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Abstract. A 3D graphical representation of RNA secondary structures using a three
cartesian coordinates system has been derived for mathematical denotation of RNA
structure. The 3D graphic representation resolves degeneracy completely and is mathe-
matically proven to eliminate circuit formation. As an application, we make a comparison
for 5 RNA pseudoknot sequences based on the new 3D graphic representation.

1 Introduction

RNA is a chain molecule, mathematically a string over a four letter alphabet. It is
built from nucleotides containing the bases A(denine), C(ytosine), G(uanine), and U(racil).
By folding back onto itself, an nucleic acids form structure, stabilized by hydrogen bonds
between certain pairs of bases (A-U, C-G, G-U), and dense stacking of neighboring base
pairs. The investigation of RNA secondary structures is a challenging task in molecular
biology. RNA molecules have a large variety of functions in the cell which often depend
on special structural properties. Current RNA secondary structure comparison algorithms
have focused exclusively on tree structures owing to their relative simplicity for quantitative
analysis[10-11]. But tree structures refer to mathematical constructs for RNA secondary
structures without psedoknots. Here we should present a new representation to analyze
and to compare RNA secondary structures with psedoknots. Recently, Liao et al. have
proposed 3D, 6D and 7D graphical representations of RNA secondary structures[12-14], but
the representation is not unique.

Here, we present a 3-dimensional graphical representation of RNA secondary structures,
which has no circuit or degeneracy. The RNA psedoknots also can be represented as 3-
dimensional graphical representations.
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2 3D graphical representation of RNA secondary structures

The secondary structure of an RNA is a set of free bases and base pairs forming
hydrogen bonds between A-U, C-G and G-U. Let A’,U’,G',C' denote A,U, G, C in the base
pairs A-U and C-G, respectively. Then we can obtain a special sequence representation of
the secondary structure. We call it characteristic sequence of the secondary structure. For
example, pseudoknot B corresponds the characteristic sequence

C'U'G'G'C'GAUUGCG' AG'AC'C'A'UGUC'G'C'C'A'G'CUCU'G'G'U'C'U'C'CA

(from 3’ to 5')(see Figure 1).
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Figure 1: pseudoknot

We will illustrate the 3-dimensional characterization of RNA secondary structure. We
construct a map between the bases of characteristic sequences and plots in 3D space, then we
will obtain a 3D representation of the corresponding RNA secondary structure. In 3D space
points, vectors and directions have three components, and we will assign the following basic
elementary directions to the four free bases and two base pairs.

(dl\/’E, dg\/a, dg\/’lj) — 147 (alvl, a1, (l3’U1) — G,

(bl’UQ, I)Q’UQ7 b3’l)2) — C, (61’1)3, C2V3, 03’03) — l’]7

(dl\/ﬁ, dg\/ﬁ, da\/m) — A’7 (al’l)l\/m, G,Q’Ul\/m, 0,3'01\/’/%) — Gl,

(bl’l)g\/m, bg’l)g\/f_n, b3v2\/r_n) — C"7 (011)3\/7_71, 021)3\/%, 031)3\/7_71) — U’7

where
(1) u,w are different positive real numbers but not perfect square numbers.
(2) ak, b, and ¢ (k = 1,2,3) are real numbers.
(3) sk # 0,vp #0 (k =1,2,3) are rational numbers.
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di = a181 + b1s2 + c183, ar by
(4) do = a281 + basa + o83, and as by ¢ 7é 0.
d3 = a3sy + b3sa + c3s3. a3 by c3
Thus we reduce a RNA secondary structure to a series of nodes Py, Py, Ps, ..., Py, whose

coordinates z;,y;(¢ = 0,1,2,..., N, where N is the length of the RNA secondary structure
being studied)satisfy

T; = dlﬂ(Al + \/’IEA’;) + blvg(C,- + \/EC},) + 01U3(Ui + \/’IEU;) + aﬂh(Gi + \/EG’;)
Yi = dQ\/E(A, —+ \/’EA;) + bzvz(C,- + \/’EC;) + CZUS(Ui + \/’IZU) + a2v1(G,- + \/EG;) (1)
Z; = d3\/’17(AZ + \/’IEAZ) + bng(Ci + \/’IECZ) + C3U3(U1' + \/EUZ) + a3U1(Gi + ﬁGl)

where A;, A;, Ci, C; , G, G; and U;, Ui’ are the cumulative occurrence numbersof A, 4',C,C’, G, G,

and U, U’, respectively, in the subsequence from the 1st base to the i-th base in the sequence.
We define Ay = Cy=Go=Uy =0, 4y =Cy =Gy =Uy =0.

