
ON SPECTRAL MOMENTS AND ENERGY OF

GRAPHS

Bo Zhou,a Ivan Gutman,b José Antonio de la Peña,c
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Abstract

Let G be a graph on n vertices, and let λ1, λ2, . . . , λn be its eigenvalues. The energy of
G is E =

∑n
i=1 |λi| . The k-th spectral moment of G is Mk =

∑n
i=1(λi)k . We prove that for

even positive integers r, s, t , such that 4r = s + t + 2 , the inequality E ≥ (Mr)2/
√

Ms Mt

holds for all graphs with at least one edge, thus generalizing an earlier result [de la Peña,
Mendoza, Rada, Discr. Math. 302 (2005) 77–84]. The graphs for which the above relation
becomes equality are characterized.
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INTRODUCTION

Let G be a graph without loops and multiple edges. Let n and m be, respec-

tively, the number of vertices and edges of G . The eigenvalues of G are denoted by

λ1, λ2, . . . , λn , and are assumed to be labelled in a non-increasing manner:

λ1 ≥ λ2 ≥ · · · ≥ λn .

The basic properties of graph eigenvalues can be found in the book [1].

The energy of the graph G is defined as

E = E(G) =
n∑

i=1

|λi| . (1)

The graph–energy concept has a chemical motivation. Namely, for graphs which

in the Hückel molecular orbital theory represent the carbon–atom skeleton of some

conjugated hydrocarbons, E is related to the total π-electron energy (or more pre-

cisely: the total π-electron energy is a linear function of E). For more details on this

matter see the book [2] and the recent review [3].

However, more than a quarter of century ago, one of the present authors proposed

[4] that the graph invariant E — as defined above — be considered for all graphs,

irrespective of its possible chemical interpretation. This change of viewpoint made

it possible to envisage and establish numerous new, generally valid, mathematical

properties of E , some of evident value for chemistry, some of no visible chemical

applicability.

After 1978 the graph–energy concept was presented to the mathematico–chemical

community on several other occasions [2, 5, 6]. Initially, the response of other col-

leagues was almost nil. However, around the turn of the century the study of E sud-

denly became a rather popular topic both in mathematical chemistry and in “pure”

mathematics. Of the numerous papers on graph energy that recently appeared, we

quote here only a few [7–29].

For a nonnegative integer k , the k-th spectral moment of the graph G is defined

as

Mk = Mk(G) =
n∑

i=1

(λi)
k . (2)
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Note that Mk is equal to the number of closed walks of length k in G [1].

Because both the energy and the spectral moments are symmetric functions of

graph eigenvalues, it is reasonable to ask if there exist relations between them. Much

work has been devoted to problems of this kind [30–39].

Recently, de la Peña et al. [25] proved the following:

Theorem 1. Let G be a bipartite graph with at least one edge and let r , s , t be even

positive integers, such that 4r = s + t + 2 . Then

E(G) ≥ Mr(G)2 [Ms(G) Mt(G)]−1/2 . (3)

In this article we show that the statement of Theorem 1 can be, in a natural

manner, extended to all graphs, and also offer a simple proof of the inequality Eq.

(3).

EXTENDING THEOREM 1

In Eq. (3) it is essential that the parameters s and t are (non-negative) even inte-

gers, because in the case of bipartite graphs, the odd spectral moments are necessarily

zero [1]. In order to overcome this limitation we define the moment–like quantities

M∗
k = M∗

k (G) =
n∑

i=1

|λi|k . (4)

Here k may be an odd integer, but also any real–valued number. Comparing Eqs. (2)

and (4) we conclude that if k is an even integer, then M∗
k = Mk . Bearing in mind

(1), we see that M∗
1 = E .

The main result of this section is the following extension of Theorem 1:

Theorem 1a. Let G be a graph with at least one edge and let r , s , t be non-negative

real numbers, such that 4r = s + t + 2 . Then

E(G) ≥ M∗
r (G)2 [M∗

s (G) M∗
t (G)]−1/2 . (5)

Evidently, Theorem 1 is a special case of Theorem 1a for G being a bipartite graph

and for s and t being even positive integers.
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In order to prove Theorem 1a we need a simple lemma.

Lemma 2. Let a1, a2, . . . , ah be positive real numbers, h > 1 , and let r , s , t be

non-negative real numbers, such that 4r = s + t + 2 . Then

[
h∑

i=1

(ai)
r

]4

≤
(

h∑
i=1

ai

)2 h∑
i=1

(ai)
s

h∑
i=1

(ai)
t . (6)

If (s, t) �= (1, 1) , then the equality in (6) holds if and only if a1 = a2 = · · · = ah .

Note that if s = t = 1 (and, consequently, r = 1), then equality in (6) holds in a

trivial manner for any choice of ai’s.

