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Abstract

The character table of the fully nonrigid ammonia tetramer, (NH3)4, with C4h symmetry is
derived for the first time. The group of all feasible permutations is the wreath product S4[S3] which
consists of 31104 operations divided into 51 conjugacy classes and 51 irreducible representations.

1 Introduction

Although the extent of tunneling would depend on the actual barriers, there is a compelling need to
consider the molecular symmetry groups of the nonrigid cluster from semirigid to fully nonrigid lim-
its. Longuet-Higgins [1] has formulated the symmetry groups of nonrigid molecules as permutation-
inversion groups by including all feasible permutation of the nuclei under such fluxional or tunneling
motions. The fully non-rigid group of (NH3)2 is computed in [2]. Also we know that the fully non-rigid
group of (NH3)3 with C3h symmetry is isomorphic to the group S3[S3] whose character table is com-
puted in [3].
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Up to now, the character table of the fully nonrigid (NH3)4 with C4h symmetry has not been obtained.
Balasubramanian [3-8] has shown that the groups of nonrigid molecules can be expressed as wreath prod-
uct and generalized wreath product groups. These groups have also been used in a number of chemical
applications such as enumeration of isomers [9-12], weakly bound van der Waals, or hydrogen-bonded
complexes such as (NH3)2, (H2O)2, (H2O)5, (C6H6)2, etc. [1, 13-16], polyhedral structures [17,18],
spectroscopy [ 14-16,19], and cluster [20]. King [17,18] has used the wreath product groups to represent
the symmetries of four-dimensional analogues of polyhedra. Thus, apart from the current motivation of
calculating the fully nonrigid (NH3)4, there is considerable interest in wreath product groups of higher
order and their character tables. Balasubramanian [5] has applied combinatorial methods without the
construction of the character tables for the spin statistics of protonated forms of water cluster. In this
study, we have derived the character table of the nonrigid (NH3)4 in its full nonrigid limit. The result-
ing group is shown to be the wreath product S4[S3], where the group Sn is a permutation group of n!
operation, and the square bracket symbol stands for wreath products.

Figure 1: Ammonia tetramer

We show that the fully nonrigid (NH3)4 with C4h symmetry exhibits a group of 31104 operations
divided into 51 conjugacy classes and 51 irreducible representations. The character table of this group
helps chemists to compute the Nuclear Spin Statistics and Tunneling Splitting of Ammonia Tetramer.

2 Wreath Product Group S4[S3] for Ammonia Tetramer (NH3)4

Although the theory of wreath product groups and related mathematical details have been described in
sufficient details elsewhere [3, 6], we provide the salient points so that this work on (NH3)4 is suffi-
ciently self contained. Suppose that G is the group of permutations of the nitrogen nuclei in the fully
nonrigid limit where they are allowed to exchange and H is the group of permutations of the protons ow-
ing to the facile flipping motion. Thus G is the set of 4! permutations of four N nuclei, and H is the group
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S3 of protons on each Ammonia molecule that corresponds to the flipping motion which exchanges these
protons. In general, the permutation group Sn [21-23] consists of n! permutations of n objects of a set
of chosen nuclei, denoted by Ω to represent the rigid framework. Note that the notation Sn that we use
here differs from the point group Sn that corresponds to n fold improper axis of rotation. All references
to Sn in this work mean the permutation group of n! operations. As the nitrogen atoms get permuted,
they carry the protons attached to them, and so induce a permutation of the protons. Consequently, the
overall group of (NH3)4 becomes the wreath product of G with H , denoted by G[H], which becomes
S4[S3] in this case. The wreath product group G[H] is defined as the set of permutations

{ (g; π)|π is a mapping of Ω into H, g ∈ G}

and the product of two permutations is defined by

(g; π)(g
′
;π

′
) = (gg

′
; ππ

′
g)

where
πg(i) = π(g−1i),∀i ∈ Ω

ππ
′
(i) = π(i)π

′
(i),∀i ∈ Ω

An element of G[H] is represented by (g; h1, h2, ..., hn), where g ∈ G and hi ∈ H . Thus, the group
G[H] contains |G||H|n elements where n is order of Ω. In the case of (NH3)4, the order of the full
nonrigid permutation group is given by

|S4[S3]| = 4!(3!)4 = 31104

The group S4[S3] is isomorphic with

S4[S3] = (S3 × S3 × S3 × S3) ∧ S
′
4

where the symbols × and ∧ stand for direct and semidirect product, respectively.

