MATCH Communications in Mathematical and in Computer Chemistry

PI Index of Polyhex Nanotori

Ali Reza Ashrafi[•] and Farhad Rezaei

Department of Mathematics, Faculty of Science, University of Kashan, Kashan, 87317-51167, Iran

(Received December 23, 2005)

Abstract

The Padmakar–Ivan (PI) index of a graph G is defined as $PI(G) = \sum [n_{eu}(e|G)]$, where $n_{eu}(e|G)$ is the number of edges of G lying closer to u than to v, $n_{ev}(e|G)$ is the number of edges of G lying closer to v than to u and summation goes over all edges of G. In this paper, the PI index of a polyhex nanotorus T is computed. We prove that:

 $PI(T) = \begin{cases} 9p^2q^2 - pq^2 - 12p^2q + 4pq & q \geq 2p \\ 9p^2q^2 - 7pq^2 + 4pq & q < 2p \end{cases} \, .$

1. INTRODUCTION

Let G be a simple molecular graph without directed and multiple edges and without loops, the vertex and edge-shapes of which are represented by V(G)and E(G), respectively. The graph G is said to be connected if for every vertices x and y in V(G) there exists a path between x and y. In this paper we only consider connected graphs. If e is an edge of G, connecting the vertices u and v then we write e=uv and the distance between a pair of vertices u and w of G is denoted by d(u,w).

A topological index is a real number related to a molecular graph. It must be a structural invariant, i.e., it does not depend on the labelling or the pictorial representation of a graph. There are several topological indices have been defined and many of them have found applications as means to model

^{*} Author to whom correspondence should be addressed. (E-mail: Ashrafi@kashanu.ac.ir)

chemical, pharmaceutical and other properties of molecules¹. The Wiener index W is the first topological index to be used in chemistry². It was introduced in 1947 by Harold Wiener, as the path number for characterization of alkanes. In a chemical language, the Wiener index is equal to the sum of all shortest carbon carbon bond paths in a molecule. In a graph theoretical language, the Wiener index is equal to the count of all shortest distances in a graph. For a nice survey in this topic we encourage the reader to consult Refs. [3,4].

Here, we consider a new topological index, named Padmakar-Ivan index, which is abbreviated by PI index. This newly proposed topological index, is defined by Khadikar and co-authors⁵⁻¹⁰. To define PI index, we consider two quantities $n_{eu}(e|G)$ and $n_{ev}(e|G)$ related to an edge e = uv of a graph G. $n_{eu}(e|G)$ is the number of edges lying closer to the vertex u than the vertex v, and $n_{ev}(e|G)$ is the number of edges lying closer to the vertex v than the vertex u. Then the Padmakar–Ivan (PI) index of a graph G is defined as $PI(G) = \sum [n_{eu}(e|G) + n_{ev}(e|G)]$.

In an earlier paper, the first author computed the PI index of a zig-zag polyhex nanotube, see Ref. [11]. Also, Dend^{12,13} computed the PI index of the catacondensed hexagonal systems and some other nanotubes. In this paper we continue this study to find the PI index of a polyhex torus. For topological property of tori, we encourage the reader to consult Refs. [14-18] by Diudea and co-authors.

Definition 1. Suppose G is a hexagonal system, e = xy, $f = uv \in E(G)$ and $w \in V(G)$. Define $d(w,e) = Min\{d(w,x), d(w,y)\}$. We say that e is parallel to f if d(x,f) = d(y,f). In this case, we write $e \parallel f$.

Lemma 1. || is a reflexive and symmetric relation, but it is not transitive.

Proof. Reflexivity is trivial. To prove || is symmetric, we assume that e = xy is parallel to f = uv. By definition d(x,f) = d(y,f). If d(x,u) = d(x,v) then we obtain a cycle of odd length containing the edge f, a contradiction. Hence $d(x,u) \neq d(x,v)$ and similarly $d(y,u) \neq d(y,v)$. Without loss of generality we can assume that d(x,u) < d(x,v). Then by assumption d(y,v) < d(y,u) and we can see that d(x,u) = d(y,v), d(x,v) = d(y,u). On the other hand, d(x,u) < d(x,v) and d(y,v) < d(y,u) = d(y,v) + 1 and d(y,u) = d(y,v) + 1. This shows that

 $d(u,e) = Min\{d(u,x),d(u,y)\} = Min\{d(x,v) - 1,d(y,v) + 1\} = Min\{d(y,u) - 1, d(x,u) + 1\} = Min\{d(y,v),d(x,v)\} = d(v,e)$, as desired. Finally, we show that || is not transitive. To do this, we consider the graph of a polyhex nanotorus with p = 2 and q = 6, Figure 1(a). In this graph, e||f and f||g but e is not parallel to g.

