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Abstract

The problem of error propagation in the estimate of material components for quadratic
multicomponent surface free energy theories is addressed. It is shown that invariance
properties of the model equations, through an appropriate group of linear transformations,
imply a very peculiar structure of any merit function used for general best-fit estimates of
surface free energy components in quadratic multicomponent models. Such a structure is
reflected in the distribution of merit-function minima, involved in the calculation of best-fit
estimates to surface free energy components, according to the nonlinear method. A simple
and reasonable stategy allows to describe the displacement of minima due to uncertainties
on experimental data, and therefore to evaluate the consequent error propagation on the
final results.
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1. Introduction

The multicomponent approach plays an important role in the description of the interfacial
interactions of many materials and, more specifically, in the prediction of the solid-liquid
work of adhesion and surface free energy of solid surfaces. The idea of modeling the surface
interaction of two materials by means of a certain number of “components” concerning
contributions of different physico-chemical nature is shared my many theories proposed
in different years. Although not free from problems, multicomponent models are widely
applied in common practice as a pragmatic way to characterize the surface energetics of
various materials. Certainly one of the most famous and succesful multicomponent models
is van Oss-Chaudhury-Good (vOCG) theoryl'=%!, which expresses the work of adhesion of

a liquid 1 on a solid s as

W o[\ i+ Jid (1)

while the surface tension of the liquid and the surface free energy of the solid take the form

LW

="+ 20/ v ="+ 24/ (12)

respectively. In (1.1) and (1.2) the superscript LW labels the Lifshizt-van del Waals com-
ponents of the materials, related to dispersive interactions, while + and — denote the
acidic and the basic components, which account for the acid-base interactions between
electron-donor (basic) and electron-acceptor (acidic) sites of the interacting molecules —
so that acidity and basicity must be understood in a Lewis’ sense. All the model equations
reflect the complementary nature of acid-base interactions. vOCG may provide very satis-
factory informations provided that some cares are taken in performing calculations and in
the interpretation of the final results[™®]. Equations (1.1) and (1.2) can be rewritten into

the equivalent matrix form

wadh = 2 xTTY v =XTTX vy = YTTY (1.3)



-71 -

by introducing the column vectors X and Y of square roots of components for the liquid

and solid, along with a suitable “structure matrix” T

~ LW [ LW
/'/I v s

1 00
X = */7l+ Y = ')/j’ T=10 0 1]. (1.4)
— — 01 0
7] Vs

In order to calculate the acid-base components of materials it is necessary to measure: (i)
the surface tensions 4, i = 1,..., L, of a given set of L liquids and (i) the adhesion
works Y/V;T?h of the same liquids on an appropriate set of S solids, each denoted by the
indexjy =1,...,S. Typically, adhesion work is estimated by measuring equilibrium contact

angle 6; ; of liquid 7 on solid j and using Young-Dupré equation
radh 1 . =4
Wi = E(l + cosb; ;)i (1.5)
Reckon strategies can be subdivided into two categories:

(7) determined linear and overdetermined linear (best-fit) methods, which assume the

components of a given set of test liquids to be known in some way;

(77) nonlinear best-fit method, which does not rely on any assumption, since it consists in
the determination of a best-fit solution for the available equations of surface tension
and adhesion work, with respect to the components of all the liquids and the solids

involved.

Uncertainties in contact angle and surface tension measurements imply that the left-handed
sides of equations (1.3) are affected by an error, whose influence is to be found in the final
estimates of components. Error propagation in linear methods can be easily discussed

+18-191 The nonlinear

by the classical tools of vector/matrix norm and condition numbe
method requires a much more delicate investigation, further complicated by the problem of

scale multiplicity[”), that will be briefly illustrated in Section 2. The same troubles extend
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also to all the multicomponent theories with quadratic structure (Quadratic Multicompo-
nent Models), of which vOCG model constitutes a sort of prototype. The latter theories
share a similar mathematical formulation, with model equations of the same form of (1.3)
but an eventually different number and/or definition of components per each material and
a peculiar structure matrix T": therefore, columns vectors X and Y may have any number
¢ of entries and T may be any ¢ X ¢ nonsingular matrix.

This work is devoted to a detailed analysis of the problem of error propagation in the
estimate of surface free energy components of quadratic multicomponent models. The
plan of the paper is as follows: Section 2 concerns the mathematical setup of the nonlinear
best-fit problem, also putting into evidence the aspects of invariance-group symmetry and

scale multiplicity; Section 3 is devoted to a detailed analysis of the geometrical structure of

the critical point set, containing all the minima of any merit function used for best-fitting,
due to symietry of the model equations. Finally, Section 4 specifically tackles the problem

of error propagation and Section 5 contains conclusions.

2. Mathematical formulation of the problem

The research of any best-fit solution implies the optimization of some merit function V'

dependent on the residuals
Ay = XITX; — i, Agj = Y,‘TTY]' — Vs,
A = X;[TY} — %(1 +cos b )y (2.1)
with 1 < ¢ < L, the number of liquids, and 1 < 5 < S, that of solids. The merit function
is in principle arbitrary, but it is certainly preferable to adopt smooth functions like the

usual weighted sum of squared residuals

L S
V(XY T5N) = 3w [XITX; — 3] "+ 3w [YITY; T, +

i=1 j=1
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L s
, 1, R 2 .
+ Z Z Wadh,ij {XVLTT}V/ — 5(1 + cos 9;",')"/1‘,; (‘2.2)

=1 j=1
where the constant weights wy;, w, j, Wadn,i; > 0 accounts for relevance of liquid surface
tension, solid surface tension and liquid-solid adhesion work equations, respectively —
depending for instance on the availability or on the level of accuracy of the single equations.

The variables of function (2.2) are denoted with
X = (-X17*Y27"'7XL) Y = (}’l,y'lay's) I = (75,17"'v78,5)~

Notice that unlike liquid surface tensions ~;;, 1 < ¢ < L, which can be measured inde-
pendently, the total surface free energies v, ;, 1 < j < 5, of the solids must be taken
as unknowns of the merit functions, since no direct experimental method exists for their

measurement. The parameter A collectively indicates all the constant data
')/I,IER+ 914j€[077r}w 1§L§L71§7§S~

which are affected by a certain amount of uncertainty due to experimental errors. The

weights are assumed to be a prior: fixed.
It is easy to show that the previous choice of the merit function can be appreciably sim-

plified. Indeed, if (X,Y,T) = (X,Y,T) is a best-fit solution for V,,, then necessarily

T, =Y, TV, 1<j<S.

