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     Abstract

A 84CC  net is a trivalent decoration made by alternating squares 4C  and octagons 8C . It can cover either 

a cylinder or a torus. 

        In this paper we compute Padmakar-Ivan index, abbreviated )(PI  index, of )(84 RCTUC  nanotube 

where PI  index of a graph G  is defined as GenGenGPI eveu)( , where Geneu  is the 

number of edges of G  lying closer to u  than to v , Genev  is the number of edges of G  lying closer to 

v  than to u  and summation goes over all edges of G .This topological index is developed recently.  
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1. Introduction 

A graph G  consists of a set of vertices )(GV  and a set of edges )(GE . The vertices in 

G  are connected by an edge if there exists an edge  )(GEUU ji  connecting the vertices 

iU  and jU  in G  such that )(, GVUU ji . In chemical graphs, each vertex represents an 

atom of the molecule, and covalent bonds between atoms are represented by edges 

between the corresponding vertices. This shape derived from a chemical compound is 

often called its molecular graph, and can be a path, a tree, or in general a graph. 

        A real number that describes a molecular graph is called a topological index. Usage 

of topological indices in biology and chemistry began in 1947 when chemist Harold 

Wiener [1] introduced Wiener index to demonstrate correlations between physico-

chemical properties of organic compounds and the index of their molecular graphs. 

Wiener originally defined his index )(W  on trees and studied its use for correlations of 

physico chemical properties of alkanes, alcohols, amines and their analogous compounds 

[2].

        Another topological index was introduced by Gutman and called the Szeged index, 

abbreviated as Sz [2]. For the reason of the coincidence of Wiener and Szeged indices in 

case of trees the authors in [3,4] introduced another Szeged/Wiener-like topological 

index and named it Padmakar-Ivan index, abbreviated as PI. Unlike Szeged index (Sz), 

PI index is very different for trees as well as for cyclic graphs, and not much is known 

about the applicability of PI index in chemistry [2].  

        The distance between a pair of vertices u and v  of G  is denoted by vudG ,  or 

vud , . We define for uve  two quantities Geneu  and Genev  where Geneu  is the 

number of edges of G  lying closer to u  than to v  and Genev  is the number of edges of 

G  lying closer to v  than to u . Edges equidistant from both ends of the edges are not 

counted.

 If xvdxudxGxvdxudxG eveu ,,|,,,| ,, , and eG  represents the vertices 

of edges that equidistant from two vertices u  and v ,  then 

eveveueu GEGenGEGen ,, |,|  and eGEeN . Here for any subset U

of the vertex set UEGVV , , denotes the number of edges of G  between the 
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vertices of U . In a series of papers, some people computed the Wiener index and the PI 

index of some nanotubes [5-12].  

         In this paper, PI index of RCTUC 84  nanotubes is computed. We denote the 

number of rhombs on the level 1 by p  and the length of tube by q . Therefore we have 

q2  rows of edges and q3  rows of vertices in RCTUC 84  nanotube.  

Figure 1- The TUC4C8(R) Nanotube with p=8 and q=5 

2. PI index of TUC4C8(R) Nanotubes 

In this section, we compute the PI index of the graph )(84 RCTUCT  nanotube. To do 

this, we assume that )(TEE  is the set of all edges of T  and 

))()(()( GenGenEeN eveu .Then
Ee

eNETPI )(2 .

But 16)( qpTE  and so 
Ee

eNqpTPI )(16)( 22 . Therefore, for computing 

the PI index of T , it is enough to calculate )(eN , for every Ee .
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Figure 2- The TUC4C8(R) Nanotube with 3q rows and 3p columns of vertices 

At first, we assume that p is even . Therefore, we have the following lemmas: 

Lemma 2.1. If e  is a horizontal edge in Figure 2, then qeN 2)( .

Proof. Suppose 1jiji UUe  is an arbitrary horizontal edge of thi  row of  vertices in 

)(84 RCTUC  nanotube. In this case for every k , 13,,5,2 qk  we have 

11 ,, jkjijkji UUdUUd  and also 1,, jijkjkji UUdUUd  and 

jijkjijk UUdUUd ,, 111 .Therefore if we suppose   

                                13,,5,2, )1( qKUUA jkjk

 we have qAE  and eTA . For founding the remained edges that belong to eT  we 

consider three cases: 

i) If 
2

3pj , then for every 13,,5,2 qk  we have 

113 ,, kjipkji UUdUUd .

ii) If pj 3 ,  then for every 13,,5,2 qk  we have:  

2
311

2
33 ,, pkipkpi UUdUUd

iii) If 
2

3,3 ppj , then we have 111 ,, kjilkji UUdUUd  where

pjppj

pjpj
l

3
2

3
2

3
2

3
2
3

.
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Hence in all cases q  edges are equidistant from both ends of the edge e . So if we insert 

these q  edges in the set B , we have qBEAEeN 2)()()( . Now, we prove that 

qBEAEeN 2)()()( . Suppose nmnm UU 1  is a vertical edge. Hence for 
2

3pj ,

we have:

2
3,,,,,
2

3,,,,,

1111

1111

pjnorjnifUUdUUdUUdUUd

pjnjifUUdUUdUUdUUd

jinmjinmjinmjinm

jinmjinmjinmjinm

and for 
2

3pj , we have: 

2
3,,,,,

2
3,,,,,

1111

1111

pjnorjnifUUdUUdUUdUUd

jnpjifUUdUUdUUdUUd

jinmjinmjinmjinm

jinmjinmjinmjinm

The proof for any horizontal edge which neither in )(AE  nor in )(BE  and also for any 

oblique edge is the same as above  and  therefore qeN 2 .

