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Abstract 

The concept of similarity and its dual concept of diversity play a fundamental role in several QSAR 

strategies, chemometrics and library searching methods, virtual screening, as well as in relatively new 

fields such as genomics and proteomics. 

In this paper, a new flexible similarity/diversity measure is proposed to deal with sequential data, both 

taking into account the differences in property values of the sequence elements and the ordering 

relationships among the sequence elements themselves. 

Data such as DNA sequences, mass and NMR spectra, sequential molecular descriptors are all 

characterized by an ordering variable (the sequence) and by a property of the sequence elements. 

Some examples on artificial DNA sequences, mass spectra, molecular descriptors and proteomic maps 

are given. 

1. Introduction 

The concept of similarity and its dual concept of diversity play a fundamental role in several QSAR 

strategies, chemometrics and library searching methods, virtual screening, as well as in relatively new 

fields such as genomics and proteomics. Several distance measures both for quantitative and binary 
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variables have been defined, such as, for example, Euclidean, Manhattan, Minkowski, Camberra 

distances for quantitative variables, and Hamming, Tanimoto, Jaccard distances for binary variables. 

Distances are the quantitative measure of diversity between a pair of objects, thus large distances 

indicate large diversity, i.e. small similarity, and small distances indicate small diversity, i.e. large 

similarity. 

In this paper, a new similarity/diversity measure is proposed as a new approach to the analysis of 

sequential data, where useful information can be also obtained by the ordering relationships between 

the sequence elements.  

The new proposed distance (weighted standardized Hasse distance) is evaluated between pairs of 

Hasse matrices derived from the classical partial ordering rules. It can be naturally standardized, thus 

allowing to interpret these distances as absolute values (e.g. percentage) and deriving simple similarity 

and correlation indices. 

Simple examples of this methodology are given, showing its main characteristics and possible 

different applications. 

2. Theory 

The theory of the proposed approach to the similarity/diversity analysis of sequential data is presented 

introducing some partial ordering concepts, the Hasse matrix and the corresponding 

similarity/diversity measures. In the paragraph 2.4 a simple example of calculation is also given. 

2.1 Partial Ordering (PO) 

Partial Ordering is a ranking approach where the relationship of "incomparability" is added to the 

classical relationships of "greater than", "less or equal than", etc. [1-3]. 

Given a set Q of n elements, each described by a vector x of p variables (attributes), the two elements s

and t belonging to Q are comparable if for all the variables xj either xj(t) xj(s) or xj(s) xj(t). If 

xj(t) xj(s) for all xj (j = 1, ..., p) then t s , i.e. t covers s (or s is covered by t). The request "for all" is 

very important and is called the generality principle:

( ) ( ) [1, ]j jt s x t x s j p   (1) 

The ordering relationships between all the pairs of elements are collected into the Hasse matrix; for 

each pair of elements s and t the entry Hst of this matrix is: 

1 if ( )  ( ) [1, ]

1 if ( )  ( )  [1, ]

0 otherwise

j j

st j j

x s x t j p

H x s x t j p          (2) 

If the entry s-t contains +1, the entry t-s contains –1; if the entry s-t contains 0, also the entry t-s

contains 0. Then, the Hasse matrix is a square nxn matrix whose elements take only the values 0 and 
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1; if pairs of equal elements are not present, it is also antisymmetric matrix. In fact, in presence of 

elements having the same variable values (for all the variables), in both the corresponding entries of 

the Hasse matrix (s-t and t-s), a value equal to 1 is stored. 

It is interesting to observe that the Hasse matrix contains a holistic view of all the ordering 

relationships among the n elements belonging to the set Q. In other words, the Hasse matrix can be 

assumed as a fingerprint of the ordering relationships among the n elements. 

In order to add more information to the Hasse matrix, the augmented Hasse matrix can be defined by 

adding to the main diagonal (zero in the original Hasse matrix) any property P of the elements. The 

property values of each set of n elements are scaled dividing each value by the maximum property 

value (Hii = Pi / PMAX).

