := (x/2)*(a1ˆ2*c2 + c4) - (1/2)*((a1-1)ˆ2 -(c2-1)):

- 284 -



Table 2: Numbers of Achiral 3D-Trees or Alkanes as Stereoisomers

k U (A)
k (Achiral unbalanced 3D-trees) B(A)

k (Achiral balanced 3D-trees) N(A)
k (Total Achiral 3D-trees)

1 1 0 1
2 0 1 1
3 1 0 1
4 1 1 2
5 3 0 3
6 3 2 5
7 7 0 7
8 10 4 14
9 21 0 21

10 32 8 40
11 61 0 61
12 100 18 118
13 186 0 186
14 311 44 355
15 567 0 567
16 970 111 1081
17 1755 0 1755
18 3029 296 3325
19 5454 0 5454
20 9495 811 10306
21 17070 0 17070
22 29857 2279 32136
23 53628 0 53628
24 94184 6520 100704
25 169175 0 169175
26 297941 18933 316874
27 535267 0 535267
28 944956 55568 1000524
29 1698322 0 1698322
30 3003887 164613 3168500
31 5400908 0 5400908
32 9568596 491227 10059823
33 17211368 0 17211368
34 30535539 1475197 32010736
35 54947147 0 54947147
36 97605577 4453995 102059572
37 175702378 0 175702378
38 312451188 13511597 325962785
39 562645937 0 562645937
40 1001535506 41159667 1042695173
41 1804088396 0 1804088396
42 3214198000 125852346 3340050346
43 5791497722 0 5791497722
44 10326520690 386110379 10712631069
45 18611821161 0 18611821161
46 33210027848 1188200648 34398228496
47 59870273288 0 59870273288
48 106901100844 3666735665 110567836509
49 192762694240 0 192762694240
50 344398254827 11344397151 355742651978
51 621145058010 0 621145058010
52 1110394575250 35180919588 1145575494838
53 2003060193783 0 2003060193783
54 3582665399751 109340167653 3692005567404
55 6464001746606 0 6464001746606
56 11567121483420 340510285076 11907631768496
57 20873421744449 0 20873421744449
58 37369250525887 1062422767060 38431673292947
59 67445191538640 0 67445191538640
60 120796806131358 3320672319811 124117478451169
61 218049903481679 0 218049903481679
62 390689886666232 10396007051826 401085893718058
63 705330165952872 0 705330165952872
64 1264240667134616 32596732656028 1296837399790644
65 2282686396696017 0 2282686396696017
66 4092934323957245 102354693779227 4195289017736472
67 7391016289967130 0 7391016289967130
68 13256686348542663 321832945456486 13578519293999149
69 23941657967808209 0 23941657967808209
70 42955539449512661 1013230740858730 43968770190371391
71 77586381466034947 0 77586381466034947
72 139244197528118594 3193818729252303 142438016257370897
73 251528935349306793 0 251528935349306793
74 451543239869815911 10078773528606385 461622013398422296
75 815741140338068227 0 815741140338068227
76 1464796231938726842 31840095829362305 1496636327768089147
77 2646489896299591485 0 2646489896299591485
78 4753381883431698309 100689938635340259 4854071822067038568
79 8588824555686539622 0 8588824555686539622
80 15430088488653345592 318728148984934750 15748816637638280342
81 27882748457230290862 0 27882748457230290862
82 50103432788380077848 1009849496491319969 51113282284871397817
83 90545956172141260398 0 90545956172141260398
84 162739708060789718347 3202399576732860390 165942107637522578737
85 294122275423916054352 0 294122275423916054352
86 528738145185319822974 10163870364052173503 538902015549371996477
87 955666449267540395221 0 955666449267540395221
88 1718317030140838398434 32284255160971103895 1750601285301809502329
89 3105981799108470323147 0 3105981799108470323147
90 5585683651585644442875 102625414751297888081 5688309066336942330956
91 10097190706324159336800 0 10097190706324159336800
92 18161635403115174163032 326465312694961416234 18488100715810135579266
93 32832697580700874763572 0 32832697580700874763572
94 59065602840222573478256 1039258352950447646863 60104861193173021125119
95 106785552739916704811839 0 106785552739916704811839
96 192137075503251426124774 3310561173816204194750 195447636677067630319524
97 347387515383940750498193 0 347387515383940750498193
98 625144758967206852442222 10552597200357064320094 635697356167563916762316
99 1130336590391716286395368 0 1130336590391716286395368