Definition 2. Suppose G is a hexagonal system and $e \in E(G)$. We define P(e) to be the set of all edges parallel to e and N(e) = |P(e)|.

Figure 1. (a) Lattice of a Polyhex Nanotorus with p=2 and q=6.(b) A Polyhex Nanotorus.

Throughout this paper T denotes a polyhex nanotorus. Our notation is standard and is taken mainly from Refs. [19,20]. The main result of this paper is as follows:

Theorem. Suppose T is a polyhex nanotorus. Then we have:

PI(T) =
$$\begin{cases} 9p^2q^2 - pq^2 - 12p^2q + 4pq & q \ge 2p \\ 9p^2q^2 - 7pq^2 + 4pq & q < 2p \end{cases}.$$

2. MAIN RESULT

In this section, the PI index of the graph T = T[p,q] were computed, Figure 1(b). We first notice that q must be even, say q = 2m. To compute the PI index of this graph, we note that $N(e) = |P(e)| = |E| - (n_{eu}(e|G) + n_{ev}(e|G))$, where E = E(T) is the set of all edges of T. Therefore $PI(T) = |E|^2 - \sum_{e \in E} N(e)$. But |E(T)| = 3pq and so $PI(T) = 9p^2q^2 - \sum_{e \in E} N(e)$. Therefore, for computing the PI index of T, it is enough to calculate N(e), for every $e \in E$. To calculate N(e), we consider two cases that e is horizontal or non-horizontal.

Lemma 2. If e is an horizontal edge then N(e) = q.

Proof. Let u_{ij} be the $(i,j)^{th}$ entry and e_{ij} be the $(i,j)^{th}$ horizontal edge of the 2-dimensional lattice of T, Figure 2(a). It is easy to see that:

$$\mathbf{e}_{ij} = \begin{cases} u_{i(2j-1)} u_{i(2j)} & i \text{ is odd} \\ u_{i(2j)} u_{i(2j+1)} & i \text{ is even} \end{cases}$$
(1)

For the symmetry of a polyhex nanotorus, it is enough to compute N(e₁₁). To do this we consider horizontal edges e₁₁, e₃₁, ..., e_{(q-1)1}. We claim that these are q/2 edges parallel to e₁₁. Since $e_{(2k+1)1} = u_{(2k+1)1}u_{(2k+1)2}$, for $0 \le k \le q/2-1$ we have:

$$\begin{split} &d(u_{(2k+1)1},u_{11})=Min\{2k,q-2k\},\\ &d(u_{(2k+1)1},u_{12})=Min\{2k,q-2k\}+1,\\ &d(u_{(2k+1)2},u_{11})=Min\{2k,q-2k\}+1,\\ &d(u_{(2k+1)2},u_{12})=Min\{2k,q-2k\}. \end{split}$$

Thus $e_{(2k+1)1} \parallel e_{11}$. Suppose p is even. Set $L_1 = \{e_{1(1+p/2)}, e_{3(1+p/2)}, \dots, e_{(q-1)(1+p/2)}\}$. We claim that every element of L_1 is parallel to e_{11} . If q then

$$\begin{split} &d(u_{(2k+1)(p+2)}, u_{11}) = 2p - 1, \\ &d(u_{(2k+1)(p+1)}, u_{12}) = 2p - 1, \\ &d(u_{(2k+1)(p+1)}, u_{11}) = 2p, \\ &d(u_{(2k+1)(p+2)}, u_{12}) = 2p, \end{split}$$

where $0 \le k \le q/2 - 1$. This shows that $e_{(2k+1)(1+p/2)} \parallel e_{11}$. If $q \ge p + 2$ then we have:

$$\underbrace{d(u_{12}, u_{1(p+1)}) = d(u_{12}, u_{3(p+1)}) = \dots = d(u_{12}, u_{(p+1)(p+1)}) = 2p - 1}_{p/2+1}$$

$$\underbrace{d(u_{11}, u_{1(p+2)}) = d(u_{11}, u_{3(p+2)}) = \dots = d(u_{11}, u_{(p+1)(p+2)}) = 2p-1}_{p/2+1}$$