2.2 Hasse similarity/diversity measures 

Let be HA and HB two nxn Hasse matrices obtained by two different realizations of the variables 

defining n elements, i.e. representing two partial orderings A and B. The distance between the two 

partial orderings can be obtained by summing up the differences between the corresponding matrix 

elements. The distance between A and B can be considered as the contribution of two terms: 
1

1 11( , ) ( , )
( 1) / 2

n nn
A BA B
ij ijii ii

i j ii
D H

H HH H
d A B d A B

n n n
  (3) 

where the first term dD is the contribution to the distance due to the diagonal terms (the property 

values), while the second term dH is the contribution to the distance due to the off-diagonal terms (the 

ranking relationships of the Hasse matrix).  In both cases, the two distance terms d range from zero to 

one. This is obvious for the diagonal contribution using scaled values, but not for the off-diagonal 

contribution.  

In case that only two variables are considered in building the Hasse matrix and that no discrepancy is 

observed between the ordering provided by the two variables, the corresponding Hasse matrix 

obtained contains only +1 and –1 values, meaning that a total ranking of the elements exists. If the 

Hasse matrix is obtained by using a second variable which provides an inverse ordering with respect to 

the first one, it will comprise only zero values, meaning that no ordering relationships exist among the 

elements based on these variables. Then, it is noticeable that the maximum theoretical distance 

between these two matrices is n  (n – 1).  

From the two contributions, a weighted standardized Hasse distance (WSHD) can be defined as a 

trade-off between the ranking relationships and the property values. Therefore, the weighted 

standardized Hasse distance dW can be defined as: 

H D( , ) (1 ) ( , ) ( , ) 0 1W Wd A B w d A B w d A B d (4)
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where w is a weighting term ranging between 0 and 1. Using a weight equal to zero, the distance is 

calculated taking into account only the ranking relationships, while a weight equal to one takes into 

account only the property values. In between, a weight equal to 0.5 takes equally into account both 

terms, resulting in a distance measure where both the ordering relationships among the elements and 

their property differences are equally considered.

Moreover, WSHD is a generalized Manhattan distance calculated on the corresponding pairs of 

elements of two Hasse matrices, thus preserving all the metric properties of the Manhattan distance. 

This distance is straightforwardly interpretable as an absolute measure of distance (or as percentage 

d 100), as an absolute measure of similarity after the transformation s = 1 - dW or as a  correlation 

measure after the transformation: 

(1 ) 2 1 1 1W W Wr d r (5)

The rank correlation rH calculated for w = 0 (i.e. dW = dH) coincides with the Greiner-Kendall rank 

correlation index, defined as 
1

1 1

4
1 1 1

1

n n

ij
i j i

d

n n
(6)

where d+
ij is defined as

1

0
i j

ij

if i j and p p
d

otherwise

and p are the ranks of the samples. 

2.3 Hasse distance between Hasse matrices of different size 

As explained above, Hasse matrices are square nxn antisymmetric matrices able to take into account 

the partial ordering of n elements. When two sets of different element size are considered, i.e. the two 

sets are constituted by n1 and n2 elements, respectively, with n1 > n2 , two Hasse matrices H1 (n1xn1)

and H2 (n2xn2) of different size have to be compared.  In this case, the WSHD distance is not 

univocally defined and the algorithm has to be furtherly developed.  

The distance between the two matrices can be calculated by overlapping n1 - n2 + 1 times the smaller 

matrix (n2xn2) to the bigger one (n1xn1, the reference matrix), starting from the top-left corner and 

shifting the smaller matrix diagonally until the bottom-right corner. Thus, only the elements of the 

bigger matrix corresponding to the size of the smaller matrix are considered in each calculation of the 

Hasse distance. Each distance between the pair of overlapped matrices is calculated as explained 

above and the smallest distance among the n1 - n2 + 1 distances is taken as the final distance. This 

procedure corresponds to search the subset of ordered elements of the bigger matrix which is more 

similar to the n2 ordered elements of the smaller matrix. 
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2.4 Example of Hasse matrices 

In order to better understand the theory presented in paragraphs 2.1 – 2.3, a simple example is given. 

The five sequential intensities (1, 2, ..., 5) of two samples A and B are given in Table 1. 

The augmented Hasse matrices of the samples A and B, obtained by comparing the ordering 

and the corresponding property variables, are given in Table 2 and 3. The diagonal elements 

of the two Hasse matrices have been scaled with respect to the maximum property values (20 

for the sample A, 18 for the sample B). 

