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Abstract
An Euclidean graph associated with a molecule is defined by a weighed graph with 
adjacency matrix M = [dij], where for i j, dij is the Euclidean distance between the 
nuclei i and j.  In this matrix dii can be taken as zero if all the nuclei are equivalent. 
Otherwise, one may introduce different weights for distinct nuclei. A.T. Balaban 
introduced some monster graphs and then M. Randic computed complexity indices of 
them. In this paper, we go on our studies describes a simple method, by means of 
which it is possible to calculate the automorphism group of weighted graphs. (see 
A.T. Balaban, Rev. Roum. Chim. 18(1973) 841-853 and M. Randic, Croat. Chem. 
Acta 74(3)(2001) 683-705).

INTRODUCTION 

Graph theory is a branch of discrete mathematics concerned with relation, between 

objects. From the point of the graph theory, all organic molecular structures can be 

drawn as graphs in which atoms and bonds are represented by vertices and edges, 

respectively. Structural symmetry is related to the automorphism group of the vertices, 

which is a subgroup of the vertex permutation group.  

Randic1,2 showed that a graph can be depicted in different ways from its point 

group symmetry or three dimensional perception, but the underlying connectivity 

symmetry is still the same as characterized by the automorphism group of the graph.  

However, the molecular symmetry depends on the coordinates of the various 

nuclei which relate directly to its three dimensional geometry. Although the symmetry 

as perceived in graph theory by the automorphism group of the graph and the molecular 

group are quite different, it was shown by Balasubramanian3 that the two symmetries 

are connected.  

Automorphisms have other advantages such as in generating of nuclear spin 

species, NMR spectra, nuclear spin statistics in molecular spectroscopy, chirality and 
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chemical isomerism. There is also another important application of the automorphism 

group of weighted graphs to fullerenes. The reader is encouraged to consult the leading 

papers by Balasubramanian3-11 and Refs. 12-17, for background materials as well as 

basic computational techniques. 

 Longuet-Higgins18 showed that a more desirable representation of molecular 

symmetry is to use nuclear permutation and inversion operations resulting in a group 

called Permutation-Inversion (PI) group. Balasubramanian3 showed that the 

automorphism group of Euclidean graph of a molecule is the Permutation-Inversion 

group of the molecule.  

Ashrafi19 showed that for each finite group H, there exists a finite regular 

completed weighted graph G such that Aut(G) contains a copy of H. This shows that the 

order of Aut(G) can be arbitrarily large. He also proved an algorithm to compute the 

automorphism group of weighted graphs. In this paper, using this algorithm and a GAP 

program,20,21 we calculate the automorphism group of some graphs of Balaban's paper.12

EXPERIMENTAL  

A Euclidean graph associated with a molecule is defined by a weighted graph with 

adjacency matrix M = [dij], where for i j, dij is the Euclidean distance between the 

nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. 

Otherwise, one may introduce different weights for distinct nuclei.  

A simple graph G is called a weighted graph if each edge e is assigned a non-

negative number w(e), called the weight of e. An automorphism of a weighted graph G 

= (V,E) is a permutation g of V with the following properties: (i) for any u,v in V, g(u) 

and g(v) are adjacent if and only if u is adjacent to v. (ii) for each e in E, w(g(e)) = w(e). 

The set of all the automorphisms of a weighted graph G, with the operation of 

composition of permutations, is a permutation group on V(G), denoted Aut(G). A non-

empty subset X of V(G) is called an orbit of G under the action of Aut(G), if there exists 

x X such that X = { (x) | Aut(G)}. G is called vertex transitive or simply transitive, 

if it has a unique orbit. 

 A permutation of the vertices of a graph belongs to its automorphism group if it 

satisfies  

PtAP = A         (1) 
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where Pt is the transpose of permutation matrix P and A is the adjacency matrix of the 

graph under consideration. There are n  possible permutation matrices for a graph with 

n vertices. However, all of them may not satisfy the relation  (1). 

 We would like to bring to attention of the spectroscopy community a free 

software package for group theory named GAP21, which greatly facilitates the following 

calculations. For a given adjacency matrix A, we can write a simple GAP program to 

calculate all the permutation matrices with PtAP = A. Using this program and a similar 

approach as in Refs. 22-26, in the next section, we calculate the automorphism group of 

three weighted graphs. 