3 Conjugacy Classes

Let Sn[H] be the group under consideration and (g; π) be an element of Sn[H]. If we adopt the conven-
tion to begin each cyclic factor with the least symbol included in the cycle decomposition of g, then we
can associate with each cyclic factor [j; g(j), g2(j), ..., gr(j)] of g the unique element ππgπg2 ...πgr(j) =
π(j)π[g−1(j)]...π[g−r(j)] in H. Let us call this element the cyclic product associated with [j; g(j), g2(j),
..., gr(j)] with respect to π. Let the permutation g ∈ Sn be of the type Tg = (a1, a2, ..., an) ( where ai

denotes cycles of length i ). There are ak cycle products (defined above) associated with the the ak cycles
of length k of g with respect to π. Let C1, C2, ..., Cs be the conjugacy classes of H. If exactly aik of these
cycle products belong to Ci, then the s × n matrix defined below is the cycle type of an element (g; π)
of the wreath product T (g; π) = aik(1 ≤ i ≤ s, 1 ≤ k ≤ n).
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Let P (m) denote the number of partitions of the integer m, with the convention that P (0) = 1. Let n
be partitioned into the ordered s-tuples (n) = (n1, n2, ..., ns) such that

∑
i ni = n. (Recall that s is the

number of conjugacy classes of H). Then the number of conjugacy classes of Sn[H] is

∑
(n)

P (n1)P (n2)...P (ns).

For a proof see Kerber [24]. The order of the conjugacy class whose matrix type is (aik) [25] is given by

|Sn[H]|∏
i,k aik!(k.|H|/|Ci|)aik

.

