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Abstract

A C,Cy net is a trivalent decoration made by alternating squares C, and octagons Cj . It can cover either
a cylinder or a torus.

In this paper we compute Padmakar-Ivan index, abbreviated (P/) index, of TUC,Cy(R) nanotube
where PI index of a graph G is defined as PI(G) = Z [ng" (e‘G)+ n,, (e‘G)], where 71, (e‘G) is the
number of edges of G lying closer to # thanto v, n,, (e‘G) is the number of edges of G lying closer to

v than to # and summation goes over all edges of G .This topological index is developed recently.
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1. Introduction

A graph G consists of a set of vertices V(G) and a set of edges E(G). The vertices in

G are connected by an edge if there exists an edge U,U,; € E(G) connecting the vertices
U, and U, in G such that U,,U; € V(G). In chemical graphs, each vertex represents an

atom of the molecule, and covalent bonds between atoms are represented by edges
between the corresponding vertices. This shape derived from a chemical compound is
often called its molecular graph, and can be a path, a tree, or in general a graph.

A real number that describes a molecular graph is called a topological index. Usage
of topological indices in biology and chemistry began in 1947 when chemist Harold
Wiener [1] introduced Wiener index to demonstrate correlations between physico-
chemical properties of organic compounds and the index of their molecular graphs.
Wiener originally defined his index (W) on trees and studied its use for correlations of
physico chemical properties of alkanes, alcohols, amines and their analogous compounds
[2].

Another topological index was introduced by Gutman and called the Szeged index,
abbreviated as Sz [2]. For the reason of the coincidence of Wiener and Szeged indices in
case of trees the authors in [3,4] introduced another Szeged/Wiener-like topological
index and named it Padmakar-Ivan index, abbreviated as PI. Unlike Szeged index (Sz),
PI index is very different for trees as well as for cyclic graphs, and not much is known
about the applicability of PI index in chemistry [2].

The distance between a pair of vertices uand v of G is denoted by d, (u,v) or
d(u,v). We define for e =uv two quantities #,, (e\G) and n,, (e\G) where n,, (e\G) is the
number of edges of G lying closer to # thanto v and n,, (e‘G) is the number of edges of

G lying closer to v than to u. Edges equidistant from both ends of the edges are not
counted.

If G,, ={x|d(u,x)< d(v,x)},Gv,e ={x|d(u,x)>d(v,x)}, and G, represents the vertices
of edges that equidistant from two vertices # and v, then

n,(e1G)=|EG,.)| . n.(e1G)=| E(G,,)

of the vertex set V =V (G),

and N(e)=‘E(G5)

. Here for any subset U

EWU)

, denotes the number of edges of G between the
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vertices of U . In a series of papers, some people computed the Wiener index and the PI

index of some nanotubes [5-12].

In this paper, PI index of TUC,C,(R) nanotubes is computed. We denote the
number of rhombs on the level 1 by p and the length of tube by ¢ . Therefore we have

2q rows of edges and 3g rows of vertices in TUC,C, (R) nanotube.

Figure 1- The TUC,4Cg(R) Nanotube with p=8 and q=5

2. PI index of TUC,Cg(R) Nanotubes

In this section, we compute the PI index of the graph 7 =TUC,C,(R) nanotube. To do

this, we assume that E=FE(T) is the set of all edges of T and

N(e)=|E|-(n,,(e|G) +n,,(¢[G)) .Then PI(T) \E\ =D N(e).

ecE

But ‘E(T)‘ = p(6q - 1) andso PI(T)=p’ (6q—1)2 —ZN(@) . Therefore, for computing

eekE

the PI index of T, it is enough to calculate N(e), for every ec E.
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Figure 2- The TUC,4Cg(R) Nanotube with 3q rows and 3p columns of vertices

At first, we assume that p is even . Therefore, we have the following lemmas:

Lemma 2.1. If e is a horizontal edge in Figure 2, then N(e)=2q.