If not, the term
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would lead to (X,Y,T) = (X,Y, ™) as a better best-fit solution than (X,Y,T) = (X,Y,T),
a clear contradiction. We can then replace V,, with the simplified merit function
2
v )( YA Zw“ A TX' 7’”1 +ZZwadh i [X T)’ (1+C()S€i7]-)'nﬂ
i=1 j=1
(23)
Existence of best-fit solutions for V' is highly nontrivial, since no general argument can be

easily invoked. All we can generally claim is that the best-fit solution, if defined, is never

unique owing to the invariance property
V(X,YV;\) = V(R(0)X,R(a)Y:)) VYaeR® X eR YR X\,

where o = (wy, wg, w3) € R3,

and E(«) is an arbitrary 3 x 3 real matrix of the form![7—*]

exp[lel -‘ru)gEg + W3E3} 5

with
0 10 0 01 00 0
E, = 0 00 E,=]|1-1 00 Es=(01 0
-1 00 0 0 0 0 0 -1
More generally, it has been shown that each residual — and therefore the whole merit

function — is invariant through a linear transformation described by a 3 x 3 real matrix
C satisfying CTTC = T. These matrices form a group with respect to the usual matrix
product  the group is isomorphic to the O(2,1;R) group.

By assuming that a best-fit solution exists for each choice of A in a neighborhood of an

appropriate A = X, it is reasonable to describe the errors affecting such a solution as
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due to the parameter uncertainty, since any variation of A results in a displacement of
the minimum of V. Some problems arise from the invariance properties and deserve an
accurate analytical discussion. Although the previous analysis has been sketched in the

case of vOCG theory, it is important to point out that:

(7) similar invariance properties hold for all the quadratic multicomponent models;

(4) it is convenient to state and tackle the problem in the most general n-dimensional case,
by considering vectors X and Y of whatever dimension ¢ — the number of components
characteristic of each material — and by posing then (X,Y) = = € R", with n =
(L+S)c. Here T can be any structure matrix (e.g. real, symmetrical and nonsingular,
as typically happens) and the matrix representations of the invariance transformations
will take the form R(«), being dependent on a set of ¢ scalar parameters (aq,...,a,) =

a € RY.

3. Analytical results

A useful estimate to error propagation due to parameter uncertainty comes from the fol-

lowing result.

Theorem 1. Local structure of the critical point s et.
Let V i (2,0) € (2 x A)——=V(2,A) € R be a real CF function, k > 2, of the set Q x A,
where both Q& CR"™ and A C R? are open — and n,p appropriate natural numbers.

Denoted with M,(R) the linear space of n X n real matrices, let R : « € U— R(a) €
M, (R) a CF function defined on an open set U C RI, g € N, such that 0 € U and R(0) =1,

the identity n X n matriz.

Suppose that:
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o Rla)Jr € QVaeQ and a € U;
o VaeU, x€Q, A€ A there holds V(R(a)x, ) = V(x,\);

o a point (T,\) € Q x A exists such that

v _ ~
% (Z,A) =0

namely, T € Q is a critical point of the function Vi 1 r € Q — V(z, ) €R;

o the following equality holds

Rank H,, (7, N =n—g,

v
ox?
number of linearly independent vectors of the set P := {

being H, (T, A) = (%, ) the Hessian matriz of Vi in T and g' < g the mazimum

OR
Ja;

0z, 1<i gg}, with

g <n.
OR
Then 1,
en if {&,vi

the vectors hy € R, 1 <j < n—g¢', are fized in such a way that

0)z, 1< < g'} is the mazimal linearly independent subset of P(°) and

{orom asisghuly 1<isn—g) (3.)

is a base of R™, open neighborhoods By C Qx A of (z,)\) = (T, \), Ey C RY of (ay,. .. ay)
=(0,...,0) and By CA—X={p=X—X: A€ A} of p =0 ewist such that all the critical
points of Vi 1 @ —— V(a, \) for which (x,\) € By are individuated by

N——

/

n—g’
;L':R(al,....ag/,O?...,0)<E+ ij(/l)hj) , (3.2)
=1

9—9
with (a1,...,ap) € By, p—=E;(p) real C¥1 functions of E) and £;(0) =0, 1 < j <

n—g'. O

(0) We suppose the linear independency of the first g, vectors of P, without loss of generality. Tf necessary,

this condition can always be fulfilled by an appropriate permutation of the variables a;, 1 <1 < g.
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We subdivide the proof into several lemmas, by assuming 0 < ¢’ < g. The particular cases
¢' = ¢ and ¢' = 0 will be treated separately. Throughout the paper we will pose
a=(ar,...,q4), 0; €R, 1 <0<y, o =(o1,...,0p),a; ER, 1 <i < ¢,
"= (Nl?"'a/u'p)a Hr € R: 1<k <p, 62 (517"-7£nfg’)7 {] € Ra 1 S.} < n*g’a

and (o', 0) will denote a vector « of the form (aq,...,ay,0,...,0), the last ¢ — ¢' compo-

nents being equal to zero.

Lemma 1. Local change of variables.
An open neighborhood A = int(A) C RY x R"9 x R? of the point (o, &, 1) = (0,0,0)
and an open neighborhood B = int(B) C R™ x R? of (z,\) = (T, )\) emist such that the

application ® : (o', &, n) € A——(2,\) € B defined by

n—g'
z = R(d',0)|7 + ijhj] A= A+pu
j=1
is a C* diffeomorphism of A onto B. O
Proof
5}
The vectors (0)7,i=1,..., ¢, are linearly independent and the set (3.1) constitutes

o5

a base of R™. Our goal is to introduce a regular change of variables in a neighborhood of

(Z,\) € Q x A by means of the transformation

n—g’'

r = X(',€) = R(,0) [;?—&— Zﬁjh]} (3.3)
j=1

AN=L{u) = A+u

The transformation can be assumed to be be defined in the open rectangle Dy x Dy, where

Dy = {(«€) ¢ il <di, 1<i<g Gl <di, 1<j<n—g'} CRY xR

Dy ={p: |u| <dy, 1<k <p}
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with d; > 0 such that {a € R : |ay| < dy, 1 < i < g} C U — always possible since
0€cU and U is open  and dy > 0 chosen in such a way that A+ Dy C A A is open.
In D) x D the function (3.3) is C*.

The only nonzero partial derivatives are the following

X OR o _
aa_(a’.é) = a(o/,O){T«F Zﬁjh]} 1<i<y
12 k] ]:1

0X .