Therefore, we can compute the conjugacy classes of S4[S3] which are shown in Table 1.
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No Class Representation Order Symbole
1 Identity of S4[S3] 1 1a
2 (1,2,3) 8 3a
3 (1,2,3)(4,5,6) 24 3b
4 (1,2,3)(4,5,6)(7,8,9) 32 3c
5 (1,2,3)(4,5,6)(7,8,9)(10,11,12) 16 3d
6 (2,3) 12 2a
7 (2,3)(4,5,6) 72 6a
8 (2,3)(4,5,6)(7,8,9) 144 6b
9 (2,3)(4,5,6)(7,8,9)(10,11,12) 96 6c
10 (2,3)(5,6) 54 2b
11 (2,3)(5,6)(7,8,9) 216 6d
12 (2,3)(5,6)(7,8,9)(10,11,12) 216 6e
13 (2,3)(5,6)(8,9) 108 2c
14 (2,3)(5,6)(8,9)(10,11,12) 216 6f
15 (2,3)(5,6)(8,9)(11,12) 81 2d
16 (1,7)(2,8)(3,9)(4,10)(5,11)(6,12) 108 2e
17 (1,7,2,8,3,9)(4,10)(5,11)(6,12) 432 6g
18 (1,7,2,8,3,9)(4,10,5,11,6,12) 432 6h
19 (1,7)(2,8,3,9)(4,10)(5,11)(6,12) 648 4a
20 (1,7)(2,8,3,9)(4,10,5,11,6,12) 1296 12a
21 (1,7)(2,8,3,9)(4,10)(5,11,6,12) 972 4b
22 (4,10,7)(5,11,8)(6,12,9) 288 3e
23 (1,2,3)(4,10,7)(5,11,8)(6,12,9) 576 3f
24 (4,10,7,5,11,8,6,12,9) 576 9a
25 (1,2,3)(4,10,7,5,11,8,6,12,9) 1152 9b
26 (2,3)(4,10,7)(5,11,8)(6,12,9) 864 6i
27 (2,3)(4,10,7,5,11,8,6,12,9) 1728 18a
28 (4,10,7)(5,11,8,6,12,9) 864 6j
29 (1,2,3)(4,10,7)(5,11,8,6,12,9) 1728 6k
30 (2,3)(4,10,7)(5,11,8,6,12,9) 2592 6l
31 (7,10)(8,11)(9,12) 36 2f
32 (1,2,3)(7,10)(8,11)(9,12) 144 6m
33 (1,2,3)(4,5,6)(7,10)(8,11)(9,12) 144 6n
34 (7,10,8,11,9,12) 72 6o
35 (1,2,3)(7,10,8,11,9,12) 288 6p
36 (1,2,3)(4,5,6)(7,10,8,11,9,12) 288 6q
37 (2,3)(7,10)(8,11)(9,12) 216 2g
38 (2,3)(4,5,6)(7,10)(8,11)(9,12) 432 6r
39 (2,3)(7,10,8,11,9,12) 432 6s
40 (2,3)(4,5,6)(7,10,8,11,9,12) 864 6t
41 (2,3)(5,6)(7,10)(8,11)(9,12) 324 2h
42 (2,3)(5,6)(7,10,8,11,9,12) 648 6u
43 (7,10)(8,11,9,12) 108 4c
44 (1,2,3)(7,10)(8,11,9,12) 432 12b
45 (1,2,3)(4,5,6)(7,10)(8,11,9,12) 432 12c
46 (2,3)(7,10)(8,11,9,12) 648 4d
47 (2,3)(4,5,6)(7,10)(8,11,9,12) 1296 12d
48 (2,3)(5,6)(7,10)(8,11,9,12) 972 4e
49 (1,7,4,10)(2,8,5,11)(3,9,6,12) 1296 4f
50 (1,7,4,10,2,8,5,11,3,9,6,12) 2592 12e
51 (1,7,4,10)(2,8,5,11,3,9,6,12) 3888 8a

Table 1
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4 Representation of Wreath Product

Since wreath products are particular types of semidirect products, we may obtain their irreducible rep-
resentations using MacKey’s theory of the semidirect product [26]. Nevertheless, here we follows the
procedure outlined by Kerber [24, 27] for wreath products, which is simple and straightforward.
Recall that H∗ = H1 × H2 × ... × Hn, with

H ∼= Hi = {(e;π)|π : Ω → H

π(j)
= 1H ∈ H,∀j �= i}.

Since H∗ is a direct product of the groups H1,H2, ..., Hn, the irreducible representation of H∗ are the
outer tensor products

F ∗ = F1#F2#...#Fn,

where Fi is an irreducible representation of Hi. Formal definitions of outer and inner tensor products
can be found in Curtis and Reiner [26]. However, in simple terms, the matrices of outer tensor products
can be obtained as the Kronecker products. Symbolically,

F ∗(e, π) = F1[π(1)] × F2[π(2)] × ... × Fn[π(n)] = fi1k1 [π(1)]fi2k2 [π(2)]...finkn [π(n)],

if F (h) = fik(h) for h ∈ H . To obtain the irreducible representations of wreath product groups, first we
determine the inertia group GF ∗ [H], which is defined as

GF ∗ [H] = {(g;π)|F ∗(g;π)
∼ F ∗},

where F ∗(g;π)(e;π
′
) = F ∗(g; π)−1(e; π

′
)(g; π) (∼ denotes equivalence of representations ).

