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Abstract

The Hosoya index of a graph is defined as the total number of the matchings of the
graph and the Merrifield-Simmons index of a graph is defined as the total number of
the independent sets of the graph. In this paper, we obtain the graphs with minimum
Hosoya index among the trees with n vertices and diameter d. The extremal graphs is
the same as ones given by X. Li et al with maximum Merrifield-Simmons index among
such a class of graphs. Also, we give the graphs with both minimum Hosoya index and
maximum Merrifield-Simmons index among the trees with n vertices and r pendant
vertices.

1 Introduction and Results

It is well known that a topological index is a map from the set of chemical compounds

represented by molecular graphs to the set of real numbers. There are more than hundred

topological indices available in the literature [1]. Many topological indices are closely

correlated with some physico-chemical characteristics of the underlying compounds [2]. The

Hosoya index is one of the topological indices. It was introduced by Hosoya in 1971 [3] and
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was applied to correlations with boiling points, entropies, calculated bond orders, as well as

for coding of chemical structures (see [4,5]). Since 1971, many authors have investigated the

Hosoya index and many results are obtained (see [5-13]). Similar to the Hosoya index, the

Merrifield and Simmons index is also a topological index whose correlation with the boiling

points is shown in [4]. Its mathematical properties were studied in some details [2,13–26].

In particular, Li, Zhao and Gutman [2] gave the graphs with maximum Merrifield-Simmons

index among the trees with order n and diameter d.

Recently, finding the graphs with both minimum Hosoya index and maximum Merrified-

Simmons index attracted the attention of a few researchers and some results are achieved.

Among these results, Gutman [27] pointed out the linear hexagonal chain is the unique

hexagonal chain with minimum Hosoya index and maximum Merrifield-Simmons index

among all the hexagonal chains with n hexagons. Zhang [13] noticed that the graph

with minimum Hosoya index is also the graph with maximum Merrifield-Simmons index

in some classes of graphs, such as hexagonal chains and catacondensed systems. Yu and

Tian [28] characterized the graphs with minimum Hosoya index and maximum Merrified-

Simmons index among the connected graphs with the given cyclomatic number and edge-

independence number.

In this paper, we give two classes of graphs, i.e. trees of n vertices with diameter d

and trees of n vertices with r pendant vertices, in each of which the graph with minimum

Hosoya index is also the graph with maximum Merrifield-Simmons index.

All graphs considered here are finite and simple. Undefined terminology and notation

may refer to [29]. Let G = (V,E) be a graph of n vertices. Two edges of G are said to

be independent if they are not adjacent in G. A k-matching of G is a set of k mutually

independent edges. Denote by z(G, k) the number of the k-matchings of G. For conve-

nience, let z(G, 0) = 1 for any graph G. Hosoya index of G, denoted by z(G), is defined as

z(G) =
∑�n

2
�

k=0 z(G, k). Obviously, z(G) is equal to the total number of the matchings of the

graph G. Similarly, two vertices of G are said to be independent if they are not adjacent in

G. A k-independent set of G is a set of k mutually independent vertices. Denote by σ(G, k)

the number of the k-independent sets of G. For convenience, let σ(G, 0) = 1 for any graph

G. Merrifield-Simmons index of G, denoted by σ(G), is defined as σ(G) =
∑n

k=0 σ(G, k).

So σ(G) is equal to the total number of the independent sets of the graph G.
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Denoted by n(G) and D(G) the total number of vertices in G and the diameter of

G, respectively. For a vertex v of G, we denote the degree of v by d(v), and define

Nv = {v} ∪ {u|uv ∈ E(G)}. Let V ′ ⊂ V , we will use G − V ′ to denote the graph obtained

from G by deleting the vertices in V ′ together with their incident edges. If V ′ = {v}, we

write G− v for G−{v}. A pendant vertex is a vertex of degree 1 and a pendant edge is an

edge incident to a pendant vertex. Denoted by PV (G) the total number of pendant vertices

in G. Let T n,d = {T : T is a tree with n vertices and diameter d } and T n
r = {T : T is a

tree with n vertices and r pendant vertices}. Let Sp,q (See Fig 1.) denote the tree obtained

from stars Sp+1 and Sq by identifying a pendant vertex of Sp+1 with the center of Sq. Let

Pn−d,d (see Fig. 1) denote the tree created from path Pd by adding n − d pendant edges

to an end vertex of Pd.
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Fig. 1

Our main results are stated in the following three theorems.

Theorem 1. If T ∈ T n,d, then

z(T ) ≥ (n − d + 1)Fd−1 + Fd−2

and the equality holds if and only if T ∼= Pn−d,d.

Theorem 2. If T ∈ T n
r , then

z(T ) ≥ rFn−r + Fn−r−1

and the equality holds if and only if T ∼= Pr−1,n−r+1.

Theorem 3. If T ∈ T n
r , then

σ(T ) ≤ 2r−1Fn−r+1 + Fn−r

and the equality holds if and only if T ∼= Pr−1,n−r+1.

Here, Fn is the n-th Fibonacci number which satisfies Fn = Fn−1 + Fn−2 with initial

conditions F0 = 1 and F1 = 1.

The proofs of the above theorems are given in section 2.
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2 Proofs

We only give the proof of Theorem 2. Proofs of Theorems 1 and 3 are similar to that

of Theorem 2, so we omitted them here. We use some techniques in [2]. First we give some

lemmas.

Lemma 1 [10]. Let v be a vertex of G. Then

(i) z(G) = z(G− v) +
∑

u z(G−{u, v}), where the summation extends over all vertices

adjacent to v.

(ii) σ(G) = σ(G − v) + σ(G − Nv).

