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Abstract

It is shown how the Randić–Balaban method for partitioning of π-electrons in rings

of polycyclic benzenoid hydrocarbons can be modified so as to be applicable to con-

jugated molecules containing heteroatoms

INTRODUCTION

A method for partitioning of π-electrons in rings of polycyclic conjugated hy-

drocarbons was put forward by Randić and Balaban in 2004 [1–3]. It assesses the

π-electron content of a ring of a conjugated molecule using its Kekulé structures. The

method is based on an earlier observation [4,5] that instead of the standard way of
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drawing a Kekulé structure (by specifying the position of the double bonds) one may

represent it by indicating the total number of π-electrons in each ring.

According to Randić [4,5], the number EC(R, k) of π-electrons in the ring R

of the Kekulé structure k is defined as two times the number of double bonds that

belong solely to R plus the number of double bonds that are shared by R and another

ring. In most cases there is a one–to–one correspondence between the standard and

the “algebraic” representation of Kekulé structures, i. e., the EC(R, k)-values fully

determine the position of the double bonds in the Kekulé structure k . Exceptional

cases, when several Kekulé structures have the same “algebraic” representation, were

analyzed in [6,7]. Some other properties of the numbers EC(R, k) are considered in

[6,8,9].

The Randić–Balaban (RB) approach computes the π-electron content ECRB(R)

of a ring R as the arithmetic average of the EC(R, k)-values, i. e.,

ECRB(R) =
1

|K|
∑
k∈K

EC(R, k) (1)

where K is the set of all Kekulé structures of the conjugated molecule considered. It

was immediately recognized [10] that the right–hand side of (1) can be expressed in

terms of the Pauling bond orders P P
rs so that

ECRB(R) = 2
∑
∗

P P
rs +

∑
∗∗

P P
rs (2)

where
∑
∗

indicates summation over those bonds rs that belong solely to the ring R

whereas
∑
∗∗

indicates summation over the bonds rs that are shared by the ring R and

another ring.

Although by means of the RB approach one could estimate the π-electron content

of any ring in any conjugated hydrocarbon, the vast majority of reported applications

was concerned with the six–membered rings of benzenoid and coronoid systems [1–

3,10–26], and only in a single paper [27] with non-benzenoids. The original RB model

is not applicable to conjugated molecules containing heteroatoms, or – even worse –

its application would give results identical to those for the parent hydrocarbon.

The distribution defined via Eqs. (1) or (2) is not the only possible and several

other options were put forward. Some of these were based on Clar aromatic sextet

formulas [17,18,28,29], which was eventually shown [30] to be equivalent to using in

formula (1) a particular subset of K instead of K itself. Distributions based on other
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subsets of K were also considered [31,32], whereas in the paper [33] a bond order

different from Pauling’s was used in formula (2).

A necessary condition for the success of the RB approach, and in particular, of

formula (2) is that the sum over all bonds of the Pauling bond orders, times two, is

equal to the total number nπ of π-electrons. If so, then the “book–keeping” relation

∑
R

ECRB(R) = nπ

is satisfied. Now, it was established long time ago [34–36] that

2
∑
rs

P P
rs = n (3)

where n is the number of carbon atoms (i. e., the number of vertices in the molecular

graph [37]). Evidently, for conjugated hydrocarbons, nπ = n .

In formula (3) and elsewhere in this article,
∑
rs

indicates summation over all con-

jugated bonds rs in the molecule considered, i. e., over all pairs of atoms labelled by

r and s that participate in the conjugation and are connected by a covalent bond.

In the language of graph–theoretical formalism [37],
∑
rs

indicates summation over all

pairs of adjacent vertices r and s of the Hückel molecular graph.

GENERALIZING THE RANDIĆ–BALABAN APPROACH

Analysis of the Randić–Balaban approach [1–3] and its various recently proposed

variants [28–33] reveals that if we have a bond order Prs , satisfying the condition

2
∑
rs

Prs = nπ (4)

then the quantity

ECgen(R) = 2
∑
∗

Prs +
∑
∗∗

Prs (5)

defined in a manner analogous to Eq. (2), may be interpreted as some kind of π-

electron content of the ring R , and then

∑
R

ECgen(R) = nπ (6)

will hold.

Of the infinitely many of such “electron contents” preference should be given to

those
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• that in the case of benzenoid hydrocarbons coincide with the Randić–Balaban
EC-values,

• that yield results in harmony with the known regularities for the π-electron
distribution in conjugated molecules,

• that agree with the available experimental data (cf. [13]), and

• that could be applied to a variety of conjugated systems, in particular to both
hydrocarbons and heteroatom–containing species.

In our opinion the Ham–Ruedenberg bond order may satisfy both Eq. (4) and

the above listed requirements.

