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Abstract

Let G be a graph with n vertices and m edges. Let μ1, μ2, . . . , μn be the Laplacian
eigenvalues of G . The Laplacian energy of G has recently been defined [Lin. Algebra Appl.

414 (2006) 29–37] as LE(G) =
n∑

i=1
|μi − 2m/n| . We establish a few new properties of

LE(G) .

INTRODUCTION

The energy E(G) of a graph G is equal to the sum of the absolute values of

the eigenvalues of the adjacency matrix of G . This quantity, introduced almost 30

years ago [1] and having a clear connection to chemical problems [2,3], has in newer

times attracted much attention of mathematicians and mathematical chemists [4–

15]. We have recently proposed [16] an energy–like quantity LE(G) , based on the
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eigenvalues of the Laplacian matrix of G . The Laplacian energy LE(G) and the

ordinary energy E(G) were found [16] to have a number of analogous properties, but

also some noteworthy differences between them have been recognized [16]. In this

paper we report further properties of LE .

Let G be a simple graph possessing n vertices and m edges. The ordinary spectrum

of G , consisting of the numbers λ1, λ2, . . . , λn , is the spectrum of the adjacency matrix

A of G [17]. Then

E = E(G) =
n∑

i=1

|λi| . (1)

The Laplacian spectrum of G , consisting of the numbers μ1, μ2, . . . , μn , is the

spectrum of the Laplacian matrix L of G [18–23]. Then

LE = LE(G) =
n∑

i=1

|γi| (2)

where

γi = μi − 2m

n
. (3)

The ordinary graph eigenvalues satisfy the conditions

n∑
i=1

λi = 0 and
n∑

i=1

(λi)
2 = 2m . (4)

The analogous relations for the Laplacian eigenvalues read

n∑
i=1

γi = 0 and
n∑

i=1

(γi)
2 = 2M (5)

where

M = m +
1

2

n∑
i=1

(
δi − 2m

n

)2

with δi denoting the degree of the i-th vertex of G . It is immediately seen that

M ≥ m for all graphs G , and that M = m holds if and only if G is a regular graph.

The idea behind the definition (2) of the Laplacian energy is the following. In the

theory of graph energy, Eq. (1), there are numerous known results (especially lower

and upper bounds) that are obtained by using the relations (4) and that depend on

the parameters n and m . Then one could expect analogous results for LE , obtained

by means of the relations (5), that would depend on the parameters n and M . Indeed,

a number of such results could be deduced [16]; in the subsequent section we point

out a few more.
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FURTHER (n, M,m)-TYPE BOUNDS FOR THE LAPLACIAN

ENERGY

1

If the graph G has p components (p ≥ 1), and if the Laplacian eigenvalues are

labelled so that μ1 ≥ μ2 ≥ · · · ≥ μn , then

μn−i = 0 for i = 0, . . . , p − 1 and μn−p > 0 .

This immediately implies, γn−i = −2m/n for i = 0, . . . , p − 1 , and thus

LE(G) ≥ p
2m

n
.

This upper bound can be improved. If the graph G possesses at least one edge,

then [20,21]

μ1 ≥ 2m

n
+ 1

and therefore γ1 ≥ 1 , resulting in

LE(G) ≥ p
2m

n
+ 1 .

2

In [16] we proved (in Theorem 3) that

LE(G) ≤ 2m

n
p +

√√√√(n − p)

[
2M − p

(
2m

n

)2
]

. (6)

We now show that the right–hand side expression in (6) is a decreasing function

of the parameter p .

Let a = 2m/n and consider the function

f(x) := ax +
√

(n − x)(2M − a2 x) , 0 ≤ x ≤ n .

Then

f ′(x) = a − 2M + a2 n − 2a2 x

2
√

(n − x)(2M − a2 x)
.
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It is easy to see that 2M + a2 n − 2a2 x ≥ 0 since x ≤ n . Therefore f ′(x) ≤ 0 if and

only if

2a
√

(n − x)(2M − a2 x) ≤ 2M + a2 n − 2a2 x

i. e.,

4a2 (n − x)(2M − a2 x) ≤ (2M + a2 n − 2a2 x)2

which is transformed into the obvious inequality

4Ma2 n ≤ 4M2 + a4 n2 .

Because the upper bound (6) increases with decreasing p , by setting p = 1 we

obtain the estimate

LE(G) ≤ 2m

n
+

√√√√(n − 1)

[
2M −

(
2m

n

)2
]

(7)

which holds for all (n,m)-graphs.

3

In [16] we proved (in Theorem 2) that

LE ≤
√

2Mn . (8)

We now show that the bound (7) is better than (8).

Indeed,

2m

n
+

√√√√(n − 1)

[
2M −

(
2m

n

)2
]
≤

√
2Mn

holds if and only if

(n − 1)

[
2M −

(
2m

n

)2
]
≤

(√
2Mn − 2m

n

)2

which is directly transformed into

2m
√

2Mn ≤ 2m2 + Mn

i. e., √
(2m2)(Mn) ≤ 1

2

[
(2m2) + (Mn)

]

- 214 -



which is just the relation between the geometric and arithmetic means.

Another way to arrive at the same conclusion is based on the result of the previous

point 2. There we showed that the right–hand side of (6) is a decreasing function of

the parameter p for 0 ≤ p ≤ n . Setting p = 0 in (6) we obtain (8). Thus, the estimate

(7), pertaining to p = 1 , is better than the estimate (8), pertaining to p = 0 .

