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Abstract

The Padmakar–Ivan (PI) index of a graph G is defined as PI(G) = [neu(e|G)+ 
nev(e|G)], where neu(e|G) is the number of edges of G lying closer to u than to v, 
nev(e|G) is the number of edges of G lying closer to v than to u and summation goes 
over all edges of G. In this paper, the PI index of a polyhex nanotorus T is 
computed. We prove that: 

PI(T) =
2pq4pq7pqq9p
2pq4pqq12ppqq9p
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1. INTRODUCTION 

 Let G be a simple molecular graph without directed and multiple edges 

and without loops, the vertex and edge-shapes of which are represented by V(G) 

and E(G), respectively. The graph G is said to be connected if for every vertices 

x and y in V(G) there exists a path between x and y. In this paper we only 

consider connected graphs. If e is an edge of G, connecting the vertices u and v 

then we write e=uv and the distance between a pair of vertices u and w of G is 

denoted by d(u,w).

 A topological index is a real number related to a molecular graph. It 

must be a structural invariant, i.e., it does not depend on the labelling or the 

pictorial representation of a graph. There are several topological indices have 

been defined and many of them have found applications as means to model 
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chemical, pharmaceutical and other properties of molecules1. The Wiener index 

W is the first topological index to be used in chemistry2. It was introduced in 

1947 by Harold Wiener, as the path number for characterization of alkanes. In a 

chemical language, the Wiener index is equal to the sum of all shortest carbon 

carbon bond paths in a molecule. In a graph theoretical language, the Wiener 

index is equal to the count of all shortest distances in a graph. For a nice survey 

in this topic we encourage the reader to consult Refs. [3,4].  

 Here, we consider a new topological index, named Padmakar-Ivan 

index, which is abbreviated by PI index. This newly proposed topological index, 

is defined by Khadikar and co-authors5-10. To define PI index, we consider two 

quantities neu(e|G) and nev(e|G) related to an edge e = uv of a graph G. neu(e|G)

is the number of edges lying closer to the vertex u than the vertex v, and 

nev(e|G) is the number of edges lying closer to the vertex v than the vertex u. 

Then the Padmakar–Ivan (PI) index of a graph G is defined as PI(G) = 

[neu(e|G)+ nev(e|G)]. 

 In an earlier paper, the first author computed the PI index of a zig-zag 

polyhex nanotube, see Ref. [11]. Also, Dend12,13 computed the PI index of the 

catacondensed hexagonal systems and some other nanotubes. In this paper we 

continue this study to find the PI index of a polyhex torus. For topological 

property of tori, we encourage the reader to consult Refs. [14-18] by Diudea and 

co-authors.  

Definition 1.  Suppose G is a hexagonal system, e = xy, f = uv  E(G) and w 

V(G). Define d(w,e) = Min{d(w,x) , d(w,y)}. We say that e is parallel to f if 

d(x,f) = d(y,f). In this case, we write e || f. 

Lemma 1.  || is a reflexive and symmetric relation, but it is not transitive.  

Proof. Reflexivity is trivial. To prove || is symmetric, we assume that e = xy is 

parallel to f = uv. By definition d(x,f) = d(y,f). If d(x,u) = d(x,v) then we obtain 

a cycle of odd length containing the edge f, a contradiction. Hence d(x,u) 

d(x,v) and similarly d(y,u)  d(y,v).  Without loss of generality we can assume 

that d(x,u) < d(x,v). Then by assumption d(y,v) < d(y,u) and we can see that 

d(x,u) = d(y,v), d(x,v) = d(y,u). On the other hand, d(x,u) < d(x,v) and d(y,v) < 

d(y,u) imply that d(x,v) = d(x,u) + 1 and d(y,u) = d(y,v) + 1. This shows that 
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d(u,e) = Min{d(u,x),d(u,y)} = Min{d(x,v) - 1,d(y,v) + 1} = Min{d(y,u) – 1, 

d(x,u) + 1} = Min{d(y,v),d(x,v)} = d(v,e), as desired. Finally, we show that || is 

not transitive. To do this, we consider the graph of a polyhex nanotorus with p = 

2 and q = 6, Figure 1(a). In this graph, e||f and f||g but e is not parallel to g.      

Definition 2.   Suppose G is a hexagonal system and e  E(G). We define P(e) 

to be the set of all edges parallel to e and N(e) = |P(e)|. 