Proof. Suppose e=U, U, is an arbitrary horizontal edge of i" row of vertices in

TUC,Ci(R) nanotube. In this case for every k, k=2,5,..,3g—1 we have

du,,.U,,)=dU,,..Uyy)  and a0 d(U,.U,,)<dlU,,.Uy.,) and

ij>

d(Uk(M) (1) )< d( Ui U, ).Therefore if we suppose
A={U,, Uy | K =2,5,...3g 1)
we have ‘E (A)‘ =g and AcT,. For founding the remained edges that belong to 7, we

consider three cases:
. . 3p
)If j =7 , then for every k=2,5,...,3¢g—1 we have

d(UmU( )) d(U,.( Uk1)~

j+1)?
ii) If j=3p, then for every k =2,5,...,3g—1 we have:
d(Ui(3p)’Uk(3l+1)) d(U”,U (3l))

2 2

111)Ifj;t3p,32 then we have d(U U, ) d(U.(

ijo i(j+1)

,Uk(m)) where

. . 3p
+= <=
J 21’ J >
3p 3p . ’
-—= X<j<3
5 5 J<3p
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Hence in all cases g edges are equidistant from both ends of the edge e. So if we insert
these ¢ edges in the set B, we have N(e)>|E(4)|+|E(B)|=2q. Now, we prove that

N(e)z‘E(A)H‘E(B)‘ =2q. Suppose U, U is a vertical edge. Hence for j§37p,

m+l)n

we have:
d(Um Ui (./+1))< d(Um Ui j )’d(U(mH)n U, (j+l))< d(U(mH)n U, j) if jsn<j+ 37p
d(Umn7U (j+l))>d(Umn’Uij)’d(U(m+l)n’Ui(j+l))>d(U(WH-l)n’Uij) lf }’l<j0}’}’l>j+37p

and for j > 3719, we have:

d(Umn’ )<d(Umn’U (/+l))’d(U(m+l) )<d( (m+1) Ui(j+l)) lf j_37pgn<j

AU, U, )< dU, U, )dU s Us o)< dU s Us ) if n2jor n< j—%}’

The proof for any horizontal edge which neither in E(A) nor in E(B) and also for any

oblique edge is the same as above and therefore N =2q. l

Lemma 2.2. If e is a vertical edge in Figure 2, then N(e)=p.

Proof. Let e=U, U, be a vertical edge. Therefore for every k ,k=2,5,....3p—1, we

have d(U U, ) d(U(M)/.,U(M)k). If we suppose A:{U,.k,UHlk\k 2,5,. 3p—1},

ij°
then E(A) has exactly p elements which are parallel to e. We prove that

‘E(A)‘ =N(e). Suppose e=U, U is a vertical edge that not belongs to 4. We

(m+1)n
have two cases:

Casel. If i <m, then d(U U )<d(U U, )and

mn? mn?

d(U(m+l)n’Ur+l )<d( m+ln’Uij)‘

Case2. If i > m, then d(U U, )<d(U U

mn? mn?> :+l

) and

d(U( U, )< d(U m+1 )17U(i+l)j )

m+1)n >
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Now  suppose that U,U ,, is a horizontal edge. Then for
s<i,dU,.U,,)<dlU,.U,.,,) and  dU..U,)<dU, 0 Upy,),  else
d(UshU (i+1) )< d(Us1=U ) and d( s(1+1)> 1+1 )< d( s(i+1)2 U )

Let U, U, be an oblique edge where k is equal to m+1 or m—1.If i>m,

(n+1)

then d(Umn,U )<a7(UW,U,+l )and d(

<d Ui ). If i<m, then
) (knl (H—l)j)

k(n+1)>

d(U;nn’Uz+1 )<d(Umn’U )and d( kn+1 1+1 )<d( kn+1

U, /.). Therefore we proved

that \E(A] = N(e) and the proof is completed. [

Figure 3- The TUC4Cg(R) Nanotube with p=8 and g=5

Lemma 2.3. Let e be an oblique edge in the k" row of edges in Figure 3, then:
) If 29 < p, then N(e)=4q
2) If2g > p, then we have the following cases:
Casel: If2p—1>2gq, then
2p+2(k-1) 1<k<2g-p+1

N(e)= 4q 2q—p+2<k<p-1
2p+2(2q—k) p<k<2q

Case2: If2p—1<2gq, then
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2p+2(k-1) 1<k<p
N(e)= 4p-2 p+1<k<2g-p
2p+2(2q-k) 2q-p+1<k<2gq