A HAM–RUEDENBERG–BOND–ORDER–BASED π-ELECTRON

CONTENT OF A RING

The bond order introduced long time ago by Ham and Ruedenberg [38] is defined

as follows.

Let Ci = (Ci1, Ci2, . . . , Cin) be a normalized eigenvector of the adjacency matrix

A = ||Aij|| of the molecular (Hückel) graph representing the conjugated system under

consideration [37,39,40]; here n stands for the number of vertices of the molecular

graph. There exist n linearly independent eigenvectors, and therefore i = 1, 2, . . . , n .

Let λi be the eigenvalue of A , corresponding to the eigenvector Ci , i = 1, 2, . . . , n .

As well known [39,40], within the Hückel molecular orbital (HMO) theory, Ci and

λi are in a simple manner related to, respectively, the i-th molecular orbital and the

i-the molecular orbital energy level. Let gi be the occupation number of the i-th MO,

and recall that
n∑

i=1

gi = nπ . (7)

Relation (7) holds in the most general case, including both arbitrarily charged species,

arbitrarily excited states, and – of course – conjugated molecules containing het-

eroatoms.

Then the Ham–Ruedenberg bond order is defined as [38,41–43]:

PHR
rs =

n∑
i=1

gi
Cir Cis

λi

(8)
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where it is assumed that no eigenvalue is equal to zero (i. e., that there are no

non-bonding MOs).

In the case of conjugated hydrocarbons, all diagonal elements of the adjacency

matrix A are equal to zero. Then (as we show below), for conjugated hydrocarbons

(both benzenoid and non-benzenoid),

2
∑
rs

PHR
rs = nπ (9)

and therefore we may use PHR
rs in formula (5). This is additionally justified by the

fact that for (Kekuléan) benzenoid hydrocarbons, and for r and s being adjacent

vertices [41,44],

PHR
rs = P P

rs .

This means that in the case of benzenoid systems, the Ham–Ruedenberg–bond–order–

based π-electron content of a ring coincides with the original Randić–Balaban EC-

value.

Unfortunately, relation (9) does not hold for heteroatom–containing conjugated

molecules and therefore for such molecules instead of the ordinary Ham–Ruedenberg

bond order we need to use its modified version. This is achieved by means of the

following:

Lemma 1. If the elements of the adjacency matrix A = ||Aij|| of a (molecular) graph

satisfy the conditions

Aij = Aji for all i, j = 1, 2, . . . , n (10)

Aij = 1 if the vertices i and j (i �= j) are adjacent (11)

Aij = 0 if the vertices i and j (i �= j) are not adjacent (12)

whereas the diagonal elements Aii , i = 1, 2, . . . , n , need not be equal to zero, then

2
∑
rs

PHR
rs = nπ −

n∑
r=1

Arr PHR
rr . (13)

Proof. Let C be the square matrix of order n whose (ij)-entry is Cij – the j-th

component of the i-th eigenvector. Then

C A C† = Λ (14)
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where

(C†)ij = C∗
ji and Λ = diag(λ1, λ2, . . . , λn) .

The graph eigenvectors can always be chosen so as to have real–valued components

and then C∗
ji = Cji .

Now, in view of (10)–(12),

2
∑
rs

PHR
rs =

n∑
r=1

n∑
s=1

Ars PHR
rs −

n∑
r=1

Arr PHR
rr (15)

and by taking into account (8) and (14),

n∑
r=1

n∑
s=1

Ars PHR
rs =

n∑
r=1

n∑
s=1

Ars

n∑
i=1

gi
Cir Cis

λi

=
n∑

i=1

gi

λi

n∑
r=1

n∑
s=1

Cir Ars (C†)si

=
n∑

i=1

gi

λi

(
C AC†)

ii
=

n∑
i=1

gi

λi

Λii =
n∑

i=1

gi

i. e., by (7),
n∑

r=1

n∑
s=1

Ars PHR
rs = nπ . (16)

By combining (15) and (16) we arrive at (13). �

Corollary 1.1. If all diagonal elements of the adjacency matrix are equal to zero

(as in the case of molecular graphs of conjugated hydrocarbons), then (13) reduces

to the earlier known [34,35] formula (9).

From formula (13) we see why the Ham–Ruedenberg bond order is not suitable

for modelling, via Eq. (5), the π-electron content of rings in heteroatom–containing

polycyclic conjugated molecules. However, a way out of this difficulty is easily found:

Define a modified Ham–Ruedenberg bond order as

PHR′
rs = PHR

rs +
Arr

δr

PHR
rr +

Arr

δs

PHR
ss (17)

where δr and δs are, respectively, the degrees (number of first neighbors) of the vertices

r and s . Then from (13) it immediately follows that

2
∑
rs

PHR′
rs = nπ

implying that

ECHR(R) = 2
∑
∗

PHR′
rs +

∑
∗∗

PHR′
rs (18)
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is a well chosen model for the π-electron content of rings, applicable to arbitrary

heteroatom–containing polycyclic conjugated species. For benzenoid hydrocarbons,

ECHR(R) coincides with the Randić–Balaban ECRB(R)-values.