 Table 1. 5-dimensional profiles of two artificial samples. 

Ordering variable Property variable 
ID sample A sample B 
1 12 15 
2 17 18 
3 20 16 
4 14 10 
5 6 12 

  Table 2. Augmented Hasse matrix of sample A. 

A 1 2 3 4 5 
1 0.60 -1 -1 -1 0 
2 +1 0.85 -1 0 0 
3 +1 +1 1.00 0 0 
4 +1 0 0 0.70 0 
5 0 0 0 0 0.30 

  Table 3. Augmented Hasse matrix of sample B. 

B 1 2 3 4 5 
1 0.83 -1 -1 0 0 
2 +1 1.00 0 0 0 
3 +1 0 0.89 0 0 
4 0 0 0 0.56 -1 
5 0 0 0 +1 0.67 

  Table 4. Matrix of the difference between the matrices A and B. 

|A-B| 1 2 3 4 5 
1 0.23 0 0 1 0 
2 0 0.15 1 0 0 
3 0 1 0.11 0 0 
4 1 0 0 0.14 1 
5 0 0 0 1 0.37 
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The differences between the two matrices are collected in Table 4. 

The sums of the diagonal and off-diagonal terms (on the half matrix) are 1.00 and 3.00, respectively, 

and the distances: 

1.00 3
0.20 0.30

5 5 5 1 / 2D Hd d

Let now suppose that the sample B is represented only by the first four signals. In this case, the fifth 

row and the fifth column of Table 3 are not present. The distance between the samples A and B is 

calculated as the minimum distance between the two distances from the 4x4 B Hasse matrix 

overlapped 1) to the first 4 rows/columns of the A matrix and 2) to the  last 4 rows/columns of the A 

matrix. In this example, the two Hasse distances are both 4/12, i.e. dH = 0.34. 

3. Applications of Hasse distance to sequential data 

Data including an ordering variable can be considered as sequential data. These can be characterized 

by an ordering variable (sequential integer numbers, variable X1) and a property variable (real 

numbers, variable X2). 

Examples of sequential data are mass spectrometry signals, which are ordered by increasing masses, 

the intensity of signals being the property variable and their position in the spectrum the ordering 

variable; IR/UV signals, the signal intensity being the property variable and the wave length the 

ordering variable; 1D – NMR spectra, the signal intensity being the property variable and the chemical 

shifts the ordering variable. In general, all the spectra achieved along time are intrinsically ordered and 

can be analysed as sequential data. Analogously, data based on natural sequences can be also 

considered as sequential data. In effect, a sequence of integer numbers representing the positions of 

the elements into the sequence is the ordering variable, while any property characterizing the elements 

of the sequence is the property variable. A word can be thought of a sequence of characters whose 

position in the sentence is the ordering variable, while the position in the alphabet is the property 

variable. In the case of DNA sequences, which are sequences of the four nucleic acids, the molecular 

weight can be chosen as the property characterizing the elements of the sequence, i.e. the nucleic 

acids. For proteins, any physico-chemical property of the 20 aminoacids of protein sequences can be 

used as the property variable, while the most relevant protein abundances can be used in the case of 

proteomic maps. 

 Table 5. Examples of sequential data for applying the Hasse distance. 

Sequential data Ordering variable Property variable 

DNA sequences  1, ... , sequence length A, C, G, T property  

NMR spectra  1, ... , 1500 (from spectra resolution) signal intensity 
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Mass spectra  1, ... , 250 (from spectra resolution) signal intensity 

Molecular descriptors  1, ..., sequence length descriptor value 

Proteomic maps  number of considered proteins, ..., 1 protein abundance 
This kind of data can be easily characterized by Hasse matrices and their similarity/diversity assessed 

by the previously defined Hasse distance. In this case, the maximum information about the sequence is 

obtained by using only two variables, i.e. the ordering variable (X1) and the property variable (X2). In 

fact, in this case, the incomparabilities between two samples s and t can be due to only one condition, 

i.e. when the two variables X1 and X2 show an opposite rank: 

X1(s) > X1(t) and X2(s) < X2(t)    or    X1(s) < X1(t) and X2(s) > X2(t) 

For example, if three variables are taken into account, the incomparabilities between two samples can 

be obtained by opposite ranks of X1-X2 or X1-X3 or X2-X3, with a loss of information. In fact, in this 

case, the presence of zero values in the Hasse matrix cannot univocally related to a specific 

relationship. Examples of sequential data are collected in Table 5 and briefly discussed. 