RESULTS AND DISSCUSSION 

The adjacency matrix A = [wij] of a weighted graph is defined as: Aij=wij, if i j and 

vertices i and j are connected by an edge with weight wij; Aij=vi, if i=j and the weight of 

the vertex i is vi, and, Aij=0, in the case that i j and i, j are not adjacent. Note that vi can 

be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce different 

weights for nuclei in different equivalence classes and the same weight for the nuclei in 

the same equivalence classes.  

 A.T. Balaban12 introduced the monster graphs G6, G12 and G18, as shown in 

Figures 1, 2 and 3. We calculate automorphism groups and Euclidean distances of G6, 

G12 and G18 . 

 It should be mentioned that one does not have to work with exact Euclidean 

distances in that a mapping of weights into a set of integers would suffice as long as 

different weights are identified with different integers. In fact the automorphism group 

of the integer-weighted graph is identical to the automorphism group of the original 

Euclidean graph . 

To illustrate let us map the Euclidean edge weighed for G6 as: 0.13  1, 0.60 

2, 0.79  3, 0.92  4. We compute these values by HyperChem 97.   

Also, we map the Euclidean edge weighed for G12 as: 0.10  1, 0.66  2, 0.80 

 3, 0.97  4,.

And  the Euclidean edge weighed for G18 as: 0.10  1, 0.40  2, 0.58  3, 

0.80  4, 0.86  5, 0.95  6. 
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 Consider G6 to illustrate a Euclidean graph and its automorphism group. It 

suffices to measure the Euclidean distances and then to construct the Euclidean distance 

matrix A. We now write a GAP program for calculating the symmetries of graph G6.

P:=  [[0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1],  
[1,0,1,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0],  
[0,1,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],  
[0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0],  
[0,0,0,1,0,1,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0],  
[0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2],  
[0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0],  
[0,0,0,0,0,0,1,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0],  
[0,0,2,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],  
[0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,4,0],  
[0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,2,0,0,0,0,0,0,0],  
[0,0,0,0,3,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0],  
[0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,3,0,0,0,0],  
[0,0,0,0,0,0,0,2,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0],  
[0,4,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0],  
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,01,0,0,0,0,2,0,0],  
[0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0],  
[0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0],  
[2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0],  
[0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1,0,1,0,0,0],  
[0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0],  
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,0,1,0],  
[0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,1],  
[1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]] 

n:=24; i:=0; H:=[]; 

t:=SymmetricGroup (n);

tt:=Elements (t);

for a in tt do

x1:=PermutationMat (a, n); 

x:=TransposedMat (x1);

y:=x*P*x1;

if y=P then AddSet (H,a); fi;

od;

G:=Group (H);
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The program does not miss any permutation since it checks the candidate of the 

given automorphism group in lexicographic order. The output of this program is the 

automorphism group of the weighted graph G6. After running this program for the 

weighted graphs G6, we calculate automorphism group of G6, Aut(G6), as follows: 

Aut(G6)={(1), 

(1,2)(3,24)(4,23)(5,22)(6,21)(7,20)(8,19)(9,18)(10,17) 

(11,16)(12,15)(13,14), 

(1,19,13,7)(2,20,14,8)(3,21,15,9)(4,22,16,10) 

(5,23,17,11)(6,24,18,12), 

(1,8)(2,7)(3,6)(4,5)(9,24)(10,23)(11,22)(12,21) 

(13,20)(14,19)(15,18)(16,17), 

(1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20) 

(9,21)(10,22)(11,23)(12,24), 

(1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7,8)(15,24) 

(16,23)(17,22)(18,21)(19,20), 

(1,7,13,19)(2,8,14,20)(3,9,15,21)(4,10,16,22) 

(5,11,17,23)(6,12,18,24), 

(1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13) 

(9,12)(10,11)(21,24)(22,23)} 

Using these calculations, we can see that G6, as the weighted graph, is not vertex 

transitive. In fact, G6, have exactly 3 orbits. These orbits are as follows: 

O6(1)= {1,2,7,8,13,14,19,20}, 

O6(3)= {3,6,9,12,15,18,21,24}, 

O6(4)= {4,5,10,11,16,17,22,23}. 
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Figure 1 .Topoligical representation of isomerizations of G6.
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Now consider G12 to illustrate a Euclidean graph and its automorphism group. 