We call the corresponding plot set as characteristic plot set. The curve connecting all
plots of the characteristic plot set is called 3DR-~Curve (3D Curve of RNA), which is deter-
mined by condition (1) ~ (4). In Figure 2, we show the curve that represent the pseudoknot
B(see Figure 1).

Now we give two useful special cases.

1. Let (\/77, \/777 \/E) — A7 (17070) — Gv (07 170) — Cv (07 0, 1) — T,
(Vuw, uw, Juw) — A', (vVw,0,0) — G, (0, /w,0) — C', (0,0, /w) — T",

then we get the simple nondegeneracy 3D representation of RNA secondary structure:

i = Vu(4; + Vwhy) + (G + VwG,)
i = Vu(Ai + \/EA;) +(Ci + \/ECé) (2)
% = ViilAi + id)) + (U; + ol
where u,w are positive real numbers, but not perfect square numbers.
2. Let (dv/ucost, dv/usind, d\/u) — A, (vicosa, v sina,v) — G,

(vesina, vasinf, ve) — C, (vscosy, vssiny,vs) — T,

(dv/uwcosh, dv/uwsind, d/uw) — A', (vicosar/w,visina/w,viv/w) — G,

(vesinay/w, vasinfBy/w, var/w) — C', (v3cosyy/w, vssinyy/w,v3/w) — T,

then we get a simple 3DR-Curve:

z; = dy/ucosd(A; + vwA;) + v2c0sB(C; + vwC,) + vacosy(U; + wlU;) + vicosa(G; + vwG
i = dy/usinf(4; + VwA;) + vasinB(C; + wC;) + v3siny(U; + wlU;) + vy sina(G; + oG,

2 = dya(A; + VA + 03(Ci + VwC;) + va(Us + Vo) + v1(Gi + VarGy)
3)
where

(1) u,w are different positive real numbers, but not perfect square numbers.

(2) sg #0,v # 0 (k =1,2,3) are rational numbers.

3)

_d(sin(B —0) + sin(0 — ) + sin(y — )
sin(B — a) + sin(a — ) + sin(y — B)

)

!

7
J

1

;)
)
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d(sin(0 — a) + sin(a — ) + sin(y — 6))
sin(B — a) + sin(a — ) + sin(y — 8) ’

d(sin(B — @) + sin(a — 8) + sin(0 — B3))
sin(B — a) + sin(a — ) + sin(y — B8)

z-axis

y-axis x-axis

Figure 2: The 3DR-Curves of pseudoknot B

where Figure 2 corresponds to vl = 2,92 = —4;93 = 3ju = 1/3;w = 3;d = 25, a =
w/3;8 = —7/4;y = 3n/4;0 = —2m/3 of case 2.
In next section, we will give some properties of our representation.

3 Properties

Property 1 For a given RNA secondary structure there is a unique 3DR-Curve corre-
sponding to it.
Proof:Let z;,y; be the coordinates of the i-th base of RNA secondary structure, then we

have
z; = divuay; + bivacy; + c1vzur; + a1v1914

yi = da/ua; + bavaci; + covzui; + asvig;
2z = d3\/uay; + b3vacy; + c3vsuy; + azvig;
where ay; = Ay; + \/’E)AIU,CM =Cu+ \/’U_JCL-,’MH =Uy + \/’U_JUlli,gli =G+ \/EGIM
If (z;, i, 2;) can also be expressed as

x; = div/uag; + bivacy; + crugug; + ajvige;
yi = dar/uag; + bavaco; + cavzug; + agvigo;
2 = d3+/uag; + b3vaca; + ca3vzug; + azviga

where ag; = Ao + \/EA;Z-,CQZ‘ =Cy + \/’EC;Z-,UQZ' = Uy + \/EUQ’i,g% = Go; + \/EG;Z