9 («',6) = R(<!,0)hy 1<k<n—y¢
O '

dL; i -
a#i(/é) = b5 1<4,5<p

on having denoted with §;; the usual Kronecker delta. For (o', &, 1) = (0,0,0) the previous

expressions become

oX | IOR |
= T <i<yg'

aai(O,U) 801,;(0)1 1<:<y
%(0,0) = R(0)hy = hg 1<k<n—¢
Ok ’
OL;

L(0) = & 1<i,j<
o, 0) j <i,j<p

and the jacobian matrix is written as

OR
3 0)z h 0)
¥
! !
Az, \) nxg nx(n—g) nxp
2)(0,0,0) =
o' & 1)
O I
pxn pxp
with determinant
OR
Aa,)) ()7 i
derM(0,0,0) = det da;
Ao, &, ) . ,
nxg nx(n—g)




-79 -

different from zero since the set (3.1) is a base of R”. Moreover

7
n—g

T+ ZOh,} -z

J=1

X(0,0) = R(0)

L0) = A+0 =X
and by the Implicit Function Theorem there exist an open neighborhood A = int(A4) C
Dy x Dy of the point (o', &, ) = (0,0,0) and an open neighborhood of B = int(B) C
R™ x R? of (x,\) = (7, \), such that (3.3) defines a C* diffeomorphism of A onto B.

O

Remark

Owing to the particular form of (3.3), we can always assume that
A= ‘41 X ‘42

with Ay open neighborhood of (o', &) = (0,0) and Ay open neighborhood of 4 = 0. In an

analogous way, we can always write
B = ®(A) = B, x By

being By € R” an open neighborhood of # = T and B an open neighborhood of A = A.

Lemma 2. Local characterization of critical points.

An open neighborhood B" C B of (x,\) = (T, \) ezists such that

v, N "
a(&,)\) 70., (L,/\)EB

if and only if (x,\) = ®(d', &, 1) with

ai} (1 1 1 "

E(O’[vév//’)zo vk:1,7ﬂ—g ’ (()‘757/")614 ’
k

where A" = ®~1(B") C A and V=Vod. O
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Proof

On the open set A consider the C* function

,
n—g

n—g
f/(a’aéwu) = (Vvoq))(\o"lvg',/l) =V |:R(a’s(]) (T+Z£]]1])X+/l:| - V(E—"—Zéjhjvx"'ﬂ)
=1 =1

whose partial derivatives are easily calculated

ov ,
aa.(“/’ﬁ’“) =0 1<i<d
ov av, ot
ag, 6 = 5o (7 + Zt]h] Xbp)he  1<k<n-g
A o, X

L€, = T hi A 1<(<p.
8/1,6((} &) )Y (r + ;E’ i At '“) p

By using the diffeomorphism @, which defines a regular change of coordinates, we firstly
have that
v
Ox

(z,A) =0, (z,A\)eDB

if and only if (z,\) = (', €, ) with (o', &, 1) € A satisfying

o o Sen) ] <o

Moreover, the invariance property V{R(«)z, A] = V(x, A) implies

ov " ov 9 av 9
é);z:,(l’k) =2 %[R(all,ﬂ o, [R(a)e]; = _ 7[3( @, Al aT,iZRJ‘k(Q’Nk =
J=1 Jj=1 k=1
av "oV v
Za” N30 Rivle) b = 3 G IR A Rsle) = 3 R(@) s (R
so that
%(IJ) = R(O)T%[R(a):r,k] VeeQ aclUNEA, (3.4)

on having denoted with R(«)" the adjoint of the matrix R(a). Therefore

ov

81( nz:éjh],/\—&—;l) = R(d, O)T [ (o, 0 (L+ Zﬁjhj) /\—I—u} Vo & p)€eA.
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On the other hand, for (o', &, ) € A we have

av =y -
K T2 ! = ] —
R(a’,0)1" [R(oz ,O)<$+ j_zlgjh]),A+;L} =0

if and only if

ov oy —

o [ (o O(T+Z§] )/\—ﬁ—p] =0
provided that R(a',0)" is invertible. This is certainly true if we a priori assume R(«)
nonsingular Va € U, or if we require that |a;] < e, 1 <7 < ¢', with ¢ positive and
sufficiently small — remember that R(0) = I and that R(«) is C*, thus continuous. In the
present case, according to our hypotheses, the second condition is verified by replacing the

open set A with the neighborhood of (¢, &, ;1) = (0,0,0)
A= An{(d, &) € RY xR x R? : loy| <6, 1<i<g'}CA

open as intersection of a finite number of open sets, and the neighborhood B of (z,A) =

(%, A) with the neighborhood

B = ®(A)C B

it is clear that B’ is open, since ®(A’) = (@71)71(4’), @ is continuous and therefore
B' is the continuous preimage of an open set. It is also evident that (Z, \) € B'.

As a conclusion
v
a—;(w,A) -0, (,\)eB
if and only if (2, \) = ®(«/, &, ) with (o', &, p) such that

oV g ,
o {R(a 0) (L n Zg] h]> /\+;1] =0 (& p)ed

which is equivalent to the condition

R(at@@i{ o', 0)(7 +

n—g'

]h])"X+fl:| =0 (alvfa/u)e‘q'/

Jj=1
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and owing to the invariance property reduces to the relationship

% — — )
ST+ D GhpA+u) =0 (' ped
31( = )

— notice that there is no actual dependence on the vector parameter o'. We now have

only to prove the equivalence of the latter condition with

g{ (!, 6,p) =0, 1<k<n-—g¢, (o, &,n) e A"
If (o', &, 1) € A’ obeys
v (=
O (T+ Zf,h77/\+#) =0
then, as already remarked,
oV oV =4
% (afﬂ):a—(+Z§]]/\+;L)hk—0hk—0 1<k<n-—g.