$$d(u_{12}, u_{(p+3)(p+1)}) = d(u_{11}, u_{(p+3)(p+2)}) = 2p+1$$

$$d(u_{12}, u_{(p+5)(p+1)}) = d(u_{11}, u_{(p+5)(p+2)}) = 2p+3$$

$$\vdots$$

$$d(u_{12}, u_{(q-p+3)(p+1)}) = d(u_{11}, u_{(q-p+3)(p+2)}) = 2p+3$$

$$d(u_{12}, u_{(q-p+1)(p+1)}) = d(u_{11}, u_{(q-p+1)(p+2)}) = 2p+1$$

$$\underbrace{d(u_{12}, u_{(q-1)(p+1)}) = d(u_{12}, u_{(q-3)(p+1)}) = \dots = d(u_{12}, u_{(q-p-1)(p+1)}) = 2p-1}_{p/2}$$

$$\underbrace{d(u_{11}, u_{(q-1)(p+2)}) = d(u_{11}, u_{(q-3)(p+2)}) = \dots = d(u_{11}, u_{(q-p-1)(p+2)}) = 2p-1}_{p/2}.$$

Thus, every element of L_1 is parallel to e_{11} . When p is odd, a similar argument shows that every element of the set $L_2 = \{ e_{2(1+p)/2}, e_{4(1+p)/2}, ..., e_{q(1+p)/2} \}$ is parallel to e_{11} . Therefore $N(e) \ge q$. Let $e = e_{rs}$ be an arbitrary horizontal edge of T. If 1 < s < 1 + p/2 then e is closer than to u_{12} than u_{11} and if $1 + p/2 < s \le p$ then e is closer than to u_{11} than u_{12} , as desired. Finally, there is no non-horizontal edge parallel to e_{rs} , which completes the proof.

Lemma 3. If e is a non-horizontal edge then
$$N(e) = \begin{cases} 3q-2 & q < 2p \\ 6p-2 & q \ge 2p \end{cases}$$

Proof. Suppose f_{ij} is the $(i,j)^{th}$ non-horizontal edge of the 2-dimensional lattice of T, Figure 2(b). Define $X = \{f_{11}, f_{22}, ..., f_{pp}, f_{1(p+1)}, f_{2(p+1)}, ..., f_{p(p+1)}, f_{(m+1)1}, f_{(m+1)2}, ..., f_{(m+1)(2p)}, f_{q(p+1)}, f_{(q-1)(p+1)}, ..., f_{(q-p+1)(p+1)}, f_{q(2p)}, f_{(q-1)(2p-1)}, ..., f_{(q(p+1)(p+1))}\}$ and $Y = \{f_{11}, f_{22}, ..., f_{mm}, f_{1(p+1)}, f_{2(p+1)}, ..., f_{q(p+1)}, f_{(m+1)1}, f_{(m+1)2}, ..., f_{(m+1)(m)}, f_{(m+1)(2p)}, f_{(m+1)(2p-1)}, ..., f_{(m+1)(2p-m+1)}\}$. If $f_{ii} = u_{ii}u_{(i+1)i}, 1 \le i \le p$, then we have:

$$\begin{aligned} d(u_{11}, I_{ii}) &= Min \{ d(u_{11}, u_{ii}), d(u_{11}, u_{(i+1)i}) \} \\ &= Min \{ 2(i-1), 2i-1 \} = 2i-2 \\ d(u_{21}, f_{ii}) &= Min \{ d(u_{21}, u_{ii}), d(u_{21}, u_{(i+1)i}) \} \\ &= Min \{ 2i-1, 2(i-1) \} = 2i-2. \end{aligned}$$

This shows that $f_{ii} \parallel f_{11}$. Consider $f_{i(p+1)} = u_{i(p+1)}u_{(i+1)(p+1)}$, $1 \le i \le p$. It is easy to see that $d(u_{11}, f_{i(p+1)}) = Min\{d(u_{11}, u_{i(p+1)}), d(u_{11}, u_{(i+1)(p+1)})\} = 2p - 1 = d(u_{21}, f_{(i+1)(p+1)})$ and so $f_{i(p+1)} \parallel f_{11}$. Using a similar argument, we can see that if $q \ge 2p$ then all the edges of X are parallel to f_{11} . Suppose q < 2p. In this case, $d(u_{11}, f_{(p+1)(j)}) = d(u_{21}, f_{(j+1)(j)})$ $f_{(p+1)(j)} - 1$, where $m + 1 \le j \le 2p - m$ and $j \ne p + 1$. Therefore $f_{(p+1)(j)}$, $m + 1 \le j \le 2p - m$ and $j \ne p + 1$, is not parallel to f_{11} . A similar argument as above, we can see that other type of elements of X are parallel to f_{11} . Finally, a tedious calculation shows that these are the only edges parallel to f_{11} . Therefore,

$$\mathbf{P}(\mathbf{f}_{11}) = \begin{cases} \mathbf{X} & q \ge 2p \\ \mathbf{Y} & q < 2p \end{cases},$$

which completes the proof.