The group GF ∗[H] is by definition the product H∗G′
F ∗ , where G

′
F ∗ is called the inertia factor of F ∗ and

is defined by

G
′
F ∗ = {(g; e

′
)|F ∗(g;e

′
)

∼ F ∗}.
Let F 1, F 2, ..., F γ be a fixed arrangement of γ pairwise nonequivalent representations of H . F ∗ is said
to be of the type (n) = (n1, n2, ..., nγ) with respect to this arrangement if nj is the number of factors Fi

of F ∗ equivalent to F j . Let Snj be the subgroup of Sn consisting of the elements permuting exactly the
nj indices of the nj factors Fj of F ∗ which are equivalent to F j . Define S

′
n to be S

′
n1

× S
′
n2

× ...× S
′
nγ

with
S

′
nj

= {(g; e
′
)|g ∈ Snj}.

In this setup, Kerber [24] proved that G
′
F ∗ = G

′ ∩ S(n).

The representations F̃ ∗ whose matrices are defined as follows form the representations of GF ∗ [H] :

F̃ ∗(g; π) = fi1kg−1(1)
[π(1)]fi2kg−1(2)

[π(2)]...finkg−1(n)
[π(n)].

Alternatively, F̃ ∗(g; π)is found from F ∗(e;π) by a suitable permutation of the columns of F ∗(e; π)
which is determined by the operation g−1 acting on the second index.
Before we proceed to find the irreducible representations of the wreath product group G[H], we need to
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know the concept of induced representations. Let G be a group and let K be its normal subgroup. Since
K is a normal subgroup, the quotient group G/K is well defined. It is possible to construct the irreducible
representations of G from the irreducible representations of K. Let Γ be an irreducible representation of
K. Then the irreducible representation of G induced by Γ, denoted by Γ ↑ G, is constructed as follows:
Let σ ∈ G/K be the coset of the form σ = KSσ, with Sσ ∈ G. Let k → ψ(k) be the character of
the representation Γ. Then the character g → χ(g) induced by Γ is given by χ(g) =

∑
σ χ(SσgS−1

σ ),
where the summation is taken over all σ ∈ G/K for which σg = σ. Note that the dimension of Γ ↑ G
is dim(Γ)|G|/|K|. For an expository survey on induced representation, see Coleman [28] or Curtis and
Reiner [26].
Let F

′
be an irreducible representation of the inertia factor G

′
. Let F̃ ∗ be determined using the method

outlined above. Then the representations induced by the irreducible representations obtained by multi-
plying F̃ ∗ and F

′
are the irreducible representations of the wreath product of G with H . In Kerber’s

notation, (F̃ ∗ ⊗ F
′
) ↑ G[H] are the irreducible representations of G[H].

Note that, since the representation (F̃ ∗ ⊗ F
′
) ↑ G[H] is the induced representation of F̃ ∗ ⊗ F

′
over

G[H], the dimension of (F̃ ∗ ⊗ F
′
) ↑ G[H] is dim[(F̃ ∗ ⊗ F

′
) ↑ G[H]] = dim(F̃ ∗ ⊗ F

′
) |G[H]|
|GF∗ [H]| . In

particular, if GF ∗ [H] = G[H], then (F̃ ∗ ⊗ F
′
) ↑ G[H] = F̃ ∗ ⊗ F

′
.

The representation matrices of the representations of H can be elegantly obtained if H happens be Sm

for some m. In this case, to obtain F ∗, first one needs to know F . From the partition associated with
F , the dimension of F is determined by the Frame-Robinson-Thrall’s theorem [29]. The representation
matrix is obtained using the representation theory of symmetric groups which can be found in [23]. In
this case, a representation F will be denoted by [P (m)], where P (m) is the partition associated with F .
The columns of [P (m)](h), h ∈ H , will be labelled by the Young tableaux [23] associated with P (m).
F ∗ is the n−fold outer tensor product of copies of F .
Now, we shall illustrate the construction of F̃ ∗ with a simple example which deserves attention. We
derive irreducible representations of S2[S3], which is the NMR group of (NH3)2. First we compute the
representations of the basis group S∗

3
∼= S3 × S3, their types, inertia groups and inertia factors. S∗

3 has
the following irreducible representations:

[3]#[3], [3]#[2, 1], [3]#[13], [2, 1]#[3], [2, 1]#[2, 1], [2, 1]#[13], [13]#[3], [13]#[2, 1], [13]#[13].