Lemma 2.2. If e  is a vertical edge in Figure 2, then peN )( . 

Proof. Let jiji UUe 1  be a vertical edge. Therefore for every 13,,5,2, pkk , we 

have kijikiji UUdUUd 11 ,, . If we suppose 13,,5,2|, 1 pkUUA kiki ,

then )(AE  has exactly p  elements which are parallel to e . We prove that 

)()( eNAE . Suppose nmnm UUe 1  is a vertical edge that not belongs to A . We 

have two cases: 

Case1. If mi , then jinmjinm UUdUUd ,, 1  and

jinmjinm UUdUUd ,, 111 .

Case2. If mi , then jinmjinm UUdUUd 1,,  and

jinmjinm UUdUUd 111 ,, .
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Now suppose that 1lsls UU  is a horizontal edge. Then for 

is , jilsjils UUdUUd 1,,  and jilsjils UUdUUd 111 ,, , else 

jilsjils UUdUUd ,, 1  and jilsjils UUdUUd ,, 111 .

        Let 1nknm UU  be an oblique edge where k  is equal to 1m  or 1m . If mi ,

then jinmjinm UUdUUd 1,,  and jinkjink UUdUUd 111 ,, . If mi , then 

jinmjinm UUdUUd ,, 1  and jinkjink UUdUUd ,, 111 . Therefore we proved 

that eNAE  and the proof is completed.  

Figure 3- The TUC4C8(R) Nanotube with p=8 and q=5 

Lemma 2.3. Let e  be an oblique edge in the thk  row of edges in  Figure 3,  then: 

1) If pq2 , then qeN 4)(

2) If pq2 , then we have the following cases: 

Case1: If qp 212 , then 

qkpkqp
pkpqq

pqkkp
eN

2)2(22
1224

121)1(22
)(

Case2: If qp 212 , then 
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qkpqkqp
pqkpp

pkkp
eN

212)2(22
2124

1)1(22
)(

Proof: At first we denote the oblique edges pjqiE ji 21,21,   of RCTUC 84  as 

be described in Figure 3. It is obvious that  )2(21 pkkk ENENEN ,   for every 

k , so it is enough to calculate 122111 ,,, qENENEN . Suppose pq2 . For 

computing of 11EN , we consider 1211222211 ,,,,,, pqpqq EEEEEA . Suppose 

that iiii vuE , qi 21 . Then, we have  

iiiiii vudvvduvduudvvduud ,,,,,,,, 111111  for qi 21 .As a similar 

way, 
111 Epi TEE  for qi 21  and therefore qAEN 411 .With the same proof 

in the Lemma 2.1, we can prove that qEN 411 .  We continue our argument by 

considering the edge 22E . If we consider 

222221222211 ,,,,,,, pqppqq EEEEEEB , then qBEN 422 and again we 

can show that qEN 422  . Now we consider the edge 31E . To find 31EN , we delete 

the first and the second row of edges of the RCTUC 84  and obtain a new RCTUC 84

nanotube with 22q rows of edges. Since 31E is the 1,1 entry of this lattice and 

pq 22 , we have 4431 qREN , where R  is the number of edges 
31ETE  in the 

first and the second row of edges of RCTUC 84  nanotube. On the other hand, 

121122121 ,,, pppp EEEE  are only edges of RCTUC 84  in the first and the second row 

of edges that belong to 31EN . Therefore qEN 431 . If we continue this method, we 

have .41)2(2111 qENENEN q

         Now suppose pq2 and 122 qp . For computing of the value 11EN , we 

consider 1112211 ,,,,,, ppppp EEEEEA . Suppose that iiii vuE , pi1 , we 

have iiiiii vudvvduvduudvvduud ,,,,,,,, 111111  for .1 pi  As a similar 

way 
111 Epi TEE  for pi1 , and therefore pAEN 211 and as the same 

above, we have pEN 211  . We consider the edge 22E . If 12 pq , then with 

considering,  
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                    212221112211 ,,,,,,, pppppp EEEEEEB

we have 2221 pBEN and again we can show that 2221 pEN  . Now we 

consider the edge 31E .If 22 pq , then to find 31EN , we delete the first and the 