- 161 -

then, we have

div/u(ari — az;) + biva(cr; — c2i)) + crvs(uri — ug;) + a1v1(g1; — g2i) = 0
dy/u(ay; — ag;) + bava(ci; — co;)) + caws(uy; — ug;) + agvi(gr — goi) = 0
dz\/u(a1; — az;) + bava(ci; — ) + czvz(u1; — ug;) + azvi(gr; — g2i) =0

By conditions (1), we can obtain

s1v/u(ari — agi) +vi(g1i — g2i) =0
sov/u(a1; — ag) + va(c1 — c2i) =0
s3v/ular; — ag;) + v3(uti —ug) =0
then, we get a1; = agi, c1i = c2i,u1i = u2i, 91 = g2i-
So, A1; = Agi, A}y = Ay Cri = Coi,Chy = Coy Uty = Uni Uy = Uy, Gy = G2, Gy; = Gy,
That means, for given z-projection, y-projection and z-projection of any point P =
(z,y,%) on 3DD-Curve, after uniquely determining the number ap, gp, ¢p, up , a;,,g;,,clp and
u'p of A,G,C,U, A',G',C" and U’ from the beginning of the sequence to the point P, by suc-
cessive z-projection,y-projection and z-projection of points on the sequence, we can recover
the original DNA sequence uniquely from the DNA graph.

The vector pointing to the point P; from the origin O is denoted by r;. The component
of rj, i. e. x; and y; are calculated by Eq. (1). Let Ar; = r; —r;_1, then we have Property 2.
Property 2 For any i =1,2,..., N, where N is the length of the studied RNA secondary
structure, the vector Ar; has at most eight possible direction.
Proof:Actually, the components of Ar;i.e., Az; and Ay; can be calculated for each possible
residue (4,G,C,U, A’,G',C" and U’ ) at the i-th position of the RNA secondary structure
by using Eq.(1). For example, when the i-th residue is A, we find Az; = d11/u, Ay; = day/u
and Az; = d3+/u. This result is independent of the conformation state of the (i-1)-th residue.
The eight vectors, for examples, (d;+/u,d2+/u,ds\/u) are called the direction of Ar;. The

direction numbers and the length of Ar; for each possible residue type at the i-th position
are summarized as follows(Table 1).

Table 1: eight possible directions

Az; Ay; Az |Ar]
Al divu d2v/u d3\/u Vauy/d} +d3 +d3
C bive bove b3y [v2]4/b% + b3 + b3
G aivy azv1 azvi lvi|y/a? + a3 + a3
U c1v3 cov3 c3v3 [vz|y/c? + c2 + c2

A divuw  devuw  dzvuw Vuw,/d? + d} + d?
C | bivavw  bavayw  bzvayw  |vay/w|y/b] + b3 + b2
G | aivivw  avivw  agvivw  |vivwly/a? + a3+ a?

U’ | crusvw cav3 c3v3 [vavwl|y/c? + 2 + ¢
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Property 3 There is no circuit or degeneracy in our 3DR-Curve.

Proof: We assume that:(1) the number of nucleotide forming a circuit is e; (2) the number
of A,G,C,U,A",G',C" and U’ in a circuit is ae, ge, Ce, Ue, al, gh, ¢, and ul, respectively. So
Ge + ge + Ce + e+ al, + gh + ¢, + ul, = e. Because acA4, .G, c.C,u.U,a. A, g.G', c,C" and ulU
form a circuit, the following equation holds:

di\/u(ae +v/way) + biva(ce +Vwe,)) + e1vs(ue + V) + arvi(ge + Vwg,)
da/u(ae + vwa,) + bava(ce + Vwe,)) + cova(ue + vVwu,) + agoi(ge + Vwg,)
d3v/u(ae + vwa,) + bava(ce + vwe,)) + c3vs(ue + vVwu,) + azvi(ge + vVwge)

