Communications in Mathematical and in Computer Chemistry

ISSN 0340 - 6253

Some Graphs with Minimum Hosova Index and Maximum Merrifield-Simmons Index

Xiang-Feng Pan^{a*} Jun-Ming Xu^b Chao Yang^b Min-Jie Zhou^b ^aSchool of Mathematics and Computation Science, Anhui University, Hefei 230039, China ^bDepartment of Mathematics, University of Science and Technology of China, Hefei 230026, China

(Received March 29, 2006)

Abstract

The Hosoya index of a graph is defined as the total number of the matchings of the graph and the Merrifield-Simmons index of a graph is defined as the total number of the independent sets of the graph. In this paper, we obtain the graphs with minimum Hosoya index among the trees with n vertices and diameter d. The extremal graphs is the same as ones given by X. Li et al with maximum Merrifield-Simmons index among such a class of graphs. Also, we give the graphs with both minimum Hosova index and maximum Merrifield-Simmons index among the trees with n vertices and r pendant vertices

1 Introduction and Results

It is well known that a topological index is a map from the set of chemical compounds represented by molecular graphs to the set of real numbers. There are more than hundred topological indices available in the literature [1]. Many topological indices are closely correlated with some physico-chemical characteristics of the underlying compounds [2]. The Hosoya index is one of the topological indices. It was introduced by Hosoya in 1971 [3] and

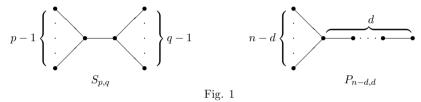
^{*}Partially supported by the Innovation Group Foundation of Anhui University; E-mail: xfpan@ustc.edu

was applied to correlations with boiling points, entropies, calculated bond orders, as well as for coding of chemical structures (see [4,5]). Since 1971, many authors have investigated the Hosoya index and many results are obtained (see [5-13]). Similar to the Hosoya index, the Merrifield and Simmons index is also a topological index whose correlation with the boiling points is shown in [4]. Its mathematical properties were studied in some details [2,13–26]. In particular, Li, Zhao and Gutman [2] gave the graphs with maximum Merrifield-Simmons index among the trees with order n and diameter d.

Recently, finding the graphs with both minimum Hosoya index and maximum Merrified-Simmons index attracted the attention of a few researchers and some results are achieved. Among these results, Gutman [27] pointed out the linear hexagonal chain is the unique hexagonal chain with minimum Hosoya index and maximum Merrifield-Simmons index among all the hexagonal chains with n hexagons. Zhang [13] noticed that the graph with minimum Hosoya index is also the graph with maximum Merrifield-Simmons index in some classes of graphs, such as hexagonal chains and catacondensed systems. Yu and Tian [28] characterized the graphs with minimum Hosoya index and maximum Merrified-Simmons index among the connected graphs with the given cyclomatic number and edgeindependence number.

In this paper, we give two classes of graphs, i.e. trees of n vertices with diameter d and trees of n vertices with r pendant vertices, in each of which the graph with minimum Hosoya index is also the graph with maximum Merrifield-Simmons index.

All graphs considered here are finite and simple. Undefined terminology and notation may refer to [29]. Let G = (V, E) be a graph of n vertices. Two edges of G are said to be independent if they are not adjacent in G. A k-matching of G is a set of k mutually independent edges. Denote by z(G, k) the number of the k-matchings of G. For convenience, let z(G, 0) = 1 for any graph G. Hosoya index of G, denoted by z(G), is defined as $z(G) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} z(G, k)$. Obviously, z(G) is equal to the total number of the matchings of the graph G. Similarly, two vertices of G are said to be independent if they are not adjacent in G. A k-independent set of G is a set of k mutually independent vertices. Denote by $\sigma(G, k)$ the number of the k-independent sets of G. For convenience, let $\sigma(G, 0) = 1$ for any graph G. Merrifield-Simmons index of G, denoted by $\sigma(G)$, is defined as $\sigma(G) = \sum_{k=0}^{n} \sigma(G, k)$. So $\sigma(G)$ is equal to the total number of the independent sets of the graph G. Denoted by n(G) and D(G) the total number of vertices in G and the diameter of G, respectively. For a vertex v of G, we denote the degree of v by d(v), and define $N_v = \{v\} \cup \{u | uv \in E(G)\}$. Let $V' \subset V$, we will use G - V' to denote the graph obtained from G by deleting the vertices in V' together with their incident edges. If $V' = \{v\}$, we write G - v for $G - \{v\}$. A pendant vertex is a vertex of degree 1 and a pendant edge is an edge incident to a pendant vertex. Denoted by PV(G) the total number of pendant vertices in G. Let $\mathscr{T}_{n,d} = \{T : T \text{ is a tree with } n \text{ vertices and diameter } d \}$ and $\mathscr{T}_r^n = \{T : T \text{ is a tree with } n \text{ vertices}\}$. Let $S_{p,q}$ (See Fig 1.) denote the tree obtained from stars S_{p+1} and S_q by identifying a pendant vertex of S_{p+1} with the center of S_q . Let $P_{n-d,d}$ (see Fig. 1) denote the tree created from path P_d by adding n - d pendant edges to an end vertex of P_d .