All the calculations have been performed by a MATLAB module [4] produced by the Authors. 

3.1 DNA sequences 

DNA sequences are sequences of four nucleic acid bases (adenine, thymine, guanine, cytosine) and 

can be denoted by the letters A, T, G, C, respectively. Even when sequences are not too long, the 

searching for their similarity/diversity is not usually easy as shown by several sequence comparisons 

considered in literature papers. 

Comparisons among DNA sequences are performed using as the ordering variable the integer numbers 

correponding to the element positions in the sequence and as the second variable some properties of 

the nucleic bases such as the molecular weight (Table 6). 

Table 6. Different representations of the DNA sequences. MW is the molecular weight. 

Label ID MW Scaled ID Scaled MW 
C 1 111.1 0.25 0.735 
T 2 126.0 0.50 0.834 
A 3 135.13 0.75 0.894 
G 4 151.13 1.00 1.000 

In order to illustrate the characteristics of the Hasse matrix and the corresponding Hasse diagram, a 

random 20-length sequence S1 constituted by 4 different elements has been arbitrarily defined: 

ATGGTGCACCTGACTCCTGA 

The two variables used for building the Hasse matrices are shown in bold characters in Table 7. 
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In Figure 1 the Hasse diagram of this sequence is represented. As it can be easily noted, the 

information contained in the diagram not only considers the absolute sequence of the elements, but 

also four linear extensions are highlighted, one for each different element (A, C, G, T). For example, 

the sequence of the element A is characterized by the path 1-8-13-20, while for the element C the path 

is 7-9-10-14-16-17. The links between pairs of nodes represent ordering relationships between the 

elements, while elements on the same horizontal level are incomparable elements (not linked among 

them). 

Table 7. The variables selected in this work for building the 
Hasse matrices (columns 1 and 4 in bold characters). 

ID Base MW Scaled ID 
1 A 135.13 0.75

2 T 126.0 0.50

3 G 151.13 1.00

4 G 151.13 1.00

5 T 126.0 0.50

.... ... .... .... 

.... ... .... .... 

18 T 111.1 0.50

19 G 135.13 1.00

20 A 151.13 0.75

Figure 1. The Hasse diagram of the artifical sequence ATGGTGCACCTGACTCCTGA.
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A simple example of WSHD calculation showing its sensitivity to small changes is discussed by 

substituting the fifth element T of the sequence S1 by C (S2), A (S3) and G (S4), respectively. 

The calculated distances using the three weights 0, 0.5 and 1 are shown in Table 8. 

As expected the distances between S1 – S2 and S1 – S3, calculated taking into account only the 

property values, are equal (both differences between the pair of elements T-C and T-A are 0.25); 

nevertheless, the corresponding distances calculated by using the ordered property are different: S1 – 

S2 is equal to 3.684 and S1 – S3 is equal to 2.105. For all the weigths, the most dissimilar is S1 - S4, 

being the substitution more influent in the global ordering of the sequence. The presence of four A and 

six C characters in the original sequence S1 justifies the greater difference when T is substituted by C. 

Table 8. The distances (as percentages) of the three modified sequences with 
respect to the original sequence S1, calculated by using three different weights. 

w S2 - C S3 - A S4 - G 
0 3.684 2.105 4.737 

0.5 2.467 1.678 3.618 
1 1.250 1.250 2.500 

3.2 NMR and mass spectra 

In general, experimental spectra constitute a tipical case where an ordering variable (time, masses, 

chemical shifts, vawe lengths, etc.) and a property variable (signal intensities) can be naturally 

associated. 

In the case of mass and NMR spectra, the ordering variable is a sequence of integer numbers from one 

to the maximum number of numerically different signals (given by the spectra resolution). For 

example, in NMR spectroscopy, assuming the chemical shifts take values from 0.01 to 15.00, with a 

resolution of 0.01, the total number of resolved signals is 1500. The signals with intesities greater than 

zero are registered and embedded into the 1500 signals; all the other signals have intensities equal to 

zero. 