Results of numerical calculations based on Eq. (18) will be reported elsewhere.

Remark 1.2. In the case of edge–weighted molecular graphs (for which conditions

(10) and (12) are obeyed, but not necessarily condition (11)), Eqs. (13) and (17) need

to be modified as

2
∑
rs

Ars PHR
rs = nπ −

n∑
r=1

Arr PHR
rr

and

PHR′
rs = Ars PHR

rs +
Arr

δr

PHR
rr +

Arr

δs

PHR
ss

where now

δr =
n∑

i=1

Air − Arr and δs =
n∑

i=1

Ais − Ass .

Then formula (18) is still applicable.

ON THE COULSON–BOND–ORDER–BASED π-ELECTRON

ENERGY CONTENT OF A RING

We have seen that whenever a bond order satisfies the relation (4), then by means

of the formula (5) it is possible to conceive a model for the π-electron content of rings

of the considered polycyclic conjugated molecule. This π-electron content will then

satisfy the “book–keeping” relation (6).

The Coulson bond order is defined as [45–47]

PC
rs =

n∑
i=1

gi Cir Cis . (19)

In the case of conjugated hydrocarbons it satisfies a relation analogous to (4), namely,

2
∑
rs

PC
rs = Eπ (20)

where Eπ is the HMO total π-electron energy [48,49],

Eπ =
n∑

i=1

gi λi .
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In view of this, the Coulson bond order was used to assess the π-electron energy

contents of rings [11,16,23,24], based on a formula analogous to Eqs. (2) and (5):

ec(R) = 2
∑
∗

PC
rs +

∑
∗∗

PC
rs . (21)

This time the “book–keeping” relation (analogous to (6)) is

∑
R

ec(R) = Eπ .

The relation (20) does not hold for heteroatom–containing conjugated systems.

Therefore the π-electron energy content of a ring, defined by Eq. (21), cannot be

applied. The resolution of this difficulty is similar and analogous to what we already

did for π-electron content, and requires the following:

Lemma 2. If the adjacency matrix A = ||Aij|| of a (molecular) graph satisfies the

same conditions as specified in Lemma 1, then

2
∑
rs

PC
rs = Eπ −

n∑
r=1

Arr PC
rr . (22)

Proof proceeds in full analogy with the proof of Lemma 1. In view of (10)–(12),

2
∑
rs

PC
rs =

n∑
r=1

n∑
s=1

Ars PC
rs −

n∑
r=1

Arr PC
rr (23)

and by taking into account the definition (19) of the Coulson bond order,

n∑
r=1

n∑
s=1

Ars PC
rs =

n∑
r=1

n∑
s=1

Ars

n∑
i=1

gi Cir Cis =
n∑

i=1

gi

n∑
r=1

n∑
s=1

Cir Ars (C†)si

=
n∑

i=1

gi

(
C AC†)

ii
=

n∑
i=1

gi λi

i. e.,
n∑

r=1

n∑
s=1

Ars PC
rs = Eπ . (24)

By combining (23) and (24) we arrive at (22). �

Corollary 2.1. If all diagonal elements of the adjacency matrix are equal to zero

(as in the case of molecular graphs of conjugated hydrocarbons), then (22) reduces

to the long time known [46,47] formula (20).
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Bearing in mind Lemma 2, we need to introduce a modified Coulson bond order

PC′
rs = PC

rs +
Arr

δr

PC
rr +

Arr

δs

PC
ss (25)

where the notation is same as in Eq. (17), and then to calculate the π-electron energy

content by means of an expression analogous to (21), viz.:

ec′(R) = 2
∑
∗

PC′
rs +

∑
∗∗

PC′
rs . (26)

Remark 2.2. In the case of edge–weighted molecular graphs (for which conditions

(10) and (12) are obeyed, but not necessarily condition (11)), Eqs. (22) and (25) need

to be modified as

2
∑
rs

Ars PC
rs = Eπ −

n∑
r=1

Arr PC
rr

and

PC′
rs = Ars PC

rs +
Arr

δr

PC
rr +

Arr

δs

PC
ss

with δr and δs having the same meanings as in Remark 1.2. Then formula (26) is still

applicable.
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[13] I. Gutman, Ž. Tomović, K. Müllen, J. P. Rabe, On the distribution of π-electrons
in large polycyclic aromatic hydrocarbons, Chem. Phys. Lett. 397 (2004) 412–
416.
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