second row of edges of  the RCTUC 84  and obtain a new RCTUC 84  nanotube with 

22q  rows of edges. Since 31E  is the 1,1  entry of this lattice, we have 

pREN 231 , where R  is the number of edges
31ETE  in the first and second row of 

edges of T . 121122121 ,,, pppp EEEE  are the only edges of RCTUC 84  in the first 

and the second row of edges  that belong to 31EN . Therefore 4231 pEN . If we 

continue this method, then we have 1221 kpEN k  for 12 pqk . Let e  be 

an oblique edge in the k-th row of edges in Figure3 and 122 pkpq . A part of 

the elements of eN  can be in 1p  rows of edges before k  and since 1pk , this 

elements exist in all of the rows of edges before k . Also since there exist two elements 

of eN in each row of edges, 22k  elements of eN  are in 1k  rows of edges before 

k . The other part of the elements of eN  can be in p rows of edges equal to or greater 

than to k . For 122 pkpq , we have qpk 21  and therefore all of rows 

of edges greater than or equal to k , contains some elements of eN . Since there exist 

two elements of eN  in each row of edges, we have qeN 4 . Now let e  be in the k-th 

row of edges where qkp 2 . By the symmetric property in the RCTUC 84  nanotube, 

we have kqpeN 222 .

Let qp 212 . If e  is in the k -th row of edges, pk1 , similar to last case we have 

)1(22 kpeN .

         Let e  be an oblique edge in the k-th row of edges in Figure3 and pqkp 21 .

A part of the elements of eN  can be in 1p  rows of edges before k  and 

since kp 1 , these elements exist in 1p  rows of edges before k . Also since there 

exist two elements of eN  in each row of edges, 22 p elements of eN  are in 1p

rows of edges before k . The other part of the elements of eN  can be in p  rows of 

edges equal to or greater than to k . For pqkp 21 , we have qpk 21  and 

therefore p  rows of edges greater than or equal to k , contains some elements of eN .
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Since there exist two elements of eN  in each row of edges, p2  elements of eN  are 

in p  rows of edges equal to or greater than to k . Hence we have 24 peN . If e  is 

in the k-th row of edges , qkpq 212  by the symmetric property in the 

RCTUC 84  nanotube, we have kqpeN 222 .

Now we assume that p  is odd .Therefore,  we have the following lemmas: 

Lemma 2.4. If p  is a horizontal edge, then qeN .

Proof. Suppose 1jiji UUe  is an arbitrary horizontal edge of i -th row of vertices in 

RCTUC 84  nanotube. In this case, for every k , 13,,5,2 qk , we have 

11 ,, jkjijkji UUdUUd  and also jkjijkji UUdUUd ,, 1  and 

111 ,, jkjijkji UUdUUd . Therefore if we suppose  

13,,5,2, 1 qkUUA jkjk  we have qAEeN .

Lemma 2.5. If e  is a vertical edge, then peN .

Proof. The proof is similar to lemma 2.2.  

Lemma 2.6. If e  is an oblique edge in the k th row of edges, then we have  

1)  If pq2 , then qeN 2

2)  If pq2 , then we have two cases: 

Case1: If qp 212 , then 

qkpkqp
pkpqq

pqkkp
eN

22
1222

1211
)(

Case2: If qp 212 , then 

qkpqkqp
pqkpp

pkkp
eN

2122
2112

11
)(

Proof. The proof is similar to Lemma 2.3.  

We now ready to prove the main result of the paper. 
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Main Theorem. The PI index of )(84 RCTUC  nanotube is as follows: 

If p  is even, then we have  

pqpppqpqqpqp
pqppqqpqp

RCTUCPI
234282936
22181336

)( 232222

22222

84

If p  is odd, then we have  

pqppqpqqpqp
pqppqqpqp

RCTUCPI
2242136
2291336

)( 32222

22222

84

Proof. Since 
Ee

eNEGPI 2 , it is enough to compute 
Ee

eN . Suppose A , B

and C  are the sets of all horizontal, vertical and oblique edges of T , respectively. Thus 

we have 
CeBeAe

eNeNeNERCTUCPI 2
84 .

If p  is even, then we have 22 pqeN
Ae

 and 22 pqpeN
Be

.  Now if pq2 , 

then we have 216 pqeN
Ce

 and for pq2  we have  

pqppqp

pipp

qippeN

pq

pi

p

i

p

pqi

pq

iCe

84416

2412222

412222

322

2

11

1

22

12

1

Assume that p  is odd so 2pqeN
Ae

 and 22 pqpeN
Be

. Now if pq2 , then 

we have 28 pqeN
Ce

. And for pq2 ,

pqppqp

pipp

qippeN

pq

pi

p

i

p

pqi

pq

iCe

4228

12122

2122

322

2

11

1

22

12

1

So if p  is even, then we have  

pqpppqpqqpqp
pqppqqpqp

RCTUCPI
234282936
22181336

)( 232222

22222

84
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If p  is odd then, we have  

pqppqpqqpqp
pqppqqpqp

RCTUCPI
2242136
2291336

)( 32222

22222

84

and the proof is completed.
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