Vice versa, let (o, &, 1) € A’ and

v

=0, <k<n-—g .
35(05/1) 0, 1<k<n-—yg

This implies that

gv($+25]11]/\+u)h 0 1<k<n—¢

while there always holds

n—g' n—g'

g‘ (+ 25]12],)\+/1) O+ &) =0 1<i<y
§'=1

19)% OR
since D [R(a);l‘,/\]fa ()a =0Va eQ, Ve A aelU,1<i<yg. Onthe other hand,

the set of n vectors of R™

n—g'

{aal <r+ZE]h]),1§i§g'}U{hk,1§k§nfg'} (3.5)
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is as linearly indipendent as

5}
{3

()?,lﬁiﬁg'}u{/u.,lﬁkﬁnfg’} (3.6)

provided we consider |£| < & small enough, 1 < j' <n — ¢'. There holds indeed

(s 3 ) = LB

§'=1

where

@O)h,j zb(zJ)aR

8(}4,7(
k=1

Z / 0 ,,‘/

.‘1
1<i<y

n—g'

7+ E b i

with suitable scalar coefficients b;j’j ), 1<i<¢,1<j' ' <n—g¢',1<k<n,so that

= G OR ),
> 6 Ew m+2mg
i'=1

upon having

‘Ekl‘_‘zb(ll)c

j'=1

foreveryi=1,...,¢'and k=1,...

to (3.5) is therefore written as

1+¢11 €1,¢
! Ltegy
€g'+1,1 e Cg'+1,9'
En En,g!

and its determinant coincides with

1+e1
det

Sg'1

0)7 + Ztl—}—q’ lhk 9

k=1

Z|l(")| €] < Z‘b("’)|s< max Z|b("')|5 =Ke

1S1Sy

,n. The transformation matrix from the n-tuple (3.6)

g (n—g)

(n—g)xn-g¢)

€l,9

1+“!] 29
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which is certainly different from zero for ¢ sufficiently small, since |eg ;| < Ke, 1 <k < n,

1 <1 < ¢'. Under this condition we conclude that the gradient operator R* —— R

R
% (IJ’ D & A+ ,.L>
Jj=1

admits a kernel of dimension n and it must be thus identified with the identically zero

linear functional

, n—g'
g—t(f+ S ghiX+p) =0.
T2

The possible replacement of the set A with the open set
A" = A'n{(a’, &) €eRY X R XRP : [§]<e, 1<j<n—g'}CA CA

and of B with the open set B” = &~ '(A") C ~'(A') = B’ C B completes the proof of

Lemma 2. O

[/

According to the previous result, in the neighborhood B" of (7, \) we have ——(x,A) = 0

Oz
if and only if
n—g'
r=Ra@,0)(F+ Y Gh) . A=2+p (3.8)
i=1
with (o', &, p) € A" such that
v
aT(a,séaﬂ):O 1§k§n79,7
Sk
or, equivalently,
v, L ,
a(z—‘r Zéjhj,/\—&-p)hk:(] 1<k<n-—g. (3.9)
=1

In order to simplify the subsequent discussion, it is convenient to consider instead of A"

the open neighborhood of (o', ¢, 1) = (0,0,0)

E]XEQXE;CA”
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where Fy C Rg/, E>; CR" 9, Es C A— X C RP are open neighborhoods of o' =0, £ =0
and p = 0 respectively. The possibility of introducing the open sets Ey, Ey, E3 is assured
by the fact that A" is an open neighborhood of (o',&, 1) = (0,0,0). By means of the

transformation (3.8), the condition
G , ,
5)7(1-'_ E th]-.,/\-i-,u) hy =0 1<k<n—g¢', (¢ &pu) €E xEyxEs (3.10)
@
i=1
. . . ov . . )
will characterize all and only the solutions of a—(r A) = 0 in the neighborhood ®(FE; x
x

E, x E3) C B" of (T X) We have the further result illustrated below.

Lemma 3. Local characterization of nondegenerate critical points.

2 _
= 80 ‘9 (z,A) denote the Hessian matriz of V(-,\) calculated in the critical
2

point T, and suppose that the real symmetric (n — ¢') x (n — ¢') matriz

M =hlH, (7 Nh; 1<ij<n-—g

is nonsingular. Then there are two neighborhoods EY C Ey and Ef C E3 of £ =0 and p =0

respectively, such that all the critical points of Vi : x —— V(2. \) in the neighborhood

O(E) x By x E}) CB" of (x,\) = (T, \) are individuated by

n—g’
7= R 0)(7+ > &(nhy)
j=1
with u — &(p) C*L-functions of the open set Ey to Ej, £;(0)=0Vj=1,....,n—¢
and o' € Ey. 0
Proof

Equations (3.10) constitute a set of n — ¢' scalar equations in the variables (¢, ). By
hypothesis, the functions on the left-hand side
n—

, g
Fulton) = S (F+ S &hpAbp)he 1k<n—y

Jj=1
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are C*~!in E; x E3 and satisfy

F,(0,0) = %(?,X} hr =0h;, =0 1<k<n-—g'.

Their partial derivatives with respect to the &/’s take the form

OF, ofov, "I N A .
- j=1 j=1
with 1 <0,k <n —g¢', and for (¢, ) = (0,0) become
OF -
a—gé‘(oﬂo) = hH (@ Nhe =My  1<lk<n—g .

As a consequence, if the matrix M is nonsingular, by the Implicit Function Theorem we
have that there exist some uniquely determined C*~'“functions of an open neigh-

borhood E} C Ej3 of i = 0 with range in an open neighborhood B C E5 of £ = 0:

& o= E(p) 1<k<n—g¢g

such that £,(0) =0Vk=1,....,n—¢" and the set of equations (3.9) is satisfied Yy € E}:

v
dz

n—g’
<E+ Zﬁj(u)hj,X#»p)hk =0 1<k<n-g¢. Ve E;,
j=1

Recalling the transformation (3.8), the proof of Lemma 3 is complete. O

The central point is now to provide conditions in order that the matrix M is actually

nonsingular, as required by Lemma 3. To this end the statement below is helpful .

Lemma 4. Rank of the Hessian matrix (7, A).

The following upper bound is always satisfied

RankHV (7, X) <n-g¢'. D
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Proof
From V(z,A) = V[R(a) z,A] Va, &, A, by calculating the partial derivative with respect to

a;, 1 < < g, we obtain

0= —[R( ), A]O(B: e =Y g: [R(a)x,A}(gi(a))mxs

rys=1
and a further partial derivative with respect to x4 provides
" o9V OR . N A OR
0= 3 oo, B (G (@) bt 30 3 5 5 IR(e) N Rlaue (5(@) e
In particular, in the point (z,A) = (7, \) we get for a = 0,

0= 3 o (g 0) oot 303 570 e (5 0)

T,8= rs=1u=1

and since

(F,X)=0VYr=1,...,n, it follows that

“ 0%V ~/OR _
B0, »L-A)m(aai(o))mu =0 1<t<n, 1<i<yg
and finally
~ OR
, 7 = <i<
H\,( )00{,:((])1’ 0 1<:<yg (3.11)

8R(0) 2,1 <1< ¢,

Yov;

The latter relation implies that the ¢’ linearly independent vectors
belong to the kernel of the Hessian matrix Hy, (%, A). This is equivalent to claim that
dim Ker H, (#,A) > ¢' and therefore Rank H,, (z,)) < n—g' . m|

Lemma 5. Nonsingular matrix M.