100 2034413226413485412716350 33657783568434148965571 2068071009981919561681921
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for ccntt from 1 to 100 by 1 do
printf("%d & %d & %d & %d \\\\ \n",
ccntt,
coeff(UxA,xˆccntt),
coeff(BxA,xˆccntt),
coeff(NxA,xˆccntt));
end do;

In this code, the three paragraphs for “Functional Equations for Alkyl Ligands”, “Initial
Values”, and “Recursive Calculation” are omitted because they are the same as those the code
described above (“NUB-AC1-100.mpl”). The 4th paragraph (“Achiral Alkanes”) declares the
calculation of UxA for U(x)(A) (eq. 44), BxA for B(x)(A) (eq. 47), and NxA for N(x)(A) (eq. 50).
The 5th paragraph (the final do loop named “Print-Out of Results”) shows the print-out of the
calculation results.

The code is executed by inputting from the Maple inputting window. Thereby, we obtain
the coefficients U (A)

k for eq. 42, B(A)

k for eq. 46, and N (A)

k for eq. 49, which are collected in Table 2
up to carbon content 100.

5.3 Chiral 3D-Trees
5.3.1 Chiral Unbalanced 3D-Trees

To evaluate the gross number of chiral 3D-trees, the second proposition of Theorem 4 for the
enumeration of chiral ligands [20] is used to obtain the following CI-CFC:

CI-CFC(Td;ad,bd,cd)
= CI-CF(T,bd)−CI-CF(Td,ad,bd,cd)

=
1

24
(b4

1 +3b2
2 +8b1b3 −6a2

1c2 −6c4), (51)

which counts chiral promolecules only, where each pair of enantiomers is counted just once.
By substituting a(xd), c(xd), and b(xd) for ad , cd , and bd in eq. 51, we can obtain the following
functional equation:

G(x)(C) =
x

24
{

b(x)4 +3b(x2)2 +8b(x)b(x3)−6a(x)2c(x2)−6c(x4)
}
. (52)

In contrast to eqs. 34 and 35, eq. 51 and the corresponding functional equation G(x)(C)

(eq. 52) overestimate meso-cases, which should be reversely corrected by means of eq. 36.
Remember 23 (Fig. 8), which reversely causes the overestimation of G(x)(C).

Let Ĝ(C)

k be the gross number of chiral uninuclear 3D-trees, where each pair of two enan-
tiomers is counted just once. The corresponding generating function for enumerating them is
represented as follows:

Ĝ(x)(C) =
n

∑
k=0

Ĝ(C)

k xk. (53)

By substituting a(xd)−1, c(xd)−1, and b(xd)−1 for ad , cd , and bd in 36 and by substituting
a(xd), c(xd), and b(xd) for ad , cd , and bd in eq. 51, we can obtain the following functional
equation:

Ĝ(x)(C) =
x

24
{

b(x)4 +3b(x2)2 +8b(x)b(x3)−6a(x)2c(x2)−6c(x4)
}

− 1
2
{(c(x2)−1)− (a(x2)−1)}. (54)
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To estimate chiral binuclear 3D-trees, the second proposition of Theorem 4 for the enumer-
ation of chiral ligands [20] can be applied to obtain the following CI-CFC:

CI-CFC(D∞h;ad,bd,cd) = CI-CF(D∞;bd)−CI-CF(D∞h;ad,bd,cd)

=
1
4

(
b2

1 +b2 −a2
1 − c2

)
, (55)

which counts chiral promolecules only.
Let Ĉ(C)

k be the number of binuclear 3D-trees of carbon content k, which are enantiomeric
pairs of chiral ones:

Ĉ(x)(C) =
∞

∑
k=1

Ĉ(C)

k xk. (56)

By replacing ad , cd , and bd by a(xd)− 1, c(xd)− 1, and b(xd)− 1 respectively, eq. 55 is con-
verted into the corresponding functional equation as follows:

Ĉ(x)(C) =
1
4

{
(b(x)−1)2 +(b(x2)−1)− (a(x)−1)2 − (c(x2)−1)

}
. (57)

Let U (C)

k be the number of chiral unbalanced 3D-trees, where each pair of two enantiomers is
counted just once. The corresponding generating function for enumerating them is represented
as follows:

U(x)(C) =
n

∑
k=0

U (C)

k xk. (58)

According to the methodology shown in Fig. 7, the subtraction of eq. 57 from eq. 54 gives
the following functional equation:

U(x)(C) = Ĝ(x)(C) −Ĉ(x)(C)

=
x

24
(
b(x)4 +3b(x2)2 +8b(x)b(x3)−6a(x)2c(x2)−6c(x4)

)

− 1
2
{(c(x2)−1)− (a(x2)−1)}

− 1
4

{
(b(x)−1)2 +(b(x2)−1)− (a(x)−1)2 − (c(x2)−1)

}
.