Our main results are stated in the following three theorems.

Theorem 1. If $T \in \mathscr{T}_{n,d}$, then

$$z(T) \ge (n-d+1)F_{d-1} + F_{d-2}$$

and the equality holds if and only if $T \cong P_{n-d,d}$.

Theorem 2. If $T \in \mathscr{T}_r^n$, then

$$z(T) \ge rF_{n-r} + F_{n-r-1}$$

and the equality holds if and only if $T \cong P_{r-1,n-r+1}$.

Theorem 3. If $T \in \mathscr{T}_r^n$, then

$$\sigma(T) \le 2^{r-1} F_{n-r+1} + F_{n-r}$$

and the equality holds if and only if $T \cong P_{r-1,n-r+1}$.

Here, F_n is the *n*-th Fibonacci number which satisfies $F_n = F_{n-1} + F_{n-2}$ with initial conditions $F_0 = 1$ and $F_1 = 1$.

The proofs of the above theorems are given in section 2.

2 Proofs

We only give the proof of Theorem 2. Proofs of Theorems 1 and 3 are similar to that of Theorem 2, so we omitted them here. We use some techniques in [2]. First we give some lemmas.

Lemma 1 [10]. Let v be a vertex of G. Then

(i) $z(G) = z(G - v) + \sum_{u} z(G - \{u, v\})$, where the summation extends over all vertices adjacent to v.

(ii) $\sigma(G) = \sigma(G - v) + \sigma(G - N_v).$

Lemma 2 [10]. If G_1, G_2, \ldots, G_t are the components of a graph G, then

(i)
$$z(G) = \prod_{i=1}^{t} z(G_i)$$
.

(ii)
$$\sigma(G) = \prod_{i=1}^{t} \sigma(G_i).$$

Proof of Theorem 2. It is not difficult to check that $z(P_{r-1,n-r+1}) = rF_{n-r} + F_{n-r-1}$ by Lemma 1 and $z(P_n) = F_n$. Now we prove if $T \in \mathscr{T}_r^n$, then $z(T) \ge rF_{n-r} + F_{n-r-1}$ with equality only if $T \cong P_{r-1,n-r+1}$.

Since $T \in \mathscr{T}_r^n$, we have that PV(T) = r and $n \ge r+1$. We prove the theorem by double induction on r and n.

If r = 2, then $T \cong P_n \cong P_{1,n-1}$ and the theorem holds obviously for r = 2.

If T is a tree with PV(T) = r and n(T) = r + 1, then $T \cong S_{r+1} \cong P_{n-2,2}$ and hence there is nothing to prove. If T is a tree with PV(T) = r and n(T) = r + 2, then $T \cong S_{p,q}$ with p + q = r + 2, and $z(S_{p,q}) = pq + 1 \ge 2r + 1$ with equality only if $T \cong P_{r-1,3}$. Thus the theorem holds for PV(T) = r and n(T) = r + 2.

In the following, we assume $r \ge 3$ and $n \ge r+3$. Suppose that the theorem holds for $PV(T) \le r-1$ and $n(T) \ge r+1$, and for PV(T) = r and $r+2 \le n(T) \le n-1$. When PV(T) = r and n(T) = n, we distinguish the following two cases.

Case 1. There is at least one maximal path $u_1u_2u_3 \ldots u_du_{d+1}$ in T, such that $d(u_2) = 2$ or $d(u_d) = 2$. Without loss of generality, assume $d(u_2) = 2$. From Lemma 1, we have

$$z(T) = z(T - u_1) + z(T - \{u_1, u_2\}).$$
(1)

Now, $n(T - u_1) = n - 1$ and $n(T - \{u_1, u_2\}) = n - 2$. In addition, $PV(T - u_1) = r$ and

 $r-1 \le PV(T - \{u_1, u_2\}) \le r.$

By the induction hypothesis, we have

$$z(T - u_1) \ge z(P_{r-1,n-r}) = rF_{n-r-1} + F_{n-r-2}$$
(2)

with equality only if $T - u_1 \cong P_{r-1,n-r}$.

