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Abstract

The Padmakar—Ivan (PI) index of a graph G is defined as PI(G) = X[n.(e|G)+
ney(e|G)], where ng,(e|G) is the number of edges of G lying closer to u than to v,
ney(e|G) is the number of edges of G lying closer to v than to u and summation goes
over all edges of G. In this paper, the PI index of a polyhex nanotorus T is
computed. We prove that:

PI(T) - 9p’q” -pq’ ~12p’q+4pq q=2p
9p°q’> -7pa’ +4pqg  q<2p

1. INTRODUCTION

Let G be a simple molecular graph without directed and multiple edges
and without loops, the vertex and edge-shapes of which are represented by V(G)
and E(G), respectively. The graph G is said to be connected if for every vertices
x and y in V(G) there exists a path between x and y. In this paper we only
consider connected graphs. If e is an edge of G, connecting the vertices u and v
then we write e=uv and the distance between a pair of vertices u and w of G is
denoted by d(u,w).

A topological index is a real number related to a molecular graph. It
must be a structural invariant, i.e., it does not depend on the labelling or the
pictorial representation of a graph. There are several topological indices have

been defined and many of them have found applications as means to model
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chemical, pharmaceutical and other properties of molecules'. The Wiener index
W is the first topological index to be used in chemistry?. It was introduced in
1947 by Harold Wiener, as the path number for characterization of alkanes. In a
chemical language, the Wiener index is equal to the sum of all shortest carbon
carbon bond paths in a molecule. In a graph theoretical language, the Wiener
index is equal to the count of all shortest distances in a graph. For a nice survey
in this topic we encourage the reader to consult Refs. [3,4].

Here, we consider a new topological index, named Padmakar-Ivan
index, which is abbreviated by PI index. This newly proposed topological index,
is defined by Khadikar and co-authors®'°. To define PI index, we consider two
quantities ney(¢|G) and ney(e|G) related to an edge e = uv of a graph G. ney(e|G)
is the number of edges lying closer to the vertex u than the vertex v, and
nev(e|G) is the number of edges lying closer to the vertex v than the vertex u.
Then the Padmakar—Ivan (PI) index of a graph G is defined as PI(G) =
2[neu(e|G)+ nev(elG)].

In an earlier paper, the first author computed the PI index of a zig-zag
polyhex nanotube, see Ref. [11]. Also, Dend'>'* computed the PI index of the
catacondensed hexagonal systems and some other nanotubes. In this paper we
continue this study to find the PI index of a polyhex torus. For topological
property of tori, we encourage the reader to consult Refs. [14-18] by Diudea and

co-authors.

Definition 1. Suppose G is a hexagonal system, e = xy, f=uv € E(G) and w €
V(G). Define d(w,e) = Min{d(w,x) , d(w,y)}. We say that e is parallel to f if
d(x,f) = d(y,f). In this case, we write e || f.

Lemma 1. || is a reflexive and symmetric relation, but it is not transitive.

Proof. Reflexivity is trivial. To prove || is symmetric, we assume that e = Xy is
parallel to f=uv. By definition d(x,f) = d(y,f). If d(x,u) = d(x,v) then we obtain
a cycle of odd length containing the edge f, a contradiction. Hence d(x,u) #
d(x,v) and similarly d(y,u) # d(y,v). Without loss of generality we can assume
that d(x,u) < d(x,v). Then by assumption d(y,v) < d(y,u) and we can see that
d(x,u) = d(y,v), d(x,v) = d(y,u). On the other hand, d(x,u) < d(x,v) and d(y,v) <
d(y,u) imply that d(x,v) = d(x,u) + 1 and d(y,u) = d(y,v) + 1. This shows that
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d(u,e) = Min{d(u,x),d(wy)} = Min{d(x,v) - Ld(y,v) + 1} = Min{d(y,u) - 1,
d(x,u) + 1} = Min{d(y,v),d(x,v)} = d(v,e), as desired. Finally, we show that || is
not transitive. To do this, we consider the graph of a polyhex nanotorus with p =

2 and q = 6, Figure 1(a). In this graph, ¢||f and f]|g but e is not parallelto g. W

Definition 2. Suppose G is a hexagonal system and e € E(G). We define P(e)
to be the set of all edges parallel to e and N(e) = [P(e)|.

(b)
Figure 1. (a) Lattice of a Polyhex Nanotorus with p=2 and q=6.
(b) A Polyhex Nanotorus.

Throughout this paper T denotes a polyhex nanotorus. Our notation is
standard and is taken mainly from Refs. [19,20]. The main result of this paper is

as follows:

Theorem. Suppose T is a polyhex nanotorus. Then we have:
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2

9p’q* —pq’ —12p*q+4 >2
PI(T)_{ P4’ —pa’~12p’a+4pq q=2p.
9p°q” —7pq” +4pq q<2p

2. MAIN RESULT

In this section, the PI index of the graph T = T[p,q] were computed, Figure 1(b).
We first notice that ¢ must be even, say q = 2m. To compute the PI index of this
graph, we note that N(e) = [P(e)| = |E| - (neu(e|G) + nev(e|G)), where E = E(T) is
the set of all edges of T. Therefore PI(T) = |E\2 - > eceN(e). But [E(T)| = 3pq and
so PI(T) = 9p°q® - YeceN(e). Therefore, for computing the PI index of T, it is
enough to calculate N(e), for every e € E. To calculate N(e), we consider two

cases that e is horizontal or non-horizontal.

Lemma 2. [f'e is an horizontal edge then N(e) = q.