Lemma 2 [10]. If G1, G2, . . . , Gt are the components of a graph G, then

(i) z(G) =
∏t

i=1 z(Gi).

(ii) σ(G) =
∏t

i=1 σ(Gi).

Proof of Theorem 2. It is not difficult to check that z(Pr−1,n−r+1) = rFn−r+Fn−r−1

by Lemma 1 and z(Pn) = Fn. Now we prove if T ∈ T n
r , then z(T ) ≥ rFn−r +Fn−r−1 with

equality only if T ∼= Pr−1,n−r+1.

Since T ∈ T n
r , we have that PV (T ) = r and n ≥ r + 1. We prove the theorem by

double induction on r and n.

If r = 2, then T ∼= Pn
∼= P1,n−1 and the theorem holds obviously for r = 2.

If T is a tree with PV (T ) = r and n(T ) = r + 1, then T ∼= Sr+1
∼= Pn−2,2 and hence

there is nothing to prove. If T is a tree with PV (T ) = r and n(T ) = r + 2, then T ∼= Sp,q

with p + q = r + 2, and z(Sp,q) = pq + 1 ≥ 2r + 1 with equality only if T ∼= Pr−1,3. Thus

the theorem holds for PV (T ) = r and n(T ) = r + 2.

In the following, we assume r ≥ 3 and n ≥ r + 3. Suppose that the theorem holds for

PV (T ) ≤ r − 1 and n(T ) ≥ r + 1, and for PV (T ) = r and r + 2 ≤ n(T ) ≤ n − 1. When

PV (T ) = r and n(T ) = n, we distinguish the following two cases.

Case 1. There is at least one maximal path u1u2u3 . . . udud+1 in T , such that d(u2) = 2

or d(ud) = 2. Without loss of generality, assume d(u2) = 2. From Lemma 1, we have

z(T ) = z(T − u1) + z(T − {u1, u2}). (1)

Now, n(T − u1) = n − 1 and n(T − {u1, u2}) = n − 2. In addition, PV (T − u1) = r and
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r − 1 ≤ PV (T − {u1, u2}) ≤ r.

By the induction hypothesis, we have

z(T − u1) ≥ z(Pr−1,n−r) = rFn−r−1 + Fn−r−2 (2)

with equality only if T − u1
∼= Pr−1,n−r.

If T − {u1, u2} ∈ T n−2
r−1 , by the induction hypothesis and n ≥ r + 3, we have

z(T − {u1, u2}) ≥ z(Pr−2,n−r) = (r − 1)Fn−r−1 + Fn−r−2

> rFn−r−2 + Fn−r−3 = z(Pr−1,n−r−1). (3)

If T − {u1, u2} ∈ T n−2
r , by the induction hypothesis, we have

z(T − {u1, u2}) ≥ z(Pr−1,n−r−1) = rFn−r−2 + Fn−r−3. (4)

Hence, by (1)∼(4), we have

z(T ) = z(T − u1) + z(T − {u1, u2})
≥ z(Pr−1,n−r) + z(Pr−1,n−r−1)

= rFn−r−1 + Fn−r−2 + rFn−r−2 + Fn−r−3

= rFn−r + Fn−r−1

with equality only if T ∼= Pr−1,n−r+1.

Case 2. d(u2) ≥ 3 and d(ud) ≥ 3 for each longest path u1u2u3 . . . udud+1 in T . Suppose

that d(u2) = t + 1 ≥ 3. From Lemma 1, we have

z(T ) = z(T − u1) + z(T − {u1, u2}). (5)

Now, T − u1 is an (n− 1)-vertex tree with r − 1 pendant vertices. Then, by the induction

hypothesis,

z(T − u1) ≥ z(Pr−2,n−r+1) = (r − 1)Fn−r + Fn−r−1 (6)

with equality only if T−u1
∼= Pr−2,n−r+1. On the other hand, there is a tree H such that T−

{u1, u2} = (t−1)K1∪H(otherwise, we can obtain a contradiction to that u1u2u3 . . . udud+1

is a longest path in T ). Obviously, 2 ≤ t ≤ r − 2, n(H) = n − t − 1 < n and r − t ≤
PV (H) ≤ r − t + 1.
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If PV (H) = r − t, by the induction hypothesis, t ≤ r − 2 and n ≥ r + 3, then

z(H) ≥ z(Pr−t−1,n−r) = (r − t)Fn−r−1 + Fn−r−2

> (r − t + 1)Fn−r−2 + Fn−r−3. (7)

If PV (H) = r − t + 1, by the induction hypothesis, then

z(H) ≥ z(Pr−t,n−r−1) = (r − t + 1)Fn−r−2 + Fn−r−3 (8)

with equality only if H ∼= Pr−t,n−r−1.

By (5)∼(8), Lemma 2, t ≤ r − 2 and n ≥ r + 3, we have

z(T ) = z(T − u1) + z(T − {u1, u2})
= z(T − u1) + z(H)

≥ (r − 1)Fn−r + Fn−r−1 + (r − t + 1)Fn−r−2 + Fn−r−3

≥ (r − 1)Fn−r + Fn−r−1 + 3Fn−r−2 + Fn−r−3

= (r + 1)Fn−r

> rFn−r + Fn−r−1.

This completes the proof of Theorem 2.

3 Conclusion

By Theorem 1 in this paper and Theorem 1 in [2], Pn−d,d has both minimum Hosoya

index and maximum Merrifield-Simmons index among the trees of n vertices and diameter

d. Similarly, by Theorems 2 and 3, Pr−1,n−r+1 has the two extremal indices just mentioned

among the trees of n vertices with r pendant vertices.
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