A necessary and sufficient condition for M to be nonsingular is that

RankHV (E,X) =n—g¢ . ]
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Proof

We show that Rank H,,.(7, X) = n—g¢' ifand only if {z € R* : Mz =0} = {0}.

(i) Let Mz = 0 only if z = 0. We want to prove that in such a case Rank H, (7, AN =n—g.
If it were Rank H (%, A) <n—g', then dim Ker H, (7, A) > ¢' and there would exist a

on (0)z,1 <i < g’ suchthat H,(z,\) hog =

&3

vector ko € R™\ {0} linearly independent on

IR
0. But since {8 0)z, 1< < g'} U{hr, 1<k <n-—g'}isa base of R", there must

o
hold
s
0}?
]’LUZZI/Z 07 + Zl/ h;
i=1
with at least one scalar coefficient v; different from zero — if not, hy would be linearly

OR
dependent of (0)z, 1 <i<g' Then, owing to (3.11),

Oav;
— nig/ —
0= H,(z,\)ho = vi H (T, \) b
j=1
and left-multiplying both sides by hj we get
n—g'
ZIZTH (T, N hjv; =0 1<i<n—g¢g (3.12)
namely
n—g’
Zf\![,-jyj =0 1<i<n—g¢
j=1

and therefore Mzy = 0 with zg = (11...vn—g') # 0 since not all the v;’s are zero. This
contradicts the hypothesis.
(11) Let Rank H,, (%, A) = n — ¢'. We claim that Mz = 0 only for z = 0. If a 2 # 0 existed
such that Mz, = 0, then by posing zj, = (V1...Vn—g ) we would have

n—g'

Ziwijzfj =0 1<i<n—g
j=1
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and therefore (3.12) would hold. Notice that for every w € R™ we can write, with appro-

priate wy, € R, 1 < k < n,

‘. oR =
w = Zwk @(O)T + Z Wyt by
k=1 i=1
and therefore
. OR Py .
'71: | — T '1,;,!
u ;u & (3ak (O)r) + ; Wwyryi b
so that
— ng
w' H, (T /\)(Zl/jh]) =
j=1
gl . n*g/ n*g, ]1791
OR N\t - y - '
= Wy, (80% (0) bL) H, (7)) ( ) thj) + Z wyrti h! H,(7,)\) ( - thj)
k=1 =1 =1 j=1
where, owing to (3.12),
) o=y
h;HV(fﬂ\)(ZlQh]‘) =0 1<i<n—¢,
J=1
while
IR i — _ OR i
—(0)F T,A) = (7N —(0)7) = <k<g
((9o¢'k (0) T) Hy (72 (H‘/ (#2) Oay (0) T) 0 L<k=yg
Thus
_ n—g'
wt H, (z /\)( I/j]l]) =0 YweR"
j=1
and finally
n—yg'
Hy (e (S wih) = 0.
=

As a consequence, the vector hy = Z;:lg vihj # 0 satisfies H (T, A) ho = 0. In other

words, hg = Z?;g,]/jhj # 0 belongs to Ker H‘(YX) However, since hy is linearly
OR OR
5)afi 6(1/,‘

independent on (0)7 € KerHV(T,X]7 1<i<g —ifnot, { 0)7, 1<i< g'}U
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{ht, 1 £k <n—g'} would not be a base of R" , we deduce that dim Ker Hy, (7, A) > g

i.e., the contradictory statement that Rank H‘(IX] <n-—g. O

Proof of Theorem 1

The proof of Theorem 1 for 0 < ¢’ < ¢ is now an immediate application of the previous
Lemmas 1 to 5. We simply have to identify the open sets Ey, B} and ®(E; x E}, x E}) in
Lemma 3 with the sets Ey, Ej, By of the main statement, respectively.

All the previous lemmas trivially extend to the case ¢' = g, by observing that o' = o and

that therefore the matrix R(«’,0) must be replaced with R(«) everywhere.

Finally, whenever ¢’ = 0 we have that all the vectors (0)z, 1 <i < g are zero and the

o
invariance properties of V' cannot be used in the same way as in the previous discussion.
In particular, Lemma 1 becomes trivial since the local change of coordinates (3.3) is simply
an arbitrary invertible lincar transformation defined in a neighborhood of (z,\) = (%, \)
with respect to an arbitrary base {h;, 1 < i < n} of R". Correspondingly, Lemmas 2,
3 and 4 become trivial as well, although the matrix M can certainly be defined. Lemma
5 is applicable, but it takes the straightforward form that M is nonsingular if and only

it #y,(, A) is, no more than an observation. Theorem 1 holds, but it comes from an

immediate application of the Implicit Function Theorem. We have indeed that the C'*~'-

function (z,A) € A x A —— (Z‘/ (z,A) € R", k > 2, satisfies the conditions
T
ov _ — PV~ _ <
E(L,A) =0 det o (T,A) = det H,(Z,\) # 0

so that Implicit Function Theorem ensures the existence of open neighborhoods Q' C Q of

T and A’ C A of \, together with an application ¢ : A’ —— ', such that:
@ is a C* function in A’

p(N) =7
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ov

Jz
We can then pose By = @ x A’ and E} = A’ — X, and claim that all the solutions in By of
ov

——(x,A) =0 can be characterized as

Oz

(p(A).\) =0YAEA"

v = o) =T b -7 =T+ 3 &)k
j=1

being £;(x) the j-th component of ¢(A + ) — T with respect to the base {h;, 1 <i <n}.
Since &;(p) is obviously as C*~! as () and £;(0) = 0 owing to p(X) — = 0, we conclude

that the statement of Theorem 1 is verified. O

Remark

The case ¢’ = n has been explicitly excluded in the statement of Theorem 1. This is due
to a sort of degeneracy which occurs and makes the structure of the critical point set very
trivial, in some sense. It is clear that Lemma 1 still holds, even if the introduction of the
auxiliary vectors hj is no more necessary. Lemma 1 takes now the particular form stated

below, whose proof is exactly the same previously illustrated.

Lemma 1.a Local change of variables for ¢' = n.
An open neighborhood A = int(A) of the point (o, p) = (0,0) and an open neighborhood
B = int(B) C R” x R? of (2,)\) = (%, \) ewist such that the application ® : (o, y) €

A——(z,\) € B defined by
r = R(a',0)T A= A+u (3.13)

is a C* diffeomorphism of A onto B. O

Of course the same result also extends to the case of ¢' = ¢, with the replacement of «

and R(a) to o' and R(o',0) respectively.
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For any (z,\) € B we have then, by applying (3.13) and the invariance property of V,
V(z,\) = V[R(a',0)Z, A+ p] = V(Z, A+ p)

which means that the restriction of V to B is constant at fixed A. As a consequence,

Ve =0 V@ eB
Jz

so that the whole set B consists of critical points of V).