=
x

24
(
b(x)4 +3b(x2)2 +8b(x)b(x3)−6a(x)2c(x2)−6c(x4)

)

− 1
4

{
(b(x)−1)2 +(b(x2)−1)− (a(x)−1)2 +(c(x2)−1)−2(a(x2)−1)

}
. (59)

5.3.2 Chiral Balanced 3D-Trees

Chiral balanced 3D-trees are asymmetric binuclear trees represented by p—p/p—p (D∞), which
are characterized by 2-cycles (i.e., b2 minus a2). Although we here omit the details of the
derivation, we obtain the following CI-CF:

1
2

(b2 −a2) , (60)

where the top fraction (1/2) represents the average of the results due to the two terms at issue.
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Let B(C)

k be the number of achiral balanced 3D-trees of carbon content k, which appears as
the coefficient of xk in the following generating function:

B(x)(C) =
∞

∑
k=1

B(C)

k xk. (61)

By substituting a(xd)−1 and b(xd)−1 for ad and bd in the right-hand side of eq. 61, we obtain
the corresponding functional equation:

B(x)(C) =
1
2

{
(b(x2)−1)− (a(x2)−1)

}
. (62)

By combining eq. 57 with eq. 62, net contaminants are evaluated by the following functional
equation:

Â(x)(C) = Ĉ(x)(C) −B(x)(C)

=
1
4

{
(b(x)−1)2 − (b(x2)−1)− (a(x)−1)2 − (c(x2)−1)+2(a(x2)−1)

}
. (63)

In order to grasp this relationship, refer to the bottom part of Fig. 7.

5.3.3 Enumeration of Chiral 3D-Trees

Let N (C)

k be the total number of chiral 3D-trees of carbon content k, where each enantiomeric
pair of chiral 3D-trees is counted just once. The number N (C)

k is the coefficient of the term xk

appearing in a generating function:

N(x)(C) =
∞

∑
k=1

N (C)

k xk. (64)

The generating function is evaluated by summing up U(x)(C) (eq. 59) and B(x)(C) (eq. 62) or by
subtracting Â(x)(C) (eq. 63) from Ĝ(x)(C) (eq. 54). Thereby, we obtain the following functional
equation:

N(x)(C) = Ĝ(x)(C) − Â(x)(C)

= U(x)(C) +B(x)(C)

=
x

24
(
b(x)4 +3b(x2)2 +8b(x)b(x3)−6a(x)2c(x2)−6c(x4)

)

− 1
4

{
(b(x)−1)2 − (b(x2)−1)− (a(x)−1)2 +(c(x2)−1)

}
. (65)

which gives the total number of chiral 3D-trees of carbon content k as the coefficient of the term
xk.

5.3.4 Implementation of a Program for Counting Chiral 3D-Trees

The functional equations U(x)(C) (eq. 59), B(x)(C) (eq. 62), and N(x)(C) (eq. 65) are programmed
by means of the Maple programming language. The resulting code is stored in a file named
“NUB-C1-100.mpl” tentatively as follows.

A Maple program for counting chiral alkanes, “NUB-C1-100.mpl”:
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Table 3: Numbers of Chiral 3D-Trees or Alkanes as Stereoisomers

k U (C)
k (Chiral unbalanced 3D-trees) B(C)

k (Chiral balanced 3D-trees) N(C)
k (Total Chiral 3D-trees)