Proof. By the Cauchy–Schwarz inequality,

[
h∑

i=1

(ai)
r

]4

=

[
h∑

i=1

(ai)
(s+t)/4 · (ai)

1/2

]4

≤
[

h∑
i=1

(ai)
(s+t)/2

h∑
i=1

ai

]2

=

[
h∑

i=1

(ai)
s/2 · (ai)

t/2

]2 [
h∑

i=1

ai

]2

≤
h∑

i=1

(ai)
s

h∑
i=1

(ai)
t

(
h∑

i=1

ai

)2

.

This proves (6). Equality in (6) holds if and only if both as+t−2
i and as−t

i are constant

for all i = 1, 2, . . . , h . Thus if (s, t) �= (1, 1) , then equality in (6) holds if and only if

a1 = a2 = · · · = ah . �

Proof of Theorem 1a. Let μ1 ≥ μ2 ≥ · · · ≥ μh be the non-zero eigenvalues of the

graph G . Since G has at least one edge, we have [1] μ1 = λ1 > 0 and μh = λn < 0 .

Using Lemma 2 for the positive numbers ai = |μi| , i = 1, 2, . . . , h , and noting

that in this case
h∑

i=1
(ai)

k = M∗
k (G) and, in particular,

h∑
i=1

ai = E(G) , we have

M∗
r (G)4 ≤ E(G)2 M∗

s (G) M∗
t (G)

from which (5) follows. �

If s = t = 1 , then in a trivial manner (5) becomes an equality. By Lemma 2, if

(s, t) �= (1, 1) , then equality in (5) holds if and only if |μ1| = |μ2| = · · · = |μh| . We

now determine the graphs that obey these conditions.
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Theorem 3. Equality in (5) holds if and only if the components of the graph G are

isolated vertices and/or complete bipartite graphs Kp1,q1 , . . . , Kpk,qk
for some k ≥ 1 ,

such that p1 q1 = · · · = pk qk .

Proof. If G is a graph specified in the theorem with pi qi = C for i = 1, . . . , k , it is

easy to check [1] that its non-zero eigenvalues are
√

C (k times) and −√
C (k times),

and so the equality in (5) holds.

Suppose that the equality in (5) holds. Then |μ1| = |μ2| = · · · = |μh| . Note

that, by Theorem 0.13 in [1], it must be
h∑

i=1
μi = 0 . Therefore the spectrum of

G must be symmetric w. r. t. the origin, and thus (by Theorem 3.11 in [1]), G

is a bipartite graph. Note also that G has either two (μ1 and −μ1) or three (μ1 ,

−μ1 , and 0) distinct eigenvalues. Then by Theorems 6.4 and 6.5 in [1], G is the

disjoint union of complete bipartite graphs Kp1,q1 , . . . , Kpk,qk
for some k ≥ 1 , such

that p1 q1 = · · · = pk qk , and possibly isolated vertices. �

DISCUSSION

By setting (s, t) = (0, 2) in Theorem 1a (which implies r = 1), we obtain E ≤√
2m(n − n0) where n0 is the number of zero eigenvalues of the underlying graph.

This improvement of the famous McClelland upper bound E ≤ √
2mn [2, 3] seems

to be first reported in [40].

By setting (s, t) = (2, 4) in Theorem 1a (which implies r = 2), we obtain the lower

bound

E ≥ 2
√

2 m

√
m

M4

.

For bipartite graphs it has been reported in [13, 25], whereas for all (both bipartite

and non-bipartite) graphs in [16, 41].

* * * * *

The relation 4r = s + t + 2 used in Lemma 2 may be viewed as a special case of

2k r = s + t + 2k − 2 (7)

- 187 -



for k = 2 . With condition (7), with k ≥ 2 and k integer, instead of (6) we get

[
h∑

i=1

(ai)
r

]2k

≤
(

h∑
i=1

ai

)2k−2 h∑
i=1

(ai)
s

h∑
i=1

(ai)
t .

which, in turn, implies

E(G) ≥ M∗
r (G)2k/(2k−2) [M∗

s (G) M∗
t (G)]−1/(2k−2) .

The condition 4r = s + t + 2 can be further modified. For instance, if 8r =

s + t + u + 5 , then

[
h∑

i=1

(ai)
r

]8

≤
(

h∑
i=1

ai

)5 h∑
i=1

(ai)
s

h∑
i=1

(ai)
t

h∑
i=1

(ai)
u

and

E(G) ≥ M∗
r (G)8/5 [M∗

s (G) M∗
t (G) M∗

u(G)]−1/5 .

If 8r = s + t + u + v + 4 , then

[
h∑

i=1

(ai)
r

]8

≤
(

h∑
i=1

ai

)4 h∑
i=1

(ai)
s

h∑
i=1

(ai)
t

h∑
i=1

(ai)
u

h∑
i=1

(ai)
v

and

E(G) ≥ M∗
r (G)2 [M∗

s (G) M∗
t (G) M∗

u(G) M∗
v (G)]−1/4 .
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