(a)

(b)

Figure 1. (a) Lattice of a Polyhex Nanotorus with p=2 and q=6. 

        (b) A Polyhex Nanotorus. 

 Throughout this paper T denotes a polyhex nanotorus. Our notation is 

standard and is taken mainly from Refs. [19,20]. The main result of this paper is 

as follows: 

Theorem. Suppose T is a polyhex nanotorus. Then  we have: 

e
g

f
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PI(T) =
2pq4pq7pqq9p
2pq4pqq12ppqq9p

222

2222

.

2.  MAIN RESULT  

In this section, the PI index of the graph T = T[p,q] were computed, Figure 1(b). 

We first notice that q must be even, say q = 2m. To compute the PI index of this 

graph, we note that N(e) = |P(e)| = |E| - (neu(e|G) + nev(e|G)), where E = E(T) is 

the set of all edges of T. Therefore PI(T) = |E|2 - e EN(e). But |E(T)| = 3pq and 

so PI(T) = 9p2q2 - e EN(e). Therefore, for computing the PI index of T, it is 

enough to calculate N(e), for every e  E. To calculate N(e), we consider two 

cases that e is horizontal or non-horizontal. 

Lemma 2. If e is an horizontal edge then N(e) = q. 

Proof. Let uij be the (i,j)th entry and eij be the (i,j)th horizontal edge of the 2-

dimensional lattice of T,  Figure 2(a). It is easy to see that: 

eij = 
even is 
odd is 

)12(i(2j)

)2()12(

iuu
iuu

ji

jiji                                               (1) 

 For the symmetry of a polyhex nanotorus, it is enough to compute N(e11). To 

do this we consider horizontal edges e11, e31, …, e(q-1)1. We claim that these are q/2 

edges parallel to e11. Since e(2k+1)1 = u(2k+1)1u(2k+1)2, for 0  k  q/2-1 we have: 

   d(u(2k+1)1,u11) = Min{2k,q-2k}, 

   d(u(2k+1)1,u12) = Min{2k,q-2k} + 1, 

   d(u(2k+1)2,u11) = Min{2k,q-2k} + 1, 

   d(u(2k+1)2,u12) = Min{2k,q-2k}. 

Thus e(2k+1)1 || e11. Suppose p is even. Set L1 = {e1(1+p/2), e3(1+p/2), …, e(q-1)(1+p/2)}. We 

claim that every element of L1 is parallel to e11. If q < p + 2 then 

   d(u(2k+1)(p+2),u11) = 2p – 1, 

   d(u(2k+1)(p+1),u12) = 2p – 1, 

   d(u(2k+1)(p+1),u11) = 2p, 

   d(u(2k+1)(p+2),u12) = 2p, 

where 0  k  q/2 – 1. This shows that e(2k+1)(1+p/2) || e11. If q  p + 2 then we have: 

12/

)1)(1(12)1(312)1(112 12),(.....),(),(
p

pppp puuduuduud
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12/

)2)(1(11)2(311)2(111 12),(.....),(),(
p

pppp puuduuduud

d(u12,u(p+3)(p+1)) = d(u11,u(p+3)(p+2)) = 2p+1 

d(u12,u(p+5)(p+1)) = d(u11,u(p+5)(p+2)) = 2p+3 

d(u12,u(q–p+3)(p+1)) = d(u11,u(q–p+3)(p+2)) = 2p+3 

d(u12,u(q–p+1)(p+1)) = d(u11,u(q–p+1)(p+2)) = 2p+1 

2/

)1)(1(12)1)(3(12)1)(1(12 12),(.....),(),(
p

ppqpqpq puuduuduud

2/

)2)(1(11)2)(3(11)2)(1(11 12),(.....),(),(
p

ppqpqpq puuduuduud .

 Thus, every element of L1 is parallel to e11. When p is odd, a similar argument 

shows that every element of the set L2 = { e2(1+p)/2, e4(1+p)/2, …, eq(1+p)/2} is parallel to 

e11. Therefore N(e)  q. Let e = ers be an arbitrary horizontal edge of T. If  1 < s < 1 + 

p/2 then e is closer than to u12 than u11 and if 1 + p/2 < s  p then e is closer than to u11

than u12, as desired. Finally, there is no non-horizontal edge parallel to ers, which 

completes the proof.                                                                                                     

Lemma 3. If e is a non-horizontal edge then N(e) = 
pqp
pqq

226
223

.