Proof. Let u; be the (ij)™ entry and e; be the (i,j)" horizontal edge of the 2-
dimensional lattice of T, Figure 2(a). It is easy to see that:

e = Ui,y §isodd
1] - .
Uopllijy 1 1S EVEN

()
For the symmetry of a polyhex nanotorus, it is enough to compute N(e;;). To

do this we consider horizontal edges €1, €31, ..., €q-1y1. We claim that these are q/2
edges parallel to e;;. Since epk+1)1 = Uak+1)1Uek+1)2, for 0 <k < g/2-1 we have:

d(u@kiyi,un) = Min{2k,q-2k},

d(u@kiny,ur2) = Min{2k,q-2k} + 1,

d(u@kin,urr) = Min{2k,q-2k} + 1,

d(uk+iy,ui2) = Min{2k,q-2k}.
Thus e@x+1)1 || €11. Suppose p is even. Set L = {eiq+p2), €3(1+p/2)> ---» €g-1)(1+p2)}- We
claim that every element of L, is parallel to e;;. If ¢ <p + 2 then

d(usnpeun) =2p -1,

d(uaknpeytiz) =2p -1,

d(ugksnypensun) = 2p,

d(ugsnypea),ui2) = 2p,
where 0 <k < q/2 — 1. This shows that egk+1)1+pr2) || €11. If ¢ = p + 2 then we have:

d(”ll’“l(pﬂ)) =d(u, ’u3(p+l)) S = d(ull’u(p+])(p+l)) =2p-1

pl2+41
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d(ull’ul(p+2)) = d(ull’u3(p+2)) == d(ull’u(p+l)(p+2)) =2p-1

p/241

di2,upe3)pen) = AUy pe2) = 2pt+1

d(ui2,up+s)prn) = dUrLUueE-s)p2) = 2p+3

d(ui2,U¢g p3)p+1) = d(Ui1,Ugg p3ype2) = 2p+3

d(uiz,Uq priypen) = dUi1,Ueg priyp2) = 2pt]

d(ulz’u(q—l)(])+])) = d(“lz:”(q-z)(,;+1)) = = d(”]Z’u(q—p—])(p+l)) =2p-1
pl2

)58 1y i) = AWy i) = oo =AUy U Gy e0)) = 2P =1
pl2

Thus, every element of L, is parallel to ¢;;. When p is odd, a similar argument
shows that every element of the set L, = { €x1+py2, €4(1+p)2, ---» €q(1+py2} 18 parallel to
e11. Therefore N(e) > q. Let e = e, be an arbitrary horizontal edge of T. If 1 <s <1+
p/2 then e is closer than to u;, than u; and if 1 + p/2 <s < p then e is closer than to uy;
than u,,, as desired. Finally, there is no non-horizontal edge parallel to e;, which

completes the proof. |

Lemma 3. If e is a non-horizontal edge then N(e) = {3q A 2p.
6p—-2 g=2p
Proof. Suppose fj; is the (i,))™ non-horizontal edge of the 2-dimensional lattice of T,
Figure 2(b). Define X = {fi1, f, ..., fyp, fipri), D2pt1)s - o5 Tppri)s fmenyts fmenyz, --os
ferne, oo fanes - fapnens faeps fa-nee-ns - faeeneen} and Y= {fi,
2, «o oy T, Ty Do)y o5 Tapenys Tamenyts Tz, «oos Tanenyemys fmenepys Tmenep-ns -
fimtnyp-m+1) Ta2p) flg-1)2p-1ys - --» fig-men@p-m+1y}- If fii = wiiug+yi, 1< 1 < p, then we have:
d(ui,fi) = Min{d(ull,uii), d(ull,u(i+1)i)}
=Min{2(i-1),2i - 1} =2i -2
d(uz1,£i) = Min{d(uz1,u3), d(u21,u-1i)}
=Min{2i—1,2(i-1)} =2i - 2.
This shows that fj; || fi;. Consider fip+1) = Ui+ UG+, 151 < p. It is easy to
see that d(ui, fipy) = Min{d(ui1,ip1),dUiLUGHE) = 2p — 1 = d(uai, fie))
and so fi,+1) || fi1. Using a similar argument, we can see that if q > 2p then all the

edges of X are parallel to fj;. Suppose q < 2p. In this case, d(uii, fipr1)g) = d(uar,
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for1g) — 1, wherem + 1 <j<2p—mand j # p + 1. Therefore fij, m+1<j <2p
—mand j # p + 1, is not parallel to fj;. A similar argument as above, we can see that
other type of elements of X are parallel to fj;. Finally, a tedious calculation shows that
these are the only edges parallel to fj;. Therefore,

P(fir) = {

X q=2p
Y q<2p’

which completes the proof. [ |

We now ready to state the main result of the paper.
Theorem. Suppose T is a polyhex nanotorus. Then we have:

9p’q* —pq’ —12p°q+4pq q=2p

PI(T) = .
™ { 9p’q*-7pq’ +4pqg  q<2p

Proof. Since T has 3pq edges, PI(T) = 9p°q” - YeceN(e). Let A and B be the set

of all horizontal and non-horizontal edges, respectively. Apply Lemmas 1 and 2,
we have:
PI(T[P,Q]) = 9p2q2 - ZCEAN(e) - Z CEBN(e)

90 o {2pq(3q—2) q<2p

2pq(6p=2) q=2p

_ |9p°q’ -pq® ~12p°q+4pq q>2p

9p’q’~7pq’ +4pq  q<2p
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Figure 2. (a) The vertex labeled lattices of T[p,q].
(b) The edge labeled lattices of T[p,q].
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