If $T - \{u_1, u_2\} \in \mathscr{T}_{r-1}^{n-2}$, by the induction hypothesis and $n \ge r+3$, we have

$$z(T - \{u_1, u_2\}) \geq z(P_{r-2, n-r}) = (r-1)F_{n-r-1} + F_{n-r-2}$$

> $rF_{n-r-2} + F_{n-r-3} = z(P_{r-1, n-r-1}).$ (3)

If $T - \{u_1, u_2\} \in \mathscr{T}_r^{n-2}$, by the induction hypothesis, we have

$$z(T - \{u_1, u_2\}) \ge z(P_{r-1, n-r-1}) = rF_{n-r-2} + F_{n-r-3}.$$
(4)

Hence, by $(1) \sim (4)$, we have

$$\begin{aligned} z(T) &= z(T-u_1) + z(T - \{u_1, u_2\}) \\ &\geq z(P_{r-1,n-r}) + z(P_{r-1,n-r-1}) \\ &= rF_{n-r-1} + F_{n-r-2} + rF_{n-r-2} + F_{n-r-3} \\ &= rF_{n-r} + F_{n-r-1} \end{aligned}$$

with equality only if $T \cong P_{r-1,n-r+1}$.

Case 2. $d(u_2) \ge 3$ and $d(u_d) \ge 3$ for each longest path $u_1u_2u_3 \ldots u_du_{d+1}$ in *T*. Suppose that $d(u_2) = t + 1 \ge 3$. From Lemma 1, we have

$$z(T) = z(T - u_1) + z(T - \{u_1, u_2\}).$$
(5)

Now, $T - u_1$ is an (n - 1)-vertex tree with r - 1 pendant vertices. Then, by the induction hypothesis,

$$z(T - u_1) \ge z(P_{r-2,n-r+1}) = (r-1)F_{n-r} + F_{n-r-1}$$
(6)

with equality only if $T-u_1 \cong P_{r-2,n-r+1}$. On the other hand, there is a tree H such that $T-\{u_1, u_2\} = (t-1)K_1 \cup H$ (otherwise, we can obtain a contradiction to that $u_1u_2u_3 \ldots u_du_{d+1}$ is a longest path in T). Obviously, $2 \leq t \leq r-2$, n(H) = n-t-1 < n and $r-t \leq PV(H) \leq r-t+1$.

If PV(H) = r - t, by the induction hypothesis, $t \le r - 2$ and $n \ge r + 3$, then

$$z(H) \geq z(P_{r-t-1,n-r}) = (r-t)F_{n-r-1} + F_{n-r-2}$$

> $(r-t+1)F_{n-r-2} + F_{n-r-3}.$ (7)

If PV(H) = r - t + 1, by the induction hypothesis, then

$$z(H) \ge z(P_{r-t,n-r-1}) = (r-t+1)F_{n-r-2} + F_{n-r-3}$$
(8)

with equality only if $H \cong P_{r-t,n-r-1}$.

By (5)~(8), Lemma 2, $t \le r-2$ and $n \ge r+3$, we have

$$\begin{aligned} z(T) &= z(T-u_1) + z(T - \{u_1, u_2\}) \\ &= z(T-u_1) + z(H) \\ &\geq (r-1)F_{n-r} + F_{n-r-1} + (r-t+1)F_{n-r-2} + F_{n-r-3} \\ &\geq (r-1)F_{n-r} + F_{n-r-1} + 3F_{n-r-2} + F_{n-r-3} \\ &= (r+1)F_{n-r} \\ &> rF_{n-r} + F_{n-r-1}. \end{aligned}$$

This completes the proof of Theorem 2.

3 Conclusion

By Theorem 1 in this paper and Theorem 1 in [2], $P_{n-d,d}$ has both minimum Hosoya index and maximum Merrifield-Simmons index among the trees of n vertices and diameter d. Similarly, by Theorems 2 and 3, $P_{r-1,n-r+1}$ has the two extremal indices just mentioned among the trees of n vertices with r pendant vertices.

Acknowledgements. The authors would like to thank the anonymous referees for their valuable comments and suggestions.

References

 D.H. Rouvray, The limits of applicability of topological indices, J. Mol. Struct. (Theochem) 185 (1989) 187–201.