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 2 0 2
8 4 1 5
9 17 0 17

10 45 3 48
11 142 0 142
12 381 10 391
13 1113 0 1113
14 3074 30 3104
15 8780 0 8780
16 24721 88 24809
17 70750 0 70750
18 202297 255 202552
19 584158 0 584158
20 1692527 742 1693269
21 4937616 0 4937616
22 14467815 2157 14469972
23 42617881 0 42617881
24 126073474 6312 126079786
25 374580272 0 374580272
26 1117170515 18563 1117189078
27 3344179169 0 3344179169
28 10044093083 54932 10044148015
29 30262422579 0 30262422579
30 91446345899 163479 91446509378
31 277091404722 0 277091404722
32 841773284430 489264 841773773694
33 2563401079994 0 2563401079994
34 7823910181480 1471692 7823911653172
35 23930997120150 0 23930997120150
36 73345726673642 4447896 73345731121538
37 225225850040744 0 225225850040744
38 692862131160893 13500689 692862144661582
39 2135108676616236 0 2135108676616236
40 6590222532174873 41140608 6590222573315481
41 20372874776166747 0 20372874776166747
42 63073129084826179 125818217 63073129210644396
43 195544787602887105 0 195544787602887105
44 607057673032663867 386050543 607057673418714410
45 1886989260491307050 0 1886989260491307050
46 5872733706563635706 1188093392 5872733707751729098
47 18298681682556106941 0 18298681682556106941
48 57080340430000841899 3666547089 57080340433667388988
49 178246302421277075465 0 178246302421277075465
50 557189473535435369771 11344058829 557189473546779428600
51 1743475977249160896698 0 1743475977249160896698
52 5460633704609713259606 35180323336 5460633704644893582942
53 17118606498535050299382 0 17118606498535050299382
54 53712728227532100340069 109339097119 53712728227641439437188
55 168676827170994244498994 0 168676827170994244498994
56 530139017181834457722666 340508394528 530139017182174966117194
57 1667507044085523278870213 0 1667507044085523278870213
58 5249007976401545012266378 1062419370490 5249007976402607431636868
59 16535111535254355227318165 0 16535111535254355227318165
60 52125067167965341913560995 3320666310903 52125067167968662579871898
61 164431691004472878290416331 0 164431691004472878290416331
62 519055868547637101402144664 10395996250010 519055868547647497398394674
63 1639544206288057228087300846 0 1639544206288057228087300846
64 5182076144230063499540424505 32596713516873 5182076144230096096253941378
65 16388819934891345085062471050 0 16388819934891345085062471050
66 51861705597577330558497919938 102354659356690 51861705597577432913157276628
67 164207682036842086114448097194 0 164207682036842086114448097194
68 520212032768957481231340179450 321832884381903 520212032768957803064224561353
69 1648923729893963761757391941910 0 1648923729893963761757391941910
70 5229345060893498875278298959810 1013230630964436 5229345060893499888508929924246
71 16592589875613158504531727357741 0 16592589875613158504531727357741
72 52673849989526478172939821353059 3193818534035050 52673849989526481366758355388109
73 167295424464203990256343738221951 0 167295424464203990256343738221951
74 531588444680524413344821307709200 10078773177202180 531588444680524423423594484911380
75 1689911835064563934489030380281628 0 1689911835064563934489030380281628
76 5374578409356514748341950437104768 31840095204449021 5374578409356514780182045641553789
77 17100609751074141570684664508176881 0 17100609751074141570684664508176881
78 54432817814305199838816289522776771 100689937510048385 54432817814305199939506227032825156
79 173335468778163758926743919095416928 0 173335468778163758926743919095416928
80 552188059695078403744202015784936995 318728146981844679 552188059695078404062930162766781674
81 1759767313496477928067387728205946251 0 1759767313496477928067387728205946251
82 5610324950610530074036279935743339948 1009849492883144730 5610324950610530075046129428626484678
83 17892924987803326734253890021984886912 0 17892924987803326734253890021984886912
84 57086232887213560571464159307670339772 3202399570304430261 57086232887213560574666558877974770033
85 182194157793655704500115198467223336560 0 182194157793655704500115198467223336560
86 581683783004984676655687698181609022753 10163870352469178059 581683783004984676665851568534078200812
87 1857742280338673466601776204453659906368 0 1857742280338673466601776204453659906368
88 5935080927091835895668714814836960125614 32284255140318002679 5935080927091835895700999069977278128293
89 18967377099179003865864655797569778746527 0 18967377099179003865864655797569778746527
90 60635122169340932625945579191427346956647 102625414714074250195 60635122169340932626048204606141421206842
91 193898555422930446991054484557154282219435 0 193898555422930446991054484557154282219435
92 620233644123045351090582758896044658022610 326465312628541253282 620233644123045351090909224208673199275892
93 1984557489015003230921269397197621565592352 0 1984557489015003230921269397197621565592352
94 6351801838823542109929519249979522249143733 1039258352830707100287 6351801838823542109930558508332352956244020
95 20335387509472990198568080384836453337202925 0 20335387509472990198568080384836453337202925
96 65121990336372237272598879859301902794521009 3310561173602401804486 65121990336372237272602190420475505196325495
97 208602785663318655582652789289307612217740815 0 208602785663318655582652789289307612217740815
98 668386035575399743228217843607508901320126686 10552597199971538944446 668386035575399743228228396204708872859071132
99 2142136450298921147960563205940582654277126951 0 2142136450298921147960563205940582654277126951

100 6867159545916447686440121984195467264910619339 33657783567745352117595 6867159545916447686440155641979035010262736934
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"Functional Equaitons for Alkyl Ligands";
(omitted)