Proof.  Suppose fij is the (i,j)th non-horizontal edge of  the 2-dimensional lattice of T, 

Figure 2(b). Define X = {f11, f22, …, fpp, f1(p+1), f2(p+1), …, fp(p+1), f(m+1)1, f(m+1)2, …, 

f(m+1)(2p), fq(p+1), f(q 1)(p+1), …, f(q p+1)(p+1), fq(2p), f(q 1)(2p 1), …, f(q(p+1)(p+1)} and Y= {f11,

f22, …, fmm, f1(p+1), f2(p+1), …, fq(p+1), f(m+1)1, f(m+1)2, …, f(m+1)(m), f(m+1)(2p), f(m+1)(2p 1), …, 

f(m+1)(2p m+1), fq(2p), f(q 1)(2p 1), …, f(q m+1)(2p m+1)}. If fii = uiiu(i+1)i, 1  i  p, then we have:  

    d(u11,fii) = Min{d(u11,uii), d(u11,u(i+1)i)}

                          = Min{2(i 1) , 2i  1} = 2i  2 

    d(u21,fii) = Min{d(u21,uii), d(u21,u(i+1)i)}

                          = Min{2i  1 , 2(i 1)} = 2i  2. 

 This shows that fii || f11. Consider fi(p+1) = ui(p+1)u(i+1)(p+1), 1  i  p. It is easy to 

see that  d(u11, fi(p+1)) =  Min{d(u11,ui(p+1)),d(u11,u(i+1)(p+1))} = 2p  1 = d(u21, f(i+1)(p+1))

and so fi(p+1) || f11. Using a similar argument, we can see that if q  2p then all the 

edges of X are parallel to f11. Suppose q < 2p. In this case, d(u11, f(p+1)(j)) = d(u21,

- 247 -



f(p+1)(j))  1, where m + 1  j  2p  m and j  p + 1. Therefore  f(p+1)(j), m + 1   j   2p 

 m and j  p + 1, is not parallel to f11. A similar argument as above, we can see that 

other type of elements of X are parallel to f11. Finally, a tedious calculation shows that 

these are the only edges parallel to f11.   Therefore, 

     P(f11) = 
p2qY
p2qX ,

which completes the proof.                                                                                          

 We now ready to state the main result of the paper. 

Theorem. Suppose T is a polyhex nanotorus. Then  we have: 

PI(T) =
2pq4pq7pqq9p
2pq4pqq12ppqq9p

222

2222

.

Proof. Since T has 3pq edges, PI(T) = 9p2q2 - e EN(e). Let A and B be the set 

of all horizontal and non-horizontal edges, respectively. Apply Lemmas 1 and 2, 

we have: 

  PI(T[p,q])  =  9p2q2 -  e AN(e) -  e BN(e) 

         =  9p2q2 -  pq2 - 
pqppq
pqqpq

2)26(2
2)23(2

         =  
2pq4pq7pqq9p
2pq4pqq12ppqq9p

222

2222

.                   
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Figure 2. (a) The vertex labeled lattices of T[p,q]. 
              (b) The edge labeled lattices of T[p,q].

e11 e12 e1p

e21 
e2p 

e31 e32 e3p

e41 e4p

e(q-1)1 e(q-1)2 e(q-1)p 

eq1 eqp

f11 f12 f14 f1(2p-1) f1(2p) 

f21 f22 f23 f24 f2(2p-1) f2(2p)

f31 

f41 

f(q-1)1

fq1 

f(q-1)2

fq2 fq3 fq4 fq(2p-1) fq(2p) 

f(q-1)(2p-1) f(q-1)(2p) 

f3(2p-1) 

f4(2p-1) f4(2p) 

u11 u12  u13 u14 u1(2p-1)  u1(2p) 

u21  u22 u23 u24 u2(2p-1) u2(2p) 

u3(2p) u3(2p-1)  u31 u32  u33 u34

u41 u42 u43 u44 u4(2p-1) u4(2p) 

uq1 

u(q-1)1  u(q-1)2 u(q-1)3 u(q-1)4  u(q-1)(2p-1) u(q-1)(2p) 

uq(2p) uq(2p-1)    uq2 uq3 uq4 

(a)

(b)
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