The previous Theorem 1 admits a very simple geometrical interpretation. Equation (3.4)

-

implies that if # is a solution of Z—i(r,)\) =0, then R(a)=z also is, provided that R(«a)
is nonsingular. This means that at a fixed A € A the global set of the critical points of
Va in © is a union of “fibers” like F, = {# = R(&)y, o € U}, with y critical. Generally
speaking, fibers are not disjoint subsets of , but it is anyway possible to detect some
trivially nonintersecting fibers by means of the invariance property on V', without further

hypotheses on the matrices R(«). Indeed, since V[R(a)x,A] = V(2,\) Vo € Q, o € U,

A € A, the fibers
Fy, ={e =R(e)yr, a €U} Fy,={r =R(a)y2, « € U}

are certainly disjoint whenever the critical points y1,y2 € Q satisfy V(y1) # V(yz). The
local structure of the critical point set described by Theorem 1 provides more specific
informations about fiber distribution — see Figure 1.

We firstly notice that we can always assume, without loss of generality, By = Bj X Ag,
being B = int(B}) € Q and Ag = int(Ag) C A appropriate neighborhoods of @ and A

respectively. Denoted with £ the linear subspace spanned by {h;, 1 < j < n —g¢'} and



-903 -

with T + £ the relative linear maniforld passing through ¥, Theorem 1 implies that for any

fixed A € Ag the only critical point of Vi in B N (7 + £) is

—9'
Z (A=2)hj .

Figure 1: Local distribution of the critical points. Here £’ stands for the linear subspace spanned by

{8R/8O¢1(0)I 1<: < g,}. Obviously, £ ® L =R

Moreover, there is a unique fiber F,, which intersects By, and the intersection C' = ByNFy,
— set of all the critical point of V) in Bj — is given by

C = {fl? = R(O”7U).’I'() 5 (sz’ € Eﬂ} .
Theorem 1 can be used to stem a simple estimate to the displacement of critical points as

the parameter A is slightly varied. A straightforward application of Taylor’s approximation

formula leads to the result below.
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Corollary 1

Under the same hypotheses and with the same notations of Theoremn 1, the solutions of

il ——(x,\) =0 in By are individuated by the relationship

ER
¢ = R(a',0 0){;—21): nilh i { (m )](1 N hi+o(llulh)] (3.14)
( o ’,11._.,(.,'7 q:l'uq j=1 ! i=1 i OAg\ Oz o : .

where || || denotes the usual Buclidean norm of R?, p € E, lim,—qo(||x|))/]|p]] = 0 and

1,7hTH (@, Mhj, 1 <i,j<n—g. O

Proof
We have to calculate the first partial derivatives of the functions €;(p) in ¢ = 0, by applying
then a first order Taylor’s approximation to equation (3.2). By means of Lemma 3 we have

the relationships

n—g'
gi{lﬁ»zgy Vhji A+l hi =0 VueE,=E, 1<k<n-—g¢ . (3.15)

The partial derivatives of the left-hand side functions in (3.15) with respect to the variables

tgs 1 < g < p, are then identically zero and lead to the equations

n—g' n—g'

th oo (H—Zé] ) B, A+N> hs ‘5 (1) + B ( T>(¢+Zgj ];],,\+H) h =0

verified Vpu € By, 1 <i<n—g¢ and 1 < ¢ <p. In g =0 there holds, in particular,

n—g’ A P
o, O 0 (OVN], _ + .
E i =k <i<n—g 1<g¢<
hy H,, (%,A) R aﬁlq(0)+[a/\q(aL)](r>\)h 0 1<i<n—y¢g" 1<¢<p

which, once the nonsingular matrix M is introduced, takes the equivalent form
o o (ov
'+ Lov, (o)

k

M L—
ke g \ Oz
k=1

(T, A\ hi = 0 1<i<n—g¢" 1<q<p

namely, owing to the symmetry of M,

n—g’ ,
Oy, a (OVNT,_ — . ,
E M; — )| (=, i = <i:<n-— <¢<p.
2 M, 0/’{](0) + [8)\(, (037)}(1'/\)}1 0 1<i<n—g¢g 1<q¢<p
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If now both sides are multiplied by (M ™!);; and a sum over the index i is performed, we

deduce
n— g n—g ) )
g S 9 0VNT
)jiM; 0 E M = (= M b =0
,A=1 i @uq( M g (M0, [aAq(awﬂ“ )b

and finally

n—

05, g o oV - ‘ ,
; <i<n— <a<p. (3
i=1 wr Jl[a/\ (aw)}u'/\)hl l<j<n—y¢g 1<g¢<p. (3.16)

The first order Taylor’s approximation of (3.2) in u = 0 provides therefore

z = Rlaq,...,ay,0,... [L+ZM ZE) 0)h; + H,LLH]]
9=y’
where %(0) is determined by (3.16). O
Opg
Remark

Formulas (3.2) and (3.14) explicitly contain the vectors hj’s and may suggest the idea
that such a dependence is real. Obviously this is not the case. The possible, different
choice of the complementary vectors h;’s in (3.2) or (3.14) simply provides a different local
representation of the same critical point set, whenever (3.1) constitutes a base of R"

apart from this requirement, the set of h;’s is completely arbitrary.

We have in particular the two corollaries helow.

Corollary 2
Under the same hypotheses and with the same notations of Theorem 1, let {h;, 1<5 <
n —g'} be a set of linearly independent vectors beloging to the linear space spanned by
{hi, 1 < i < n—g'}. Then the local representation (3.14) of the critical point set is
equivalent to

n—g'  n—yg' v B
PN Y 1n{mq(air)](whz+o(uu||> (3.17)

, q=1 7=1 i=1
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where M' is the (n—g') x (n—g') matriz of entries My, = /L’ZHV(E,X) Ry, 1<€,j <n—g"

O

Proof

The vectors h)’s and h;’s are related by

n g'
hi =Y eh (3.18)
j=1

and the matrix C' of entries ¢;5, 1 <4i,j < n — ¢', is obviously nonsingular owing to the
linear independency of both sets. We show that equation (3.17) stems from (3.14) by

inserting (3.18). We firstly notice that

’I'L*‘(], [ - n,fg/ ’ﬂ*_(], - nfg' B
My = [ Ckgh{u} HV (T, /\) Z L‘ijhlj = Z (‘kchleV(T, A) h;-cij = Z cu[\ﬂj <Cl)ji
(=1 =1 ¢,j=1 0,5=1

or, equivalently, that C' M'Ct = M. M’ is nonsingular if and only if M is. Under the

hypothesis of nonsingular M we can write M~ = (CT)AJ\J’AC’l and the expression

p n—yg’ =g 9 0V B
-1 YN = .