Proof: At first we denote the oblique edges E;,1<i<2q,1<j<2p of TUC,C; (R) as
be described in Figure 3. It is obvious that N(E,,)=N(E,,)=...= N(Emp)), for every
k, so it is enough to calculateN(E”),N(EZI),...,N(E(zq)I). Suppose2g < p. For
computing of N(E,,), we consider 4= {E“,Ezz,...,E(zq)(zq),El(pH) By (p+l)} Suppose
thatE,, =u,v,, 1 <i<2q. Then, we have

duy,u,)=d(v,,v,),d(u,,u,)<dv,,u,),dv,,v,)<d(,,v,) for 1<i<2q.As a similar

way, £, € E( ) for 1<i<2q and therefore N( ) ‘A‘ 44 .With the same proof
in the Lemma 2.1, we can prove that N(E,)=4¢g. We continue our argument by
considering the edge E,. If we consider
B= {E“,En,...,E(zq)(zq),El(mz),Ez(mz) Ezq (p+2) } then N( ) ‘B‘ 4gand again we
can show that N(Ezz): 4q . Now we consider the edge £, . To find N(E31) , we delete

the first and the second row of edges of the TUC,C,(R) and obtain a new TUC,C,(R)
nanotube with 2¢g—2rows of edges. Since E, is the (l,l)entry of this lattice and
2q—-2<p,we haveN(E31)=R+4q—4, where R is the number of edges E(TE31 ) in the
first and the second row of edges of TUC,C, (R) nanotube. On the other hand,

E\(o 1) Exap)ys Ei(perys Eo(py are only edges of TUC,Cy (R) in the first and the second row

of edges that belong to N(E, ) Therefore N(E,,)=4q. If we continue this method, we
have N(E,)=N(E,)=...=N(E,,,)=4q.

Now suppose 2g > pand2p >2g+1. For computing of the value N (E,,), we
consider 4 = {EH,EZZ,...,E(W),EI( E, 0 } Suppose thatE, =u,v,, 1<i< p, we

prl)scees ivio

have d(ul,u[)zd(vl,v[),d(ul,u[)< d(vl, )d(vl, )< a’(ul, v,) for 1<i< p. As a similar
way E,.([M)EE( ) for 1<i<p, and therefore N( ) ‘A‘ 2pand as the same

above, we have N(E,)=2p . We consider the edge E,,. If2¢q> p+1, then with

considering,
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B=Ey:Eseees Bty By Exprap - B
we have N(E, )>|B|=2p+2and again we can show thatN(E, )=2p+2 . Now we
consider the edge E,, If 2¢ > p+2, then to find N(E,,), we delete the first and the
second row of edges of the TUC,C,(R) and obtain a new TUC,Cy(R) nanotube with
2g—2 rows of edges. Since E, is the (1,1) entry of this lattice, we have
N(E,)=R+2p, whereR is the number of edges E(TEI, ) in the first and second row of
edges of T'. Ej E Ey

1(p+1)?

E, .. are the only edges of TUC,C; (R) in the first

2p-1)22(2p)> p+1)
and the second row of edges that belong to N(E,, ). Therefore N(E; )=2p+4. If we
continue this method, then we have N(E,,)=2p+2(k—1) for k <2g—p+1. Let e be
an oblique edge in the k-th row of edges in Figure3 and 2g—p+2 <k < p—1. A part of
the elements of N(e) can be in p—1 rows of edges before & and since k < p —1, this
elements exist in all of the rows of edges before k. Also since there exist two elements
of N(e)in each row of edges, 2k —2 elements of N(e) are in k —1 rows of edges before
k . The other part of the elements of N (e) can be in p rows of edges equal to or greater
than to k. For 2¢—p+2<k<p-1, we have k+ p—1>2g and therefore all of rows
of edges greater than or equal to &, contains some elements of N (e). Since there exist
two elements of N(e) in each row of edges, we have N(e) = 4¢ . Now let e be in the k-th
row of edges where p <k < 2q . By the symmetric property in the TUC,C, (R) nanotube,
we have N(e)=2p +2(2q—k).
Let 2p—1<2gq.1If e is in the k -th row of edges, 1<k < p, similar to last case we have
N(e)=2p+2(k-1).