The two variables used for building the Hasse matrices are shown in bold characters in Table 9, for 24 

NMR signals whose intensities are greater than zero. These signals are successively embedded into an 

1500-array. Then the distances are calculated from pairs of Hasse matrices of size 1500 x 1500. 

In an analogous way, the ordering variable for mass spectra is constituted by integer numbers ranging 

from 1 to the spectral resolution (assuming a mass resolution of 0.1 in the range 0 – 25, 250 signals are 

obtained). The sensitivity of WSHD is here evaluated on a real mass spectrum of pentobarbital (SP1).  

The original mass spectra (SP1) is shown in Figure 2, where the differences of SP2, SP3 and SP4 are 

also highlighted. 

The data are collected in Table 10, where only the signals different from zero are reported. 
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Table 9. Example of 24 NMR signals with intensities greater than zero. In bold 
characters the ordering variable (ID) and the property variable (Height) selected for 
building the Hasse matrices are shown. 

Signal ppm ID Height
1 0.01 1 0.1159

2 1.17 117 0.1278

3 1.18 118 0.1247

4 2.17 217 1

5 2.42 242 0.0314

6 2.43 243 0.0255

.... .... .... ....

.... .... .... ....

.... .... .... ....
21 11.74 1174 0.0709

22 11.88 1188 0.0703

23 13.79 1379 0.0629

24 13.97 1397 0.0668

Table 10. Signal intensities for the pentobarbital (SP1) and the three modified simulated spectra (SP2 
– SP4). In bold characaters the modified intensities. 

Mass SP1 SP2 SP3 SP4 Mass SP1 SP2 SP3 SP4 Mass SP1 SP2 SP3 SP4
36 3 3 3 3 75 3 3 3 3 139 6 6 6 6
37 3 3 3 3 77 10 10 10 10 140 20 20 20 20
38 12 12 12 12 78 5 5 5 5 141 826 826 826 1000

39 139 139 139 139 79 12 12 12 12 142 71 71 71 71
40 38 38 38 38 80 22 22 22 22 143 11 11 11 11
41 364 364 364 364 81 18 18 18 18 144 1 1 1 1
42 83 83 83 83 82 13 13 13 13 151 1 1 1 1
43 378 378 378 378 83 30 30 0 30 152 1 1 1 1
44 84 84 84 84 84 13 13 13 13 153 6 6 6 6
45 6 6 6 6 85 38 38 38 38 154 0 0 0 0
50 5 5 5 5 86 8 8 8 8 155 133 133 133 133
51 11 11 11 11 87 9 9 9 9 156 1000 1000 1000 826

52 14 14 14 14 88 1 1 1 1 157 253 253 253 253
53 64 64 64 64 91 5 5 5 5 158 29 29 29 29
54 31 31 31 31 92 3 3 3 3 159 3 3 3 3
55 162 162 162 162 93 4 4 4 4 165 1 1 1 1
56 30 30 30 30 94 21 21 21 21 166 1 1 1 1
57 17 17 17 17 95 17 17 17 17 167 2 2 2 2
58 5 5 5 5 96 20 20 20 20 168 3 3 3 3
59 1 1 1 1 97 55 55 55 55 169 5 5 5 5
60 5 5 5 5 98 127 127 127 127 179 1 1 1 1
61 2 2 2 2 99 9 9 9 9 181 4 4 4 4
62 1 1 1 1 100 3 3 3 3 183 7 7 7 7
63 3 3 3 3 101 3 3 3 3 185 2 2 2 2
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64 1 1 1 1 102 0 0 0 0 191 1 1 1 1
65 13 13 13 13 103 1 1 1 1 193 1 1 1 1
66 13 13 13 13 105 2 2 2 2 195 2 2 2 2
67 58 58 58 58 106 3 3 3 3 197 65 65 65 65
68 33 33 33 33 107 2 2 2 2 198 10 10 10 10
69 120 120 120 120 133 3 2 3 3 199 2 2 2 2
70 67 67 67 67 134 2 3 2 2 204 1 1 1 1
71 89 89 89 89 135 2 3 2 2 207 6 6 6 6
72 5 5 5 5 136 2 1 2 2 208 2 2 2 2
73 9 9 9 9 137 6 6 6 6 209 1 1 1 1
74 8 8 8 8 138 7 7 7 7 227 6 6 6 6

          228 1 1 1 1

A total of 250 signals are considered and three spectra are arbitrarily obtained by performing small 

modifications of the signal intensities of the first spectrum. In particular, for SP2 only some small 

signals have been  modified (signals 133 – 135), for SP3 one signal has been modified from 30 to 0 

(signal 83), for SP4 the two greatest signals have been inverted (signals 141 and 156). 