Using similar method with proof of Property 1, we can get

Il

0
0
0

Qe = ge = Ce = Ue = @, = g, = ¢, = u,, = 0. Therefore, e = 0, which means no circuit
exists in this graphical representation.
Property 4 The 3D representation possesses reflection symmetry.
Proof:Usually the sequence is expressed in the order from 5’ to 3'. Suppose that the 3D
representation for RNA secondary structure is described by (z;,vi,2i),7 = 0,1,2,...,N.
Suppose again that the 3D representation for the reverse structure, i.e, the same sequence
but from 3’ to 5’ is described by (i, ¥, 2;), we find

L; = TN — TN,
Ui = YN — YN—is (4)
Z; = ZN — ZN—i-

4 Numerical characterizations

In this section, we give a numerical characterization of the new representation that will
facilitate quantitative comparisons of RNA secondary structure. One of the possibilities to
achieve this aim is to characterize the curves by invariants. In order to find some of the
invariants sensitive to the form of the curve, one can transform the graphical representation
of the curve into another mathematical object, a matrix. Once a matrix representation of a
RNA sequence is given, some of matrix invariants, e.g. the leading eigenvalues, can be used as
descriptors of the sequence [3]. Here, we consider the quotient matrix E/P and E/G[3]. The
(i,j) element of matrix E/P is defined to be the quotient of the Euclidean-distance between
vertices i and j of the 3DR-Curve and the sum of the distances between the same pair of
vertices. In other words, [E/P);; = [ED]ij/ S1_i[ED]g 11, where [ED);; is the Euclidean
distance between a pair of vertices and the The (i,j) element [E/G];; of matrix E/G is defined
to be [ED];/li — jl.

We choose the leading eigenvalues of Quotient Matrices E/P and E/G as descriptors of
RNA sequences. Since the 3DR-Curve does not represent the genuine molecular geometry
we are not interested in the interpretation of the leading eigenvalues of these matrices, but
are interested in them as numerical parameters that may facilitate comparisons of RNA
sequences.
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5 Similarities/Dissimilarities

We will illustrate the use of the 3DR-Curve of RNA secondary structure with the examination
of similarities/dissimilarities among the 5 RNA pseudoknots in Figure 3 and Figure 4, which
were reported in [15]. We can obtain different information about the similar RNA sequence
if we choose different parameters of the 3DR-Curves.
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Figure 4: pseudoknots

In Fig. 5, we show the 3DR-Curves of the 5 RNA pseudoknots in Figure 3 and Figure 4
under vl =7;v2 = L;v3 = 8;u = 2;d = 2w =3, = —7/5; 8 = w/2;v = 7/4;0 = 7/3;. By
examining these 3DR-Curves, we find that PKB128 and PK B223 are dissimilar to others,
and the similar species should be PK B4, PK B44 and PK B240. But we can clearly found
which one is more similar with PK B240, or with PK B44. So we need change the parameters
so that we can analyze these RNA sequences by corresponding different forms of 3DR-Curve.
For example, 3DR-Curves of the 5 RNA pseudoknots with vl = —2;v2 = —4;v3 = 3;u =
9;d=2;w=3;a=m/3;8=rm/2;y =n/40 = 7/6, respectively, are drawing in Fig. 6.

Observing figure 6, we can see the curve of PKB128 have some similar profile and
tendency with PK B223. So we think PKB128 is more similar with PK B223. We also
can find that PK B240 has various degree of leaps comparing with PK B44, the tendency of
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3DR-Curve of PK B4 is different from that of PK B240. That is PK B240 is more similar
with PK B44 than PK B4.
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Figure 5: pseudoknots

We can conclude that different pattern can show us different information about the
RNA sequences. Of course, it is necessary to analyze the similarity by other numerical
characterizations of 3DR-Curves.

A direct comparison of RNA pseudoknots using computer codes is somewhat less straight-
forward due to the fact that the pseudoknots have different lengths and exist in different
places. We construct a 4-component vector consisting of the normalized leading eigenvalue
of the Quotient Matrix E/G or E/P of the 3DR-Curves with different parameters. For our
application, we will use the following four 3DR-Curves:

Case a. 3DR-Curve corresponding to vl = 2,92 = 4,93 = 3;u = 9;d = 2;w = 3;a =
w/3;8 =m/2;v =7/460 = /6 in Eq.(3).