T*;#q;lﬁ 2 (M >ji[a/\,,(837)}(377/\)/12 + o(Jlpl) (3.19)
becomes
B P n—g' ) n—g' et 9 oV =y ,
T 3 ety 3 LCHT [ (G0 @) 3 et 4 ollul) =

=1 jj'=1 i=1 i'=1
B P n—g' n—g' oVl —
=N g Sy (T { (E)W,A) R+ of|lel)
q=1 J'=1 =1

which after left-multiplication by R(a',0) takes precisely the same form of (3.17). O

Corollary 3
Under the same hypotheses and with the same notations of Theorem 1, let {h), 1 < j <

n—g'} CR"™ be a set of linearly independent vectors such that

{OR

S0 1<i<gJ Ul 1<j<n—g'}
(£33
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18 a base of R™. Then the relationships

» n—g n—yg , .
; . 0 [0V -
— g ol . Aq—1 P R /j Yh: . .
v = R(a',0,...,0) [ Z; > i 3 (M | 5, (5o )] @2 b+ o] (320
g =1 j= i=
and
- € ¥ 4 (OVN],_ ~ .,
e=T =Yy k> (0l (G )@ r o) 3:21)
=1  j=1 i=1 q
coincide for a suitable choice of the vector parameter o' = Ilp+ o(||pl]), being IT a constant
g' X p real matriz. O
Proof
OR
If, as assumed, {0—(0)5, 1< < g'} U{hj, 1 <j<n—g'} constitutes a base of R",
o

any other base of the form

OR
{0 (0)7,1<1§gI}U{h;,1§[§n—g'}
o

is characterized by the relationships

n—g' g9 OR
h; = Zcijh’f+zdikaT,k(0)f 1<i<n—g
=1 k=1

in terms of appropriate real coefficients ¢;; and di, 1 <i.j <n—g¢', 1 <k < ¢'. The
matrix C of entries Cyj; = ¢;5, 1 < ¢,j < n —g¢' is nonsingular. Indeed, the matrix T of the

base transformation comes from

OR OR
—(0)r = —(0)7 1<<yg
3041/()71 8@[»()T =t=9
g’ n—g
OR . _ .
hi= > dug ()T + Y eyl 1<isn—g
k=1 j=1
and is written as
I dri 1<k<g’ 1<i<n—g!
g' xg' g' x(n—g¢')
T —
0 Cji 1<i,j<n—g’

(n—g')xg¢g (n—g¢")x(n—g")
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with determinant detT = detC" = detC. Since detT # 0, we deduce that also detC' # 0

so that C' is nonsingular.

The entries of the matrix M can be calculated in terms of the new bhase according to the

expression
9 n—yg' g -9
OR _ T < OR
My = {Z i g (0)7 + c”hﬂ H, (r,x)[Zd,,, Z ,]h:] -
k=1 =1 =1 =1
n—g g' R n—g
— N 1
= ZC”[Z dkk’[)(,\rk! (U)”E+ Eckﬂl(} HV( /\)h
J=1 k'=1 =1
oR , . y | fe e
because H,, (7, A) 3 (0)z = 0,1<4" < ¢, for any critical point  of V. Moreover, the
g
symmetry of H,, (7, ) implies
OR T — OR i
0)7| Hy () = [H, (7, Oz =0 1= <g
[, 7] Hy (@) (@7 g (0)7 <H <y
and therefore the further simplification
n—g' n—yg’
My; = Z Cij Cke h// H‘/(?,X) h’] = Z cMM}j(CT)]-i = (CA/IICT)/”'
=1 Jl=1
which is equivalent to the matrix expression M = CM'Ct. We deduce that M~! =

(CH="M'~'C~" and that the sum

zg: hy (ML [aiq (aatﬂ (@, ) by

t,5=1

in (3.20) becomes

’ ' ’

n—g 9 : "9
s . 1 OR , . _ .
S e e (3 e 2R s 3 )

1,7=1 k'=1 J'=1
D VN < (D =y
e G e -
q k=1 k =1
n—g’ n—yg'
Z[(CT “1ar~ 1 11]’(2 d]l" 1«\» chj,]l7'>
i,j=1 =

’

' (29: dix [aa (?917«)

k=1 K =1 q
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_ ”Z_j[( ch-1 e "kgldwm (0)z [aiq(gﬂ(fj)%w)f+
+§f Mo %;::i dﬂc'w 0)z [ai (ZZ’)](T’X”“
ig=1 =1 1
et 5 2 o
ij= J'=
n nzf ch'm e ’i i cichly [Bi/\q(%) (T, ) Ry
i j=1 gie=t

and finally

i aaj (07 [Dichymletp],, | 0 (%)}QX R o5

k k=1 LON, \ Ox Oy,

+/i1 ﬁ ;(f (0)z [DHCH~ {M’*]W{%(ZD (7, ) b+ -
+ h ], [ 2 (W) n o+

+ :%i hf [M’_l]j,[ L% (?LH (T, A) Iy

on having introduced the matrix D such that D;; = d;5, 1 <2 <n—g¢',1<j <4 A

slight simplification of (3.22) is possible by observing that the equality

v OR )
— ;= T AL <i<gq.
83?(I“Z(ot)zz/\)am( a)r =0 VaeU,ze, Ne A, 1<i<yg

implies the vanishing of all the partial derivatives with respect to A,, 1 < ¢ <p,

a o0V OR
an, \ oz T = €U, a / <i<
{mq(axﬂ(ﬁ(aﬂ No(@ae =0 YaelU,zeQ, Aed, 1<i<y,

2

and for =T, A = \, & = 0 provides

[or, (5 )@ =0, 1<iss
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so that (3.22) can be put in the shorter form

/ '

g "i IR (0)z [Df(CT)—erfl]k,[[aiAq (%)](yj) Ry +

k'=1 (=1

+ Z w7 'ﬂ[ai (?T)}(TX)H.