"Initial Values";
(omitted)

"Recursive Calculation";
(omitted)

"Chiral Alkanes";
UxC := (x/24)*(b1ˆ4 + 3*b2ˆ2 + 8*b1*b3 - 6*a1ˆ2*c2 - 6*c4)
- (1/4)*((b1-1)ˆ2 + (b2-1) - (a1-1)ˆ2 + (c2-1) - 2*(a2-1)):
BxC := (1/2)*((b2-1) - (a2-1)):
NxC := (x/24)*(b1ˆ4 + 3*b2ˆ2 + 8*b1*b3 - 6*a1ˆ2*c2 - 6*c4)
- (1/4)*((b1-1)ˆ2 - (b2-1) - (a1-1)ˆ2 + (c2-1)):

for ccntt from 1 to 100 by 1 do
printf("%d & %d & %d & %d \\\\ \n",
ccntt,
coeff(UxC,xˆccntt),
coeff(BxC,xˆccntt),
coeff(NxC,xˆccntt));
end do;

Because the three paragraphs for “Functional Equations for Alkyl Ligands”, “Initial Values”,
and “Recursive Calculation” are the same as described above (“NUB-AC1-100.mpl”), they are
omitted. The 4th paragraph (“Chiral Alkanes”) declares the calculation of UxC for U(x)(C) (eq.
59), BxC for B(x)(C) (eq. 62), and NxC for N(x)(C) (eq. 65). The 5th paragraph (the final do loop
named “Print-Out of Results”) shows the print-out step of the calculation results.

The code is executed on the Maple inputting window. Thereby, we obtain the coefficients
U (A)

k for eq. 58, B(A)

k for eq. 61, and N (A)

k for eq. 64. They are collected in Table 3 up to carbon
content 100.

6 Discussions

6.1 Cores vs. Twin-Cores
In connection with Fig. 4, the dichotomy between balanced and unbalanced 3D-trees is under-
standable in terms of the distinct effects of cores vs. twin-cores, as summarized in Table 4. It
should be emphasized that a twin-core corresponds to a balance-edge (cf. Fig. 5), while a core
corresponds to no edges (cf. Fig. 6).

1. Each of balanced 3D-trees is characterized by a balance-edge, which is contained in a
representative binuclear 3D-tree (cf. Fig. 5). From a viewpoint of vertices, each balanced
3D-tree, which is to be counted just once, has a twin-core and the remaining uninuclei.
From a view point of edges, each balanced 3D-tree has slant-edges and a balanced edge.

The two viewpoints are correlated to each other by means of the correspondence between
the slant-edges and the uninuclei (except the twin-core). This correspondence causes
the cancellation between uninuclear 3D-trees and binuclear 3D-trees in the evaluation
of balanced 3D-trees (cf. Fig. 5). Moreover, the twin-core corresponds to the balance-
edge in one-to-one fashion so that the uninuclear 3D-tree (for the twin-core) and the
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Table 4: Vertices and Edges in Balanced and Unbalanced 3D-Trees

dichotomy vertices edges
balanced 3D-trees a twin-core + uninuclei ↔ slant-edges + a balance-edge

unbalanced 3D-trees a core + uninuclei ↔ slant-edges (none)
uninuclear 3D-Trees binuclear 3D-trees

binuclear 3D-tree (for the balance-edge) cancel out each other (cf. Fig. 5). It follows that
G(x)(AC) −C(x)(AC) leaves no balanced 3D-trees, as shown in Fig. 4.

2. Each of unbalanced 3D-trees is characterized by a core, which is contained in a repre-
sentative uninuclear 3D-tree selected from a set of uninuclear 3D-trees (cf. Fig. 6). From
a viewpoint of vertices, each unbalanced 3D-tree, which is to be counted just once, has
a core and the remaining uninuclei. Thereby, each unbalanced 3D-tree can be regarded
as as a kind of rooted or planted 3D-tree, if its core is regarded as a root or as a princi-
pal vertex incident to a root. From a view point of edges, each unbalanced 3D-tree has
slant-edges and no balanced edges.

The two viewpoints are correlated to each other by means of the correspondence be-
tween the slant-edges and the uninuclei (except the core). This correspondence causes
the cancellation between uninuclear 3D-trees and binuclear 3D-trees in the evaluation of
unbalanced 3D-trees (cf. Fig. 5). However, the core does not corresponds to any edge
so that the uninuclear 3D-tree (for the core) is retained to be counted as an unbalanced
3D-tree (cf. Fig. 6). It follows that G(x)(AC) −C(x)(AC) leaves unbalanced 3D-trees to be
counted, as shown in Fig. 4.