We now ready to state the main result of the paper.

Theorem. Suppose T is a polyhex nanotorus. Then we have:

$$PI(T) = \begin{cases} 9p^2q^2 - pq^2 - 12p^2q + 4pq & q \ge 2p \\ 9p^2q^2 - 7pq^2 + 4pq & q < 2p \end{cases}$$

Proof. Since T has 3pq edges, $PI(T) = 9p^2q^2 - \sum_{e \in E}N(e)$. Let A and B be the set of all horizontal and non-horizontal edges, respectively. Apply Lemmas 1 and 2, we have:

$$PI(T[p,q]) = 9p^{2}q^{2} - \sum_{e \in A} N(e) - \sum_{e \in B} N(e)$$

= $9p^{2}q^{2} - pq^{2} - \begin{cases} 2pq(3q-2) & q < 2p \\ 2pq(6p-2) & q \ge 2p \end{cases}$
= $\begin{cases} 9p^{2}q^{2} - pq^{2} - 12p^{2}q + 4pq & q \ge 2p \\ 9p^{2}q^{2} - 7pq^{2} + 4pq & q < 2p \end{cases}$

(a)

(b)

Figure 2. (a) The vertex labeled lattices of T[p,q]. (b) The edge labeled lattices of T[p,q].

REFERENCES

- R. Todeschini and V. Consonni, *Handbook of Molecular Descriptors*, Wiley, Weinheim, 2000.
- 2. H. Wiener, Structural determination of the paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.
- 3. A. A. Dobrynin, R. Entringer and I. Gutman, *Wiener index of trees: theory* and applications, Acta Appl. Math. **66** (2001) 211-249.
- A. A. Dobrynin, I. Gutman, S. Klavžar and P. Žigert, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002) 247-294.
- 5. P. V. Khadikar, *On a novel structural descriptor PI*, Nat. Acad. Sci. Lett. **23** (2000) 113-118.
- 6. P. V. Khadikar, S. Karmarkar and V. K. Agrawal, *PI index of polyacenes and its use in developing QSPR*, Nat. Acad. Sci. Lett. **23** (2000) 124-128.
- P. V. Khadikar, S. Karmarkar and V. K. Agrawal, *Relationships and relative correlation potential of the Wiener, Szeged and PI indices*, Nat. Acad. Sci. Lett. 23 (2000) 165-170.
- P. V. Khadikar, S. Karmarkar and V. K. Agrawal, A novel PI index and its applications to QSPR/QSAR studies, J. Chem. Inf. Comput. Sci. 41 (2001) 934-949.
- P. V. Khadikar, P. P. Kale, N. V. Deshpande, S. Karmarkar and V. K. Agrawal, *Novel PI indices of hexagonal chains*, J. Math. Chem. **29** (2001) 143-150.
- P. V. Khadikar, S. Karmarkar and R. G. Varma, *The estimation of PI index of polyacenes*, Acta Chim. Slov. 49 (2002) 755-771.
- A. R. Ashrafi and A. Loghman, *PI index of zig-zag polyhex nanotubes*, MATCH Commun. Math. Comput. Chem. 55 (2006) 447-452.
- H. Deng, Extremal catacondensed hexagonal systems with respect to the PI index, MATCH Commun. Math. Comput. Chem. 55 (2006) 453-460.
- H. Deng, *The PI index of TUVC6[2p; q]*, MATCH Commun. Math. Comput. Chem. 55 (2006) 461-476.
- M. V. Diudea, B. Parv and E. C. Kirby, *Azulenic tori*, MATCH Commun. Math. Comput. Chem. 47 (2003) 53-70.
- M. V. Diudea, Graphenes from 4-valent tori, Bull. Chem. Soc. Japan, 75 (2002) 487-492.
- M. V. Diudea, *Hosoya polynomial in tori*, MATCH Commun. Math. Comput. Chem. 45 (2002) 109-122.
- M. V. Diudea and P. E. John, *Covering polyhedral tori*, MATCH Commun. Math. Comput. Chem. 44 (2001) 103-116.
- M. V. Diudea and E. C. Kirby, *The energetic stability of tori and single wall tubes*, Fullerene Sci. Technol. 9 (2001) 445-465.
- 19. N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, 1992.
- M. V. Diudea, I. Gutman and L. Jäntschi, *Molecular Topology*, Huntington, NY, 2001.