Figure 2. Mass spectrum of SP1, together with the modifications performed for spectra 

SP2 – SP4 (see also Table 10). 

The distances calculated by using the weights 0, 0.25, 0.50, 0.75 and 1 are collected in Table 11. 
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Table 11. The distances (as percentages) between SP1-SP4 spectra calculated 
with different weights. 

w d(1-2) d(1-3) d(1-4) d(2-3) d(2-4) d(3-4) 
0.00 0.216 0.630 0.004 0.847 0.220 0.634 
0.25 0.163 0.476 0.041 0.639 0.203 0.517 
0.50 0.109 0.322 0.078 0.431 0.187 0.399 
0.75 0.055 0.167 0.114 0.223 0.170 0.282 
1.00 0.002 0.013 0.151 0.015 0.153 0.164 

As can be observed, when only the signal intensities are considered (w = 1), the two most similar 

spectra are SP1 and SP2, while the most dissimilar are SP3 - SP4 (0.164), SP2 - SP4 (0.153) and SP1 - 

SP4 (0.151). However, when only the signal ranking is considered (w = 0), the two most similar 

spectra are SP1 - SP4 (0.004), while the most dissimilar are SP2 - SP3 (0.847), SP3 - SP4 (0.634) and 

SP1 - SP3 (0.630). It is interesting to observe the opposite behaviour of the distances between SP1 and 

SP4, where the intensities of two highest signals have been exchanged. In this case, the contribution of 

the intensity differences is maximal (case w = 1), while in the Hasse diagram only the two cells 

corresponding to the two highest signals take opposite values, being the ranking of all the other signals 

not influenced (they remain smaller with respect to them as in the case SP1). The strong sensitivity of 

the Hasse distance (w = 0) in changes of small/medium signals is highlighted by the distances between 

SP1 - SP2 (0.216) and SP1 - SP3 (0.630). 

3.3 Molecular descriptors 

Molecular descriptors play a fundamental role in chemistry, pharmaceutical sciences, environmental 

protection policy, health research and quality control, being obtained when molecules, thought as real 

objects, are transformed into a molecular representation allowing some mathematical treatment. Many 

molecular descriptors have been proposed until now derived from different theories and approaches 

[5-6]. The information content of a molecular descriptor depends on the kind of molecular 

representation that is used and on the defined algorithm for its calculation. There are simple molecular 

descriptors derived by counting some atom-types or structural fragments in the molecule, other 

derived from algorithms applied to a topological representation (molecular graph) and usually called 

topological or 2D-descriptors, and there are molecular descriptors derived from a geometrical 

representation that are called geometrical or 3D-descriptors.  

In chemistry, molecular descriptors are the basic elements used by all the methods for assessing 

molecular similarities. 

In order to apply the proposed approach to the similarity/diversity in QSAR/QSPR problems, a set of 

convenient molecular descriptors has to be found. Several ordered descriptors are defined in literature, 

such as autocorrelation descriptors of different lags, connectivity indices of different orders, radial 
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distribution function (RDF) descriptors, etc. However, not all the ordered descriptors can be properly 

used in this approach. In fact, when the ranking of the descriptors values largely depends from the 

descriptor definition and less from the molecular structure, the descriptors cannot be used being equal 

all the Hasse matrices, i.e. the similarity/diversity measure does not depend from the descriptor 

ranking.