As before, it suffices to measure the Euclidean distances and then to construct the 

Euclidean distance matrix B. After running the GAP program as above with n=30, for 

the weighted graph G12, we calculate Aut(G12) as follows: 

Aut(G12) ={ (1),

(1,6)(2,5)(3,4)(7,30)(8,29)(9,28)(10,27)(11,26)(12,25)(13,24)(14,23) 

(15,22)(16,21)(17,20)(18,19), 

(1,25,19,13,7)(2,26,20,14,8)(3,27,21,15,9)(4,28,22,16,10)(5,29,23,17,11) 

(6,30,24,18,12), 

(1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,30)(14,29)(15,28)(16,27)(17,26) 

(18,25)(19,24)(20,23)(21,22), 

(1,19,7,25,13)(2,20,8,26,14)(3,21,9,27,15)(4,22,10,28,16)(5,23,11,29,17) 

(6,24,12,30,18), 

(1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,30)(20,29) 

(21,28)(22,27)(23,26)(24,25), 

(1,13,25,7,19)(2,14,26,8,20)(3,15,27,9,21)(4,16,28,10,22)(5,17,29,11,23) 

(6,18,30,12,24), 

(1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)

(12,13)(25,30)(26,29)(27,28), 

(1,7,13,19,25)(2,8,14,20,26)(3,9,15,21,27)(4,10,16,22,28)(5,11,17,23,29) 

(6,12,18,24,30), 

(1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)

(12,19)(13,18)(14,17)(15,16)} 

Using these calculations, we can see that G12, as the weighted graph, is not 

vertex transitive. In fact, G12, have exactly 3 orbits. These orbits are as follows: 

O12(1)= {1,6,7,12,13,18,19,24,25,30} 

O12(2)= {2,5,8,11,14,17,20,23,26,29} 

O12(3)= {3,4,9,10,15,16,21,22,27,28} 
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Figure 2. Topoligical representation of  (G12)

- 178 -



Now consider G18 to illustrate a Euclidean graph and its automorphism group. As before 

it suffices to measure the Euclidean distances and then to construct the Euclidean 

distance matrix C. After running the GAP program as above with n=30, for the 

weighted graph G18, we calculate Aut(G18) as follows: 

Aut(G18) = { (1), 

(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,24)(9,23)(10,22)(11,21)(12,20) 

(13,19)(14,18)(15,17), 

(1,7)(2,6)(3,5)(8,30)(9,29)(10,28)(11,27)(12,26)(13,25)(14,24)(15,25) 

(16,26)(17,27)(18,28)(19,29), 

(1,25,19,13,7)(2,26,20,14,8)(3,27,21,15,9)(4,28,22,16,10) 

(5,29,23,17,11)(6,30,24,18,12), 

(1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(14,30)(15,29)(16,28)(17,27) 

(18,26)(19,25)(20,24)(21,23), 

(1,19,7,25,13)(2,20,8,26,14)(3,21,9,27,15)(4,22,10,28,16) 

(5,23,11,29,17)(6,24,12,30,18), 

(1,19)(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11)(20,30)(21,29)

(22,28)(23,27)(24,26),    

(1,13,25,7,19)(2,14,26,8,20)(3,15,27,9,21)(4,16,28,10,22)(5,17,29,11,23) 

(6,18,30,12,24), 

(1,25)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)

(12,14)(26,30)(27,29), 

(1,7,13,19,25)(2,8,14,20,26)(3,9,15,21,27)(4,10,16,22,28)(5,11,17,23,29) 

(6,12,18,24,30)} 

Using these calculations, we can see that G18, as the weighted graph, is not 

vertex transitive. In fact, G18, have exactly 4 orbits. These orbits are as follows: 

O18(1)= {1,7,13,19,25} 

O18(2)= {2,6,8,12,14,18,20,24,26,30} 

O18(3)= {3,5,9,11,15,17,21,23,27,29} 

O18(4)= {4,10,16,22,28} 
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Figure 3. Topoligical representation of  (G18)
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