6.2 Chirality and Achirality During Cancellation
An edge other than a balance-edge is called a slant-edge whether it is contained in balanced or
unbalanced 3D-trees. Binuclear 3D-trees based on a slant-edge are categorized into four types
shown in Fig. 9, if we take account of the superiority of the terminal vertices.

��
��
��
��

B

A (superior)

��
��
��
��

A

p (superior)

��
��
��
��

p

A (superior)

��
��
��
��

q

p (superior)

30 31 32 33

Figure 9: Binuclear 3D-trees based on a slant-edge. The symbols A and B represent achiral
proligands, while p and q represent chiral proligands.

The chirality/achirality of a binuclear 3D-tree based on a slant-edge is identical with the
chirality/achirality of the corresponding uninuclear 3D-trees.
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1. Suppose that a binuclear 3D-tree based on a slant-edge is regarded as being chiral. Then,
it is represented by either of the formulas 31–33. Let us consider the terminal vertex
other than the superior vertex of each formula as a uninucleus for generating uninuclear
3D-trees. If the resulting 3D-trees are achiral, the A of A–p should be chiral (p for a
meso-case), the p of p–A should be achiral, and the q of q–p should p for a meso-case.
These conclusions are inconsistent with the original presumption. Hence, the resulting
uninuclear 3D-trees are concluded to be chiral.

2. Suppose that a binuclear tree based on a slant-edge is regarded as being achiral. Then,
it is represented by the formula 30. Let us consider the terminal vertex other than the
superior vertex of each formula as a uninucleus for generating uninuclear 3D-trees. The
resulting uninuclear 3D-trees are concluded to be achiral.

Binuclear 3D-trees based on a balance-edge are categorized into three types shown in Fig.
10. The irregular assignments pointed out in Fig. 7 are ascribed to meso-compounds of type
p—p.

��
��
��
��

A

A

��
��
��
��

p

p

��
��
��
��

p

p

34 35 36

Figure 10: Binuclear 3D-trees based on a balance-edge. The symbol A represents an achiral
proligand which p and p represent a enantiomeric pair of chiral proligands.

1. An achiral binuclear 3D-tree of type A—A (34) can be regarded as a uninuclear 3D-tree if
the upper A is fixed and the lower A contains a uninucleus to be taken into consideration.
So long as the lower A covers achiral proligands, the resulting uninuclear 3D-trees are
achiral. Note that the two A’s are not equalized under the action of Td generating the
uninuclear 3D-trees.

2. A chiral binuclear 3D-tree of type p—p/p—p (35) can be regarded as a uninuclear 3D-tree
if the upper p (or p) is fixed and the lower p (or p) contains a uninucleus to be taken into
consideration. So long as the lower p covers chiral proligands, the resulting uninuclear
3D-trees are chiral. Note that the two p’s (or p’s) are not equalized under the action of Td
generating the uninuclear 3D-trees.

3. With respect to achiral binuclear trees of type p—p (36), we have discussed in terms of
meso-cases in Fig. 8. The discussion for Fig. 8 can be extended to cover general cases.
Although the p and the p are equalized under the action of D∞h for binuclear 3D-trees,
they are not equalized under the action of Td for the corresponding uninuclear 3D-tree.
This means that the uninuclear 3D-tree is recognized to be chiral under the action of Td .

Consequently, the meso-cases (36) cause the underestimation of Ĝ(x)(A) (eq. 38) and the
relevant overestimation of Ĝ(x)(C) (eq. 51).
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6.3 Illustrative Examples of Balanced 3D-Trees
Because a chiral balanced 3D-tree of the type p—p (or p—p) corresponds to an achiral bal-
anced 3D-tree of the special type p—p (i.e., a meso-compound), the existence of the former one
assures the occurrence of the latter one. By examining the B(C)

k -column of Table 3, the non-zero
values of B(C)

k (for k ≥ 8) indicate that the number B(C)

k of the corresponding meso-compounds
are involved in the number B(A)

k of achiral balanced 3D-trees.
In order to exemplify the discussion in the preceding paragraph, let us examine balanced

3D-trees (alkanes) of carbon content 10. There exist eleven balanced 3D-trees, as found by the
value B(AC)

10 = 11 (Table 1), which is partitioned into B(A)

10 = 8 for achiral stereoisomers (Table 2)
and B(C)

10 = 3 for chiral stereoisomers (Table 3). The eight achiral balanced 3D-trees of carbon
content 10 are depicted in Fig. 11, while the three chiral balanced 3D-trees of carbon content
10 are depicted in Fig. 12.
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Figure 11: Achiral balanced alkanes (3D-trees) of carbon content 10. Among them, 38, 39, and
41 are meso-compounds. A boldfaced edge is a balance-edge.