With respect to the arrangement [3], [2, 1], [13] of the irreducible representations of S3, the types of these
representations are:

(2, 0, 0), (1, 1, 0), (1, 0, 1), (1, 1, 0), (0, 2, 0), (0, 1, 1), (1, 0, 1), (0, 1, 1), (0, 0, 2).

Hence a complete system of irreducible representations of S∗
3 with pairwise different types is

{[3]#[3], [3]#[2, 1], [3]#[13], [2, 1]#[3], [2, 1]#[2, 1], [2, 1]#[13], [13]#[3], [13]#[2, 1], [13]#[13]}.

The corresponding inertia groups are:

S2[S3], S∗
3 , S∗

3 , S2[S3], S∗
3 , S2[S3]
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and the inertia factors are:
S

′
2, S

′
1, S

′
1, S

′
2, S

′
1, S

′
2.

The irreducible ordinary representations of S2 are [2] and [12], and the only one of S1 is [1]. Thus the
irreducible representations of S2[S3] are:

˜[3]#[3] ⊗ [2]
′
= ˜[3]#[3],

˜[3]#[3] ⊗ [12]
′
,

( ˜[3]#[2, 1] ⊗ [1]
′
) ↑ S2[S3] = [3]#[2, 1] ↑ S2[S3],

( ˜[3]#[1]3 ⊗ [1]
′
) ↑ S2[S3] = [3]#[1]3 ↑ S2[S3],

˜[2, 1]#[2, 1] ⊗ [2]
′
= ˜[2, 1]#[2, 1],

˜[2, 1]#[2, 1] ⊗ [12]
′

( ˜[2, 1]#[13] ⊗ [1]
′
) ↑ S2[S3] = [2, 1]#[13] ↑ S2[S3],

˜[13]#[13] ⊗ [2]
′
= ˜[13]#[13],

˜[13]#[13] ⊗ [12]
′
.

Their degrees are 1, 1, 4, 2, 4, 4, 4, 1, 1 in accordance with

12 + 12 + 42 + 22 + 42 + 42 + 42 + 12 + 12 = 72 = |S2[S3]|.

Next to compute the representing matrices, let us find the matrix of the representation [2, 1]#[2, 1][(12); e
′
]

where [2, 1] is the irreducible representation corresponding to the partition (2, 1) in S3:

[2, 1]#[2, 1](e; e
′
) =

12 13
3 2(
1 0
0 1

)
45 46
6 5(
1 0
0 1

)
=

12 45 12 46 13 45 13 46
3 6 3 5 2 6 2 5⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which is of the form f1
i1k1

(1)f2
i2k2

(1):

˜[2, 1]#[2, 1][(12); e
′
] = f1

i1k(12)−1(1)
(1)f2

i2k(12)−1(2)
(1) = f1

i1k2
(1)f2

i2k1
(1) =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ .
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Note that each column of [2, 1]#[2, 1](e; e
′
) is determined by a pair of Young tableaus. The columns

of ˜[2, 1]#[2, 1][(12); e
′
] are determined by the action of g−1 on Young tableaus, shown below. Let

T1(1) = 12
3 , T2(1) = 13

2 , T1(2) = 45
6 , and T2(2) = 46

5 . In general, if Ti(i) is a Young tableaus
associated with the partition p(m) which labels a column of Fi(h), h ∈ H , then g−1Ti(i) = Ti(g−1i).
In this example, since g = (12),

g−1T1(1) = T1(2),

g−1T2(1) = T2(2),

g−1T1(2) = T1(1),

g−1T2(2) = T2(1).