4

Proposition 1. Let G be an (n,m)-graph with n ≥ 3 . Then

LE(G) ≤
√

2M − (2m/n)2

n − 1
+

2m

n
+

√√√√(n − 2) +

[
2M − 2M − (2m/n)2

n − 1
−

(
2m

n

)2
]

.

Proof. By the Cauchy–Schwartz inequality, bearing in mind that γn = −2m/n ,

n−1∑
i=2

|γi| ≤
√√√√(n − 2)

n−1∑
i=2

γ2
i =

√√√√(n − 2)

[
2M − (γ1)2 −

(
2m

n

)2
]

.

Hence, recalling that γ1 ≥ 0 ,

LE(G) ≤ γ1 +
2m

n
+

√√√√(n − 2)

[
2M − (γ1)2 −

(
2m

n

)2
]

.

The function

f(x) = x +
2m

n
+

√√√√(n − 2)

[
2M − x2 −

(
2m

n

)2
]

decreases if and only if

x ≥
√

[2M − (2m/n)2]/(n − 1) .

Therefore

LE(G) ≤ f
(√

[2M − (2m/n)2]/(n − 1)
)

.

The result follows. �

5

In [16] we proved (in Theorem 4) that

LE(G) ≥ 2
√

M (9)
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with equality if and only if G ∼= Kn/2,n/2 . Because M ≥ m , we have

LE(G) ≥ 2
√

m . (10)

Equality M = m holds only for regular graphs, whereas the only (regular) graph for

which equality in (9) holds is Kn/2,n/2 . Therefore, also the equality in (10) holds if

and only if G ∼= Kn/2,n/2 .

THE CASE LE = 4m/n

Proposition 2. Let G be an (n,m)-graph with m > 0 . Then

LE(G) =
4m

n
(11)

if and only if G is a complete multipartite graph Kn1,n2,...,nk
where ni = n/k for all i

and 1 < k ≤ n .

Proof. First note that the complete graph Kn satisfies condition (11). Namely, the

Laplacian eigenvalues of Kn are n [(n − 1)-times] and 0. Consequently, LE(Kn) =

2(n − 1) which, in view of m = n(n − 1)/2 , is equal to the right–hand side of (11).

If G ∼= Kn , then μn−1 = n > n − 1 = 2m/n . If G �∼= Kn then μn−1 ≤ δ, where δ

denotes the minimum vertex degree of G [24]. Therefore μn−1 ≤ 2m/n , since 2m/n is

the average vertex degree. If μn−1 = 2m/n , then G must be regular. Then, however,

λ2 = 2m/n − μn−1 = 0 , which means that the graph G has exactly one positive

ordinary eigenvalue. This, in turn, implies (cf. Theorem 6.7, p. 163 in [17]) that G

is a complete multipartite graph Kn1,n2,...,nk
where ni = n/k for all i and 1 < k ≤ n .

(Recall that if k = n , then Kn1,n2,...,nk
is just the complete graph Kn .)

Thus μn−1 ≥ 2m/n if and only if G ∼= Kn1,n2,...,nk
with ni = n/k for all i and

1 < k ≤ n .

Now,

LE(G) = 4m/n =
n−1∑
i=1

μi − 2m
(
1 − 2

n

)

holds if and only if
n−1∑
i=1

∣∣∣∣μi − 2m

n

∣∣∣∣ =
n−1∑
i=1

(
μi − 2m

n

)

- 216 -



i. e., if and only if μn−1 ≥ 2m/n . �

Remark. The equality (11) holds also for the graphs without edges.

MORE ANALOGIES BETWEEN E AND LE

There are known bounds for graph energy (for instance, [25–27]), obtained by

using the conditions (4) and
n∏

i=1

λi = detA .

For chemical applications it is often of great importance that the determinant of the

adjacency matrix is related to the Kekulé structures [28–30], and in some cases (e. g.

for benzenoid hydrocarbons) is equal to the square of the Kekulé structure count.

Analogous results for Laplacian graph energy can be obtained by combining the

conditions (5) with
n∏

i=1

γi = D

where D is a pertinent graph invariant. It is easy to show that, in view of (3),

D = det
(
L− 2m

n
I
)

. (12)

Proposition 3. For any (n,m)-graph G , whose invariant D is given by Eq. (12),

2M − n |D|2/n ≤ 2nM − LE(G)2 ≤ (n − 1)
[
2M − n |D|2/n

]
.

Proof is analogous to what earlier was reported for E(G) [26].

Proposition 4. Let the graph G be same as in Proposition 3, except that D is

required to be non-zero. Consider the system of equations

α2 + (n − 1) β2 = 2M

α βn−1 = |D| .

Let α1, β1 be the solution of this system, such that α1 ≥ β1 > 0 . Let α2, β2 be

another solution of the system, such that β2 ≥ α2 > 0 . Let LEmin = α1 + (n − 1) β1

and LEmax = α2 + (n − 1) β2 . Then

LEmin ≤ LE(G) ≤ LEmax . (13)
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Proof is analogous to what earlier was reported for E(G) [27]. According to Theorem

2 of [16], equality on both sides of (13) is attained if and only if G consists of p copies

of complete graphs of order k and and (k − 2)p isolated vertices, p ≥ 1 , k ≥ 2 .
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