Case b. 3DR-Curve corresponding to vl = 7;v2 = 1503 = 8;u = 2;d = 2;w = 3;a =
w/5; 8 =m/2;y=n/4;0 = /3 in Eq.(3).

Case c¢. 3DR-Curve corresponding to vl = 1502 = 3;v3 = 4;u = 5;d = 3;w = 3, =
7/6;8 = m/2;y =/9;0 = /3 in Eq.(3).
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5 Similarities/Dissimilarities

We will illustrate the use of the 3DR-Curve of RNA secondary structure with the examination
of similarities/dissimilarities among the 5 RNA pseudoknots in Figure 3 and Figure 4, which
were reported in [15]. We can obtain different information about the similar RNA sequence
if we choose different parameters of the 3DR-Curves.
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Figure 4: pseudoknots

In Fig. 5, we show the 3DR-Curves of the 5 RNA pseudoknots in Figure 3 and Figure 4
under vl = 7;v2 = 1;93 = 8;u = 2;d = 2;w = 3;a = —7/5; 8 = w/2;y = w/4;0 = 7/3;. By
examining these 3DR-Curves, we find that PKB128 and PK B223 are dissimilar to others,
and the similar species should be PK B4, PK B44 and PK B240. But we can clearly found
which one is more similar with PK B240, or with PK B44. So we need change the parameters
so that we can analyze these RNA sequences by corresponding different forms of 3DR-Curve.
For example, 3DR-Curves of the 5 RNA pseudoknots with vl = —2;v2 = —4;v3 = 3;u =
9;d=2;w=3;a=m/3;8=m/2;7 = /40 = /6, respectively, are drawing in Fig. 6.

Observing figure 6, we can see the curve of PKB128 have some similar profile and
tendency with PK B223. So we think PKB128 is more similar with PKB223. We also
can find that PK B240 has various degree of leaps comparing with PK B44, the tendency of
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Table 3: The leading normalized eigenvalues of the E/P

EP | PKB44 PKB240 PKB223 PKB128 PKB4
a 0.9431 0.9410 0.9462 0.9480 0.9436
b 0.9556 0.9591 0.9723 0.9714 0.9651

0.9399 0.9418 0.9392 0.9358 0.9414

d 0.9528 0.9514 0.9402 0.9398 0.9494

In table 4, 5, The similarity /dissimilarity matrix for the 5 peseudoknots based on the Eu-
clidean distances between the end points of the 4-component vectors of the leading normalized
eigenvalues of the E/G and E/P matrices

Observing Table 4, 5, we find the most similar species pairs should be (PK B240,
PKB44),(PKB128, PKB223),(PKB44, PK B4) and (PK B240, PKB4). But the dissimi-
lar species pairs are not clear.

Table 4: The similarity /dissimilarity matrix for the 5 peseudoknots based on E/G

EG PKB44 PKB240 PKB223 PKB128 PKB4
PK B44 0 0.7616 5.8363 4.8762 1.6802
PK B240 0 5.7948 4.9027 1.3808
PKB223 0 1.3432 4.4430
PKB128 0 3.6328

PKB4 0

Table 5: The similarity/dissimilarity matrix for the 5 peseudoknots based on E/P

EP PKB44 PKB240 PKB223 PKB128 PKB4
PK B44 0 0.0047 0.0211 0.0214  0.0102
PK B240 0 0.0182 0.0192  0.0068
PKB223 0 0.0040  0.0121
PKB128 0 0.0135
PKB4 0

6 Conclusion

High complexity and degeneracy are major problems in previous RNA secondary struc-
ture representations. Our representation provides a direct plotting method to denote RNA
secondary structures without degeneracy. From the RNA graph, the A,U,G,C,A-U and C-G
usage as well as the original RNA structure can be recaptured mathematically without loss of
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textual information. The current 3-dimensional graphical representation of RNA secondary

structures provides different approaches for both computational scientists and molecular bi-

ologists to analysis RNA secondary structures efficiently.
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