For example, the values of connectivity indices 0, 1, ..., 5 calculated for different molecules largely 

differ among them, but their ranking is the same in almost all the cases, i.e. they decrease from 0 to 

5. Then, the information related to the ranking is lost and the differences in similarity/diversity arise 

only from the differences in descriptor values.  A set of ordered descriptors showing a ranking 

independence is the set of RDF descriptors [7]. They are defined as: 
21

,
1 1

ij

A A
R r

R w i j
i j i

RDF f w w e

where A is the number of atoms, w the atomic property, and rij the geometric distance between the i-th 

and j-th atoms. The parameter f  is a scaling factor (equal to 1),  a smoothing parameter (assumed 

equal to 100) and R represent the radius related to the spherical volume (range of 1 – 15), with a step 

assumed equal to 0.5 Å. Five different properties have been used (Table 12) and thirty RDF 

descriptors for each property have been calculated using DRAGON software [8], giving a total of 150 

descriptors for molecule. An example of RDF spectrum is shown in Figure 3 for cyclohexane.  

Figure 3. RDF spectrum of cyclohexane. The five blocks of signals correspond to the five 

different properties (Table 12). 
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Table 12. Atomic properties (weights) used for the calculation of the RDF descriptors. 

Weight Description 

u no weight (all weights equal to 1) 

m atomic mass 

v van der Waals volume 

e Sanderson electronegativity 

p atomic polarizability 

In order to check the similarity/diversity measures based on the RDF descriptors, a small set of 10 

molecules has been used and the corresponding distances calculated with w = 0 (upper matrix) and w = 

0.5 (lower matrix) are shown in Table 13. Being the set of 150 RDF descriptors built considering all 

the weights of Table 12, the molecule representation contains several different chemical information 

(geometric, mass-related, electronic, etc.). The use of selected subsets can obviously highlight 

different levels of chemical similarity. 

As it can be noted, only considering the distances calculated by the Hasse matrices (w = 0), the most 

similar pairs of molecules are cyclohexane – benzene, benzene – toluene, Br-benzene – I-benzene, F-

benzene – Cl-benzene; moreover, the molecules less dissimilar from anthracene are n-hexane and 

naphtalene. By considering the weighted Hasse distances (w = 0.5), similar cosiderations can be done. 

The most dissimilar pair is I-benzene – anthracene. 

Table 13. WSHD distances (as percentages) for w = 0 (upper matrix) and w = 0.5 (lower matrix). In 
bold characters are highlighted the most similar molecule pairs. 

ID molecule 1 2 3 4 5 6 7 8 9 10 
1 n-hexane 0 18.398 18.685 14.058 17.575 16.206 16.617 17.888 11.579 14.130 
2 cyclohexane 11.791 0 1.718 8.510 3.436 5.486 4.412 5.754 11.579 27.302 
3 benzene 12.077 2.180 0 7.204 2.291 4.788 4.823 6.309 10.416 26.067 
4 toluene 9.685 6.280 4.512 0 5.736 5.047 6.497 7.427 4.358 21.280 
5 F-benzene 11.533 3.270 1.687 3.666 0 3.302 6.738 8.260 9.092 25.011 
6 Cl-benzene 11.659 5.540 4.429 4.478 3.571 0 8.591 9.951 8.421 24.931 
7 Br-benzene 11.818 4.205 4.345 5.599 5.514 7.293 0 2.720 9.065 25.074 
8 I-benzene 13.256 6.034 6.152 6.758 7.266 8.789 3.803 0 10.353 26.488 
9 naphtalene 8.215 7.833 6.516 3.168 5.752 6.572 7.086 8.428 0 17.888 

10 anthracene 10.358 17.619 16.278 13.383 15.643 16.581 16.507 18.245 11.003 0

3.4 Proteomic maps 

The evaluation of complex therapeutic and toxic behaviour of chemicals from their effects on simpler 

biological systems such as cells is among the most interesting trends in drug discovery, environmental 

- 64 -



safety studies, molecular pharmacology and hazard assessment. This scientific cross-breeding is going 

under the name of "toxicogenomics". 

In these last years, special attention has been payed to the cellular proteome which characterizes the 

different abundance of thousands of proteins belonging to the same cell. 

A typical proteomic map is a planar map constituted by two axes representing charge (x-axis) and 

mass (y-axis) where even 2000 cell's proteins may appear as separated spots accordingly to their 

charge vs mass values; the spot diameters are related to the abundance of the proteins.

Toxicological studies on proteomic maps consist in perturbing the control cell with a chemical and 

evaluate the resulting differences in the abundance of protein expressions with respect to the control 

cell. A very interesting mathematical challenge is to understand the complexity of cellular events, and 

then describe and characterize changes in proteomic maps.  