Among the eight achiral balanced 3D-trees depicted in Fig. 11, three achiral 3D-trees, i.e.,
38, 39, and 41, are meso-compounds (p—p). They respectively correspond to three chiral 3D-
trees (p—p), i.e., 45, 46, and 47, as depicted in Fig. 12. Note that p—p (p—p) and p—p are
identical as graphs, where the pair p—p and p—p represents a single constitutional isomer, e.g.,
a pair of 38 and 45, a pair of 39 and 46, and a pair of 41 and 47.

6.4 Comments on an Earlier Accomplishment
Several comments on an earlier report by Robinson et al. [27] should be added in order to
emphasize the effect of the sphericity concept. If we follows the present notations, their equation
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Figure 12: Chiral balanced alkanes (3D-trees) of carbon content 10. Either one is depicted as a
representative of each pair of enantiomeric alkanes. A boldfaced edge is a balance-edge.

for evaluating the number of achiral isomers (eq. 19 of [27]) is represented by the following
equation:

T (x)(A) =
x
2
{a(x)2s(x2)+ s(x4)}, (66)

where the variables s(x2) and s(x4) without sphericity were used in place of the present compo-
nent functions c(x2) and c(x4), which are used in eq. 35 on the basis of the corresponding SIs
(c2 and c4). The disregard of the sphericity in their treatment implies that the following ligand
inventories were used:

a(xd) = Ad +Bd +Xd +Yd (67)
s(xd) = Ad +Bd +Xd +Yd +pd +pd, (68)

if achiral alkyl ligands are represented by the symbols A, B, X, Y; and an enantiomeric pair of
chiral alkyl ligands is represented by p and p. Note that the right-hand side of eqs. 67 and 68
can be expressed in the form of series of x after expansion. The introduction of eqs. 67 and 68
into eq. 66 and the subsequent expansion of the resulting equation give the following equation:

T = [xA4 + xB4 + xX4 + xY4]+ [xA3B+ xAB3 + · · ·+ xBY3]
+ [xA2B2 + xA2X2 + · · ·+ xX2Y2]+ [xABX2 + xABY2 + · · ·+ xXYB2]
+ [(xABp2 + xABp2)+ · · ·+(xXYp2 + xXYp2)]

+ [(
1
2

xA2p2 +
1
2

xA2p2)+ · · ·+(
1
2

xY2p2 +
1
2

xY2p2)]+ [xp2p2], (69)

where the terms in each pair of brackets represent isomers of the same type.
The terms xABp2 and xABp2 in eq. 69 respectively correspond to 48 and 48, which are

chiral as shown in Fig. 13. Note that 48 and 48 are not recognized to be enantiomeric, because
the variable s(x2) contained in a(x)2s(x2) (eq. 66) represents the transitivity of two equivalent
ligands p and p (or p and p) and does not represent the transitivity between p and p. Thus,
the two chiral isomers (48 and 48) are counted separately in place of two diastereomers of
pseudoasymmetry (49 and 50) to be counted. Hence, the enumeration result is inconsistent
with the original purpose of eq. 66 for counting achiral isomers.

Moreover, the terms 1
2xA2p2 and 1

2xA2p2 in eq. 69 show the irregularity of the enumeration
using eq. 66. Because the terms can be combined into the term 1

2(xA2p2 + xA2p2) which is
correlated to an enantiomeric pair of chiral isomers, a pair of chiral isomers (51 and 51) is
counted just once in place of the corresponding achiral meso-like isomer (52) to be counted.
Hence, the enumeration result is again inconsistent with the original purpose of eq. 66 for
counting achiral isomers.
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Figure 13: Enantiomeric pair and pseudoasymmetric cases.
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Figure 14: Enantiomeric pair and a meso-like case.

It should be emphasized that eq. 69 does not contain terms for representing pseudoasymmet-
ric cases such as xABpp, which correspond to 49 and 50; nor terms for representing meso-like
cases such as xA2pp, which correspond to 52. These results imply that such pseudoasymmetric
cases as 49 and 50 and such meso-like cases as 52 are erroneously recognized to be chiral in the
treatment by Robinson et al.

