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Abstract

The Hosoya index of a graph is defined as the total number of the matchings of the
graph and the Merrifield-Simmons index of a graph is defined as the total number of
the independent sets of the graph. In this paper, we obtain the graphs with minimum
Hosoya index among the trees with n vertices and diameter d. The extremal graphs is
the same as ones given by X. Li et al with maximum Merrifield-Simmons index among
such a class of graphs. Also, we give the graphs with both minimum Hosoya index and
maximum Merrifield-Simmons index among the trees with n vertices and r pendant
vertices.

1 Imntroduction and Results

It is well known that a topological index is a map from the set of chemical compounds
represented by molecular graphs to the set of real numbers. There are more than hundred
topological indices available in the literature [1]. Many topological indices are closely
correlated with some physico-chemical characteristics of the underlying compounds [2]. The

Hosoya index is one of the topological indices. It was introduced by Hosoya in 1971 [3] and
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was applied to correlations with boiling points, entropies, calculated bond orders, as well as
for coding of chemical structures (see [4,5]). Since 1971, many authors have investigated the
Hosoya index and many results are obtained (see [5-13]). Similar to the Hosoya index, the
Merrifield and Simmons index is also a topological index whose correlation with the boiling
points is shown in [4]. Its mathematical properties were studied in some details [2,13-26].
In particular, Li, Zhao and Gutman [2] gave the graphs with maximum Merrifield-Simmons

index among the trees with order n and diameter d.

Recently, finding the graphs with both minimum Hosoya index and maximum Merrified-
Simmons index attracted the attention of a few researchers and some results are achieved.
Among these results, Gutman [27] pointed out the linear hexagonal chain is the unique
hexagonal chain with minimum Hosoya index and maximum Merrifield-Simmons index
among all the hexagonal chains with n hexagons. Zhang [13] noticed that the graph
with minimum Hosoya index is also the graph with maximum Merrifield-Simmons index
in some classes of graphs, such as hexagonal chains and catacondensed systems. Yu and
Tian [28] characterized the graphs with minimum Hosoya index and maximum Merrified-
Simmons index among the connected graphs with the given cyclomatic number and edge-

independence number.

In this paper, we give two classes of graphs, i.e. trees of n vertices with diameter d
and trees of n vertices with r pendant vertices, in each of which the graph with minimum

Hosoya index is also the graph with maximum Merrifield-Simmons index.

All graphs considered here are finite and simple. Undefined terminology and notation
may refer to [29]. Let G = (V, E) be a graph of n vertices. Two edges of G are said to
be independent if they are not adjacent in G. A k-matching of G is a set of k£ mutually
independent edges. Denote by z(G, k) the number of the k-matchings of G. For conve-
nience, let z(G,0) = 1 for any graph G. Hosoya index of G, denoted by z(G), is defined as
2(G) = Z,ﬁ{) 2(G, k). Obviously, z(G) is equal to the total number of the matchings of the
graph G. Similarly, two vertices of G are said to be independent if they are not adjacent in
G. A k-independent set of G is a set of & mutually independent vertices. Denote by o(G, k)
the number of the k-independent sets of G. For convenience, let o(G,0) = 1 for any graph
G. Merrifield-Simmons index of G, denoted by o(G), is defined as o(G) = Y j_, (G, k).
So o(@) is equal to the total number of the independent sets of the graph G.
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Denoted by n(G) and D(G) the total number of vertices in G and the diameter of
G, respectively. For a vertex v of G, we denote the degree of v by d(v), and define
Ny, = {v} U{ujuv € E(Q)}. Let V' C V, we will use G — V' to denote the graph obtained
from G by deleting the vertices in V' together with their incident edges. If V' = {v}, we
write G —v for G —{v}. A pendant vertex is a vertex of degree 1 and a pendant edge is an
edge incident to a pendant vertex. Denoted by PV (G) the total number of pendant vertices
inG. Let I, 4={T: T is a tree with n vertices and diameter d } and I} ={T: T is a
tree with n vertices and r pendant vertices}. Let Sp, 4 (See Fig 1.) denote the tree obtained
from stars S,41 and S; by identifying a pendant vertex of S,41 with the center of ;. Let

P,_g44 (see Fig. 1) denote the tree created from path P; by adding n — d pendant edges

. d
——
q—1 n—dg - o e—e

Pnfd,d

to an end vertex of Py.

Fig. 1
Our main results are stated in the following three theorems.
Theorem 1. If T' € 7, 4, then
2(T) > (n—d+1)Fqg1+ Fy o

and the equality holds if and only if T'= P,,_4 4.

Theorem 2. If T € .7}, then

AT) = 1Fper + Fuoyey

and the equality holds if and only if T'= P._y 5—p11.

Theorem 3. If T' € .7}, then

o(T) <2 ' Fupy1 + Frr

and the equality holds if and only if T'= P._q p—p11.

Here, F,, is the n-th Fibonacci number which satisfies F,, = F,,_1 + F,,_o with initial
conditions Fy =1 and F} = 1.

The proofs of the above theorems are given in section 2.
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2 Proofs

We only give the proof of Theorem 2. Proofs of Theorems 1 and 3 are similar to that
of Theorem 2, so we omitted them here. We use some techniques in [2]. First we give some
lemmas.