- [2] X. Li, H. Zhao and I. Gutman, On the Merrifield-Simmons index of trees, MATCH Commun. Math. Comput. Chem. 54 (2005) 389–402.
- [3] H. Hosoya, Topological index, a newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, *Bull. Chem. Soc. Jpn.* 44 (1971) 2332–2339.
- [4] R.E. Merrifield and H.E. Simmons, *Topological Methods in Chemistry*, Wiley, New York, 1989.
- [5] L. Türker, Contemplation on the Hosoya indices, J. Mol. Struct. (Theochem) 623 (2003) 75–77.
- [6] O. Chan, I. Gutman, T.K. Lam and R. Merris, Algebraic connections between topological indices, J. Chem. Inform. Comput. Sci. 38 (1998) 62–65.
- [7] S.J. Cyvin and I. Gutman, Hosoya index of fused molecules, MATCH Commun. Math. Comput. Chem. 23 (1988) 89–94.
- [8] S.J. Cyvin, I. Gutman and N. Kolakovic, Hosoya index of some polymers, MATCH Commun. Math. Comput. Chem. 24 (1989) 105–117.
- [9] I. Gutman, On the Hosoya index of very large molecules, MATCH Commun. Math. Comput. Chem. 23 (1988) 95–103.
- [10] I. Gutman and O.E. Polansky, *Mathematical Concepts in Organic Chemistry*, Springer, Berlin, 1986.
- [11] I. Gutman, D. Vidović and B. Furtula, Coulson function and Hosoya index, Chem. Phys. Lett. 355 (2002) 378–382.
- [12] Y.P. Hou, On acyclic systems with minimal Hosoya index, Discrete Appl. Math. 119 (2002) 251–257.
- [13] L.Z. Zhang and F. Tian, Extremal catacondensed benzenoids, J. Math. Chem. 34 (2003) 111–122.
- [14] R. E. Merrifield and H.E. Simmons, Enumeration of structure-sensitive graphical subsets: Calculations, Proc. Natl. Acad. Sci. USA 78 (1981) 1329–1332.
- [15] I. Gutman, Fragmentation formulas for the number of Kekulé structures, Hosoya and Merrifield-Simmons indices and related graph invariants, *Coll. Sci. Pap. Fac. Sci. Kragujevac* 11 (1990) 11–18.
- [16] I. Gutman, N. Kolaković, Hosoya index of the second kind of molecules containing a polyacene fragment, Bull. Acad. Serbe Sci. Arts (Cl. Math. Natur.) 102 (1990) 39–46.

- [17] I. Gutman, Topological properties of benzenoid systems. Merrifield-Simmons indices and independence polynomials of unbranched catafusenes, *Rev. Roum. Chim.* 36 (1991) 379–388.
- [18] I. Gutman, An identity for the independence polynomials of trees, Publ. Inst. Math. (Beograd) 50 (1991) 19–23.
- [19] I. Gutman, Independent vertex sets in some compound graphs, Publ. Inst. Math. (Beograd) 52 (1992) 5–9.
- [20] I. Gutman, H. Hosoya, G. Uraković and L. Ristić, Two variants of the topological index and the relations between them, *Bull. Chem. Soc. Jpn* 65 (1992) 14–18.
- [21] H. Hosoya, I. Gutman and J. Nikolić, Topological indices of unbranched catacondensed benzenoid hydrocarbons, *Bull. Chem. Soc. Jpn* 65 (1992) 2011–2015.
- [22] X. Li, On a conjecture of Merrifield and Simmons, Australasian J. Comb. 14 (1996) 15–20.
- [23] Y. Wang, X. Li and I. Gutman, More examples and counterexamples for a conjecture of Merrifield and Simmons, *Publ. Inst. Math. (Beograd)* 69 (2001) 41–50.
- [24] X. Li, Z. Li and L. Wang, The inverse problems for some topological indices in combinatorial chemistry, J. Comput. Biol. 10 (2003) 47–55.
- [25] S. Lin and C. Lin, Trees and forests with large and small independent indices, *Chinese J. Math.* 23 (3) (1995) 199–210.
- [26] W. C. Shiu, P. C. B. Lam and L. Zhang, Extremal k*-cycle resonant hexagonal chains, J. Math. Chem. 33 (2003) 17–28.
- [27] I. Gutman, Extremal hexagonal chains, J. Math. Chem. 12 (1993) 197-210.
- [28] A. Yu and F. Tian, A Kind of Graphs with Minimal Hosoya Indices and Maximal Merrifield-Simmons Indices, MATCH Commun. Math. Comput. Chem. 55 (2006) 103– 118.
- [29] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976.