Let e be an oblique edge in the k-th row of edges in Figure3 and p+1<k <2g—p.
A part of the elements of N(e) can be in p—1 rows of edges before & and
since p—1< k, these elements exist in p—1 rows of edges before k. Also since there
exist two elements of N(e) in each row of edges, 2p —2elements of N(e) are in p—1
rows of edges before k. The other part of the elements of N(e) can be in p rows of

edges equal to or greater than to k. For p+1<k<2g—p, we have k+ p—-1<2q and

therefore p rows of edges greater than or equal to &, contains some elements of M| (e).
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Since there exist two elements of N(e) in each row of edges, 2p elements of N(e) are
in p rows of edges equal to or greater than to k. Hence we have N (e): 4p-2.1f e is
in the k-th row of edges , 2¢—p+1<k<2g by the symmetric property in the
TUC,C,(R) nanotube, we have N(e) =2p+ 2(2q - k). l

Now we assume that p is odd .Therefore, we have the following lemmas:

Lemma 2.4. If p is a horizontal edge, then N(e)=

Proof. Suppose e=U, U, is an arbitrary horizontal edge of i-th row of vertices in

TUC4C8(R) nanotube. In this case, for every k, k=2,5,..,3¢g—1, we have

d(U”,U,(j) d(Ui(M),Uk(M)) and also d(U

ijo

U, )<d( (1) U,w.) and

U, () )< d(U Ui ) Therefore if we suppose

ij*

dUu,

Jj+1)?

{Uk],U k=2,5,...,3q71}wehave N(e):‘E(A)‘zq. [ |

k(j+1)

Lemma 2.5. If ¢ is a vertical edge, then N(e)=p.

Proof. The proof is similar to lemma 2.2. l

Lemma 2.6. If e is an oblique edge in the & th row of edges, then we have
1) If 2¢ < p, then N(e)=2g
2) If2q > p, then we have two cases:

Casel: If2p—1>2q, then

pt+k-1 1<k<2g-p+1
N(e) = 2q 2g—-p+2<k<p-1
p+2q9-k p<k<2q

Case2: If2p—1<2gq, then

p+k-1 1<k<p
N(e)=4 2p-1 p+1<k<2qg-p
p+2q—k 2g-p+1<k<2q

Proof. The proof is similar to Lemma 2.3. I

We now ready to prove the main result of the paper.
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Main Theorem. The PI index of TUC,C(R) nanotube is as follows:

If p is even, then we have

36p°q> —13p°q —18pg* +2p* 2¢g <
P](TUCC(R)): o pq i pq qu P3 . q=p
36p°q —29p°q+8pq—2pq°-+4p” -3p 2g>p

If p is odd, then we have

36p’q" ~13p’q—9pq* +2p*  2q<p

PI(TUC,C4(R))=
( 4G )) {36p2q2—21p2q+4pq—l7‘12+2p3 2g>p

Proof. Since PI(G):‘E‘2 —ZN(e), it is enough to compute ZN(e). Suppose 4,B

ecE eck
and C are the sets of all horizontal, vertical and oblique edges of T, respectively. Thus

we have PI(TUC,Cy(R))=|E[" - ;N(e) =Y Nle)-Y. Nle)

eeB eeC

If p is even, then we have » N(e)=2pq® and Y N(e)=p’q-p*>. Now if 2¢<p,

ecd eeB

then we have ZN(e) =16pq* and for 2g > p we have

eeC

> Nle) 2p{22qu+[l2p+2 i—1)]+ 244

eeC i=2q-p+2

—2p|:22[2p+2 )]+24p 2)}

i=1 i=p+l
=16p’°q+4p” —4p’ -8pq
Assume that p is odd so » N(e)= pg” and Y N(e)=p’q—p*. Now if 2¢ < p, then

eed eeB

we have Y N(e)=8pg*. And for 2¢ > p,

eeC

> Nle) 2p|:22[p+1—1]+ 224

eeC i=2q-p+2
—2p|:22[p+l—1]+ ZI(Zp—l)}
ip
=8p’q+2p’ -2p’ ~4pq
So if p is even, then we have
36p°q* —13p°q —18pg* + 2 p* 2g<p

PI(TUC,C4(R))=
( Gy )) {36p2q2—29p2q+8pq—2pl]2+4ps—3pz 2g>p
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If p is odd then, we have

36p°q’ —13p°q—9pq” +2p* 2q<p

PI(TUC,C(R))=
( Gy )) {36p2q2—21P2q+4p‘1_1"12+2p3 2g>p

and the proof is completed. l
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