Lemma 1 [10]. Let v be a vertex of G. Then

(i) 2(G) = 2(G —v) + >, 2(G — {u,v}), where the summation extends over all vertices
adjacent to v.

(ii) 0(G) = 0(G —v) + 0(G — Ny).

Lemma 2 [10]. If G1,Ga,...,G; are the components of a graph G, then

(i) 2(G) = [Tizy 2(G2).

(i) 0(G) = ITizy 0(Ga).

Proof of Theorem 2. It is not difficult to check that z(Pr—1 pn—r+1) = rFp—r+Fp_r_1
by Lemma 1 and z(P,) = F,. Now we prove if T' € 7, then 2(T) > rF,_, + F,,_,_1 with
equality only if T2 P_q p—py1.

Since T € I, we have that PV(T) = r and n > r + 1. We prove the theorem by
double induction on r and n.

If r =2, then T'= P, 2 P; ;,_1 and the theorem holds obviously for r» = 2.

If T is a tree with PV(T) = r and n(T) = r + 1, then T = S, = P,_52 and hence
there is nothing to prove. If T' is a tree with PV(T) =r and n(T) =7+ 2, then T = S, 4
with p+ ¢ =742, and 2(Spq) = pg + 1 > 2r + 1 with equality only if T = P._; 3. Thus
the theorem holds for PV(T') = r and n(T) =r + 2.

In the following, we assume r > 3 and n > r + 3. Suppose that the theorem holds for
PV(T) <r—1and n(T) >r+1, and for PV(T) =r and r +2 < n(T) <n—1. When
PV(T) =r and n(T) = n, we distinguish the following two cases.

Case 1. There is at least one maximal path ujugus . . . ugugy1 in T, such that d(ug) = 2

or d(ugq) = 2. Without loss of generality, assume d(ug) = 2. From Lemma 1, we have
2(T) = 2(T —w1) + 2(T — {u1, u2}). (1)

Now, n(T —u1) = n —1 and n(T — {u1,u2}) = n — 2. In addition, PV (T — u;) = r and
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r—1< PV(T — {u1,uz}) <.

By the induction hypothesis, we have
Z(T - Ul) > Z(Pr—l,n—r) =rf 1+ Fhr2 (2)

with equality only if T — uq = Py .

If T — {u,up} € I"2, by the induction hypothesis and n > r + 3, we have

r—1>

Z(T - {ula u2}) Z Z(Pr72,n77') = (T - I)anrfl + Fn77'72
> TFTL*’I‘*Q + Fn7r73 = Z(Prfl,nfrfl)~ (3)

If T — {ug,us} € 7772, by the induction hypothesis, we have
Z(T - {uhu?}) > Z(PT—l,n—'r—l) =rFyr—2+ Fnr_3. (4)
Hence, by (1)~(4), we have

2(T) = 2T —wu1)+ 2T — {ur,u2})
> 2(Pr—ip—r) + 2(Prcin—r—1)
= Bt FerotrFh o+ Furs
= rk .+ For1

with equality only if T'= P._y 5_p11.
Case 2. d(uz) > 3 and d(ug) > 3 for each longest path ujusus . .. uqugr1 in T. Suppose
that d(uz) =t + 1> 3. From Lemma 1, we have

2(T) = 2(T —w1) + 2(T — {u1, u2}). (5)

Now, T — uy is an (n — 1)-vertex tree with r — 1 pendant vertices. Then, by the induction
hypothesis,
Z(T - ul) > Z(P'r—2,n—'r+l) = (T - 1)Fn—r + Fh—r_1 (6)

with equality only if T—uy = P_2 ,—r+1. On the other hand, there is a tree H such that T'—
{u1,u2} = (t—1)K;UH (otherwise, we can obtain a contradiction to that ujusus . .. uqugi1
is a longest path in T'). Obviously, 2 < ¢t <r—-2, n(H) =n—-t—1<nandr—t <
PV(H) <r—t+1.
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If PV(H) = r —t, by the induction hypothesis, t <r —2 and n > r + 3, then

Z(H) > Z(Prftfl,nfr) = (7' - t)F‘nfrfl + Fyr2

> (r—t+1)F 2+ Furs (7)
If PV(H) =r —t+ 1, by the induction hypothesis, then
2(H) > 2(Proppn—r—1) = (r —t + 1) Fyyo + Fryg (8)
with equality only if H = Pr_;,_p_1.
By (5)~(8), Lemma 2, t <7 —2 and n > r + 3, we have

2(T) = 2(T—w)+ 2(T — {u1,us2})
= z(T—w)+2(H)

(7" - l)anr + an'rfl + (T —t+ 1)F7L77'72 + anr73

2 (7" - l)anr + an'rfl + 3Fn71‘72 + Fn77'73
= (7" + l)anr
> TFTL*’I‘ + anrfl-
This completes the proof of Theorem 2. ]

3 Conclusion

By Theorem 1 in this paper and Theorem 1 in [2], P,_gq has both minimum Hosoya
index and maximum Merrifield-Simmons index among the trees of n vertices and diameter
d. Similarly, by Theorems 2 and 3, Pr_1 n—r+1 has the two extremal indices just mentioned

among the trees of n vertices with r pendant vertices.
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