The application of the proposed approach to the proteomic maps requires the selection of a control 

map. The protein abundances of the control map are ordered from the most to the less abundant, 

among the considered expressed proteins. The ordering variable is the set of integers from n (the 

number of considered proteins) to 1: then, the Hasse matrix of the control map represents a total order. 

The Hasse matrices of the other proteomic maps are build using the ordering variable defined for the 

control map and the corresponding abundances. 

Table 14. The coordinates and the abundances of 20 proteins of the proteomic maps. The third 
entry (12,10 – spot 3) is taken as reference for artificial modifications, subtracting 7 in each step. 

n Rank ID x y M0 .... M4

1 20 21 23 144.4 .... 144.4 
2 19 28 9 143.6  143.6 
3 18 12 10 136.7  108.7 
4 17 22 9 125.3  125.3 
5 16 27 12 118.6  118.6 
6 15 15 8 114.9  114.9 
7 14 13 14 112.3  112.3 
8 13 29 8 108.9  108.9 
9 12 14 11 98.2  98.2 

10 11 26 13 94.1  94.1 
11 10 25 4 93.6  93.6 
12 9 16 6 90.0  90.0 
13 8 30 8 86.7  86.7 
14 7 21 8 84.8  84.8 
15 6 6 7 82.5  82.5 
16 5 29 19 82.0  82.0 
17 4 20 9 80.0  80.0 
18 3 28 8 79.8  79.8 
19 2 23 10 72.8  72.8 
20 1 11 9 72.2 .... 72.2 
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In order to exemplify the proposed approach, a calculation has been performed producing artificially 

some proteomic maps which differ systematically from the control (Table 14). 

Following the strategy proposed by Randic et al. [9], the abundance of the third spot (map M0)

corresponding to the coordinates (12, 10) is modified iteratively subtracting 7 to the initial abundance 

(136.7), obtaining other 4 different proteomic maps (M1 – M4). The four abundance values of these 

modified proteomic maps are 129.7, 122.7, 115.7, and 108.7.  

The Hasse distances between the control map and the four modified maps are reported in Table 15, for 

the weights 0, 0.5, 1. All the distances are presented as percentages, i.e. multiplied by 100. 

When only the structure of the Hasse matrix is considered (w = 0), the distance between the control 

and the first modified map is equal to zero, because the new value of the spot 129.7 does not modify 

the ranking of the abundances; in the three other cases, the ranking is modified in increasing manner 

(1, 2 and 5 positions, respectively) and the distances reflect these modified rankings. 

Table 15. The distance (as percentages) of the four artificially modified 
proteomic maps from the reference one (spot 3), for three different weights.

w 1 2 3 4 

0 0.000 0.526 1.053 2.632 

0.5 0.121 0.506 0.890 1.801 

1 0.242 0.485 0.727 0.970 

In the case of w = 0.5, the distances are calculated taking into account both the Hasse matrix off-

diagonal terms and the diagonal terms. In this case, also the first modified map shows a distance 

greater than zero from the control. In the last case (w = 1), only the diagonal contributions of the Hasse 

matrix are considered, and the distances from the control differ in an uniform way (0.243). 

Thus, it can be observed that when the off-diagonal terms are taken into account (w = 0 and w = 0.5), 

the distances from the control increase not-linearly, due to the relevant role of the global ordering 

relationships of the abundances. Moreover, the Hasse distances appear sensitive to small changes in 

abundances, but they also show a robustness with respect to changes which does not change the 

ranking of the abundances. 

4. Conclusions 

The proposed similarity/diversity measure appears as a new approach to sequential data, where useful 

information can be also obtained by the ordering relationships between the sequence elements. In 

particular, the weighted Hasse distance shows some advantages: a) the Hasse matrices and the 

corresponding distances are calculated by a straightforward algorithm; b) the distance is naturally 
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standardized, allowing a natural interpretation of the obtained values; c) the distances are able to take 

into account the whole structure of the ranking relationships of the sequences; d) the distances can be 

obtained by a flexible strategy (the weights) depending on the specific similarity/diversity study; e) a 

simple rank correlation measure is derived, also taking into account incomparabilities among sequence 

elements. 

Specific studies are in progress about the characterization of DNA sequences, proteomic maps and 

molecular similarity. 
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