On the other hand, the present approach uses eq. 35 and the following ligand inventories:

a(xd) = Ad +Bd +Xd +Yd (70)

c(xd) = Ad +Bd +Xd +Yd +2pd/2pd/2 (71)
b(xd) = Ad +Bd +Xd +Yd +pd +pd (72)

according to Fujita’s proligand method [18–21]. After the introduction of eqs. 70–72 into eq.
35, the resulting equation is expanded to give the following equation:

G = [xA4 + xB4 + xX4 + xY4]+ [xA3B+ xAB3 + · · ·+ xBY3]
+ [xA2B2 + xA2X2 + · · ·+ xX2Y2]+ [xABX2 + xABY2 + · · ·+ xXYB2]
+ [2xABpp+2xAXpp+ · · ·+2xXYpp]
+ [xA2pp+ xB2pp+ xX2pp+ xY2pp]+ [xp2p2]. (73)

This equation does not contain terms for representing chiral isomers such as the terms xABp2

(or xABp2) and 1
2xA2p2 (or 1

2xA2p2). Moreover, it correctly contains terms for representing
such pseudoasymmetric cases as xABpp, which correspond to 49 and 50, as well as terms for
representing such meso-like cases as xA2pp, which corresponds to 52. Note that the compo-
nent c(x2) contained in a(x)2c(x2) (eq. 35) represents the transitivity between p and p so that
49 (or 50 or 52) is recognized to be achiral. The enantiomeric pair of p and p satisfies the
enantiosphericity characterized by the SI c2 through the component c(x2).
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To emphasize the difference between T (eq. 69) and G (eq. 73), we calculate the subtraction
G−T as follows:

G−T = [2xABpp+2xAXpp+ · · ·+2xXYpp]
− [(xABp2 + xABp2)+ · · ·+(xXYp2 + xXYp2)]
+ [xA2pp+ xB2pp+ xX2pp+ xY2pp]

− [(
1
2

xA2p2 +
1
2

xA2p2)+ · · ·+(
1
2

xY2p2 +
1
2

xY2p2)]. (74)

The first and second lines of the right-hand side of eq. 74 indicate the correspondence between
the term 2xABpp and the combined term (xABp2 + xABp2) and so on. Obviously, the term
2xABpp for representing pseudoasymmetric cases (49 and 50) becomes equal to the combined
term (xABp2 + xABp2) for representing 48 and 48 (cf. Fig. 13), only if their carbon contents
alone are taken into consideration. The same situation holds true for the third and fourth lines
of the right-hand side of eq. 74, which indicate the correspondence between the term xA2pp and
the combined term 1

2(xA2p2 + xA2p2) and so on (cf. Fig. 14). In fact, we can obtain G−T = 0
by putting p = p = xn in eq. 74. This is directly confirmed by examining eqs. 71 and 72, which
can be equalized to eq. 68 (i.e., c(xd) = b(xd) = s(xd)) because the relationship p = p results in
2pd/2pd/2 = pd +pd .

In conclusion, the treatment of Robinson et al. [27] was based on the presumption that such
terms as 2xABpp can be equalized to such combined terms as (xABp2 + xABp2). In other
words, their approach enumerates the two enantiomers (48 and 48) separately in place of the
two diastereomers of pseudoasymmetry (49 and 50). It follows that their approach took no
account of the sphericity concept, although their calculation results up to carbon content 14
were fortunately identical with the present results except some typesetting errors.

7 Conclusion
Alkanes are counted as 3D-trees or stereoisomers by means of Fujita’s proligand method [18–
20]. By starting from enumeration of alkyl ligands as planted 3D-trees, their substitution on a
tetrahedral skeleton of Td-symmetry is examined to generate uninuclear 3D-trees; at the same
time, their substitution on a binuclear skeleton of D∞h-symmetry is examined to generate binu-
clear 3D-trees. They are enumerated by using functional equations derived from cycle indices
with chirality fittingness (CI-CFs), where the functions a(xd), c(xd), and b(xd) (or their mod-
ifications) are substituted for three kinds of sphericity indices (SIs), i.e., ad for homospheric
cycles, cd for enantiospheric cycles, and bd for hemispheric cycles. The values for binuclear
3D-trees are regarded as contaminants in the enumeration of uninuclear 3D-trees so that the
subtraction of the contaminants from the latter enumeration leaves unbalanced 3D-trees to be
counted. The enumeration of balanced 3D-trees is conducted distinctly by using the binuclear
skeleton of D∞h-symmetry. After the derivation of respective functional equations for counting
alkanes as well as for itemizing them into achiral and chiral ones, they are programmed by
means of the Maple programming language and executed up to carbon content 100.
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Society for the Promotion of Science: Grant-in-Aid for Scientific Research B (No. 18300033,
2006).
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[10] G. Pólya, R. E. Tarjan, and D. R. Woods, “Notes on Introductory Combinatorics,”
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