=1

By inserting the latter result into equation (3.20), we obtain now

z = R(d',0 [T*Z/L Z h/ [M'™ ! ’f[ai (%)}(TX)M{*

J' =1

G - & (OVN],_ ;
- Zuqz Y 2 8(1/ 0)z [Di(Ch) s l]k,ﬂ[a—)\q(a‘r)](E,/\)h'ﬁrO(HMH)

g=1 k'=1 (=1

where the smoothness of @ — R(«) allows us to introduce the matrix equality

+ZO/A/

k'=1

R(a',0) (0) + ofll(a", 0)]) =

(3.23)

H+Z'anqa (0)+ o) + o | (T + o 1,0 )

¢=1k'=1
It is evident that ¥y # 0, ||¢]| small enough, there holds O(H(Hp, + O(H,UH)O)”) / lle]l = 0
if e+ o(||p|]) = 0, and

o(|(u + o(luD,0)])) o[ (Tp + o] l]), 0)]]) ||(TTpx + of

[ (T + o(llel)), 0) | [

,0

RO (g0
if not. As a consequence, since the last factor in the right-hand side of (3.24) is bounded
we conclude that o(||(TIx + o(||]]). 0)]|) = of|[u]|) and that (3.23) reduces to

(a’,0) —H+Zuqzﬂwqa 0) + olull) -

g=1 k'=1

The further expression follows

» 9' n=y — 1 o (v
*’lf:I—&_ZN‘]ZHkqﬁak/ ZH Z h/ I\[ "’{ZM (al)

q=1 k'=1 7', =1

u ' OR — 9 OV —
-3, “(0)7 [DH(Ch M l]k'f{aTq (87)](? N) B+ of[ll])
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which coincides with (3.21) by posing

n—g' L B 9 v
My, = Y [Di(Ch) "0 1],”[(” ()@
(=1
for 1 <k'<g' and1<qg<p. O

4. Estimate of errors

For each fixed X in a neighborhood of X the function Vy admits a set of critical points in

a neighborhood of  which is locally described by (3.14).

A reasonable way to represent the changement of the critical points of V) when A varies
may be to consider the only point z(A) of intersection between the critical point set and
the linear manifold individuated by T and {h;, 1 < j < n—g'} the other critical
points are individuated by applying an appropriate invariance transformation R(a',0) of

the function V. Such a point is obtained by posing o' = 0 within (3.14)

P n—g'  n—g' 9 ,av B
D ICEEND DI A ()] @D b oA =31 (@)

and obviously depends on the choice of the vectors {h;, 1 < j <n—g'} or, more precisely,
of the linear subspace L{h;, 1 <j <n—g¢'} spanned by {h;, 1 <j <n—g¢'}. Owing to
Corollary 2, the possible replacement of {h;, 1 < j <n —g¢'} by a set of n — ¢ linearly
independent vectors beloging to the same linear space L{h;, 1 < j < n — ¢'} does not

affect (4.1).

A convenient strategy consists in introducing the h;’s in such a way that the spanned space

L{h;, 1 <j<n-—g'}is orthogonal to

oo, 1<)
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with respect to the usual scalar product in R" which induces the correspondent Eu-
clidean norm || ||. The correcting terms due to the matrix R(a',0) in (3.14), for small
(e, 0)], are written

'

g

OR _
> ak 5 (0)7 + ol (', 0)]) + ol A — Al

Jay,
= k

and thus turn out to be orthogonal to the main contribution

P _ n=g' n—y \ 9 /0 -
ro(A) = 7 — Z()‘q - ) Z h; Z (MY {R (07:/)} (@, A) b
g=1 j=1 i=1

up to the terms o(|[(a',0)]]) and o(||A — A|[). We are then led to conclude that
|R(a’,0)z0(N) = Z[| 2 [lzo(A) — |

so that the selected points are, for varying A, the nearest to 7.

A set of hj’s satisfying the previous condition can be easily determined. We can apply the

Gram-Schmidt orthonormalization method to any base of R™ of the form

{SR(O)T, 1§i§g’} U{fk, 1<k<n—g}
o

by processing the base vectors in the same order as above. If {e;, 1 < j < n} is the or-

Ok o)z,

thonormal base we obtain, the linear space L{ej, 1 < j < ¢'} coincides with L{
; o

1<:< g'}, whereas L{e;, ¢' +1 < j < n} is orthogonal to it:

OR
L FT,1<i<yg - g <j<n}.
R L{aai([))),17779}®L{€],g+17]7n}

We will simply have to pose h; = e¢grq; for 1 <i<n—g'.

Thus we have determined a simple and reasonable way to characterize the critical point

(minimum) displacement due to parameter uncertainty.
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5. Conclusions

It has been shown as invariance properties of the model equations, through an appropriate
group of linear transformations, imply a very peculiar structure of any merit function
used for best-fit estimates of surface free energy components in quadratic multicomponent
models. Such a structure is reflected in the distribution of merit-function minima, involved
in the calculation of best-fit estimates to surface free energy components, according to the
nonlinear method. A simple and reasonable stategy allows us to describe the displacement
of minima due to uncertainties on experimental data, and therefore to estimate the related

error propagation on the final results.



- 104 -

References

(1]
(2]
(3]

(4]

[10]

C.J. van Oss, R.J. Good, M.K. Chaudhury, J. Protein Chem. 5, 385-402 (1986)

C.J. van Oss, M.K. Chaudhury, R.J. Good, Adv. Coll. Interf. Sci. 28, 35-60 (1987)

C.J. van Oss, R.J. Good, M.K. Chaudhury, Langmuir 4, 884-891 (1988)

R.J. Good, M.K. Chaudhury, in Fundamentals of Adhesion, L.H. Lee Ed., Plenum
Press, New York (1991), Chapt. 3

R.J. Good, C.J. van Oss, in Modern Approach to Wettability: Theory and Applica-
tion, M.E. Schrader, G Loed Eds., Plenum Press, New York (1991), Chapt. 1

C.J. van Oss. Interfacial Forces in Aqueous Media, Marcel Dekker, New York (1994)

C. Della Volpe, S. Siboni, Acid-base surface free energies of solids and the definition
of scales in van Oss-Good theory, J. Adhesion Sci. Technol. 14, 235-272 (2000).
Reprinted in Apparent and Microscopic Contact Angles, J. Drelich, J.S. Laskowsky
and K.L. Mittal Eds., VSP, New York (2000)

C. Della Volpe, S. Siboni, Troubleshooting of surface free energy acid-base theory
applied to solid surfaces: The case of Good, van-Oss and Chaudhury theory, Acid-
base reactions: relevance to adhesion science and technology, K.L. Mittal Ed., Volume
2, VSP, New York, 55-90, (2000)

AN. Tikhonov and A.V. Goncharsky Eds., Ill-Posed Problems in the Natural Sciences

MIR, Moscow (1987)

A. Deif, in Sensitivity Analysis in Linear Systems, SpringerVerlag, Berlin (1986)