Thus, the columns of ˜[2, 1]#[2, 1][(12); e
′
] are determined by the pairs 45 12

6 3 , 45 13
6 2 , 46 12

5 3 , and
46 13
5 2 . This is precisely the permutation (1)(23)(4) of [2, 1]#[2, 1](e; e

′
). Alternatively, if Cji is the

jth column in the ith representation, then a column of the n−fold outer tensor product F ∗(e; π) is
determined by an unordered n−tuple (Cj11, Cj22, ..., Cjnn). The corresponding column of F̃ ∗(g; π) is
determined by the action of g−1 on this unordered n−tuple as shown below:

g−1(Cj11, Cj22, ..., Cjnn) = (Cj1g−11, Cj2g−12, ..., Cjng−1n).

The character table of S2[S3] is shown in Table 2.

1a 2a 3a 2b 6a 3b 2c 4a 6b
χ1 1 1 1 1 1 1 1 1 1
χ2 1 -1 1 1 -1 1 1 -1 1
χ3 1 1 1 1 1 1 -1 -1 -1
χ4 1 -1 1 1 -1 1 -1 1 -1
χ5 2 0 2 -2 0 2 0 0 0
χ6 4 2 1 0 -1 -2 0 0 0
χ7 4 -2 1 0 1 -2 0 0 0
χ8 4 0 -2 0 0 1 -2 0 1
χ9 4 0 -2 0 0 1 2 0 -1

Table 2

Since the molecule under consideration is (NH3)4, we can similarly obtain, all the irreducible characters
of nonrigid group (NH3)4, i.e., the irreducible characters of S4[S3]. Table 3, shows the
character table of the nonrigid group of (NH3)4.
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1a 3a 3b 3c 3d 2a 6a 6b 6c 2b 6d 6e 2c 6f 2d 2e 6g 6h 4a 12a 4b 3e
χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 1 1 1 1 -1 -1 1 1
χ3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ4 1 1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 1 1 1 1 -1 -1 1 1
χ5 2 2 2 2 2 -2 -2 -2 -2 2 2 2 -2 -2 2 2 2 2 -2 -2 2 -1
χ6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 -1
χ7 3 3 3 3 3 -3 -3 -3 -3 3 3 3 -3 -3 3 -1 -1 -1 1 1 -1 0
χ8 3 3 3 3 3 -3 -3 -3 -3 3 3 3 -3 -3 3 -1 -1 -1 1 1 -1 0
χ9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 -1 -1 -1 -1 -1 -1 0
χ10 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 -1 -1 -1 -1 -1 -1 0
χ11 4 4 4 4 4 -2 -2 -2 -2 0 0 0 2 2 -4 0 0 0 0 0 0 1
χ12 4 4 4 4 4 -2 -2 -2 -2 0 0 0 2 2 -4 0 0 0 0 0 0 1
χ13 4 4 4 4 4 2 2 2 2 0 0 0 -2 -2 -4 0 0 0 0 0 0 1
χ14 4 4 4 4 4 2 2 2 2 0 0 0 -2 -2 -4 0 0 0 0 0 0 1
χ15 6 6 6 6 6 0 0 0 0 -2 -2 -2 0 0 6 2 2 2 0 0 -2 0
χ16 6 6 6 6 6 0 0 0 0 -2 -2 -2 0 0 6 2 2 2 0 0 -2 0
χ17 6 6 6 6 6 0 0 0 0 -2 -2 -2 0 0 6 -2 -2 -2 0 0 2 0
χ18 6 6 6 6 6 0 0 0 0 -2 -2 -2 0 0 6 -2 -2 -2 0 0 2 0
χ19 8 5 2 -1 -4 -6 -3 0 3 4 1 -2 -2 1 0 0 0 0 0 0 0 2
χ20 8 5 2 -1 -4 -6 -3 0 3 4 1 -2 -2 1 0 0 0 0 0 0 0 2
χ21 8 5 2 -1 -4 6 3 0 -3 4 1 -2 2 -1 0 0 0 0 0 0 0 2
χ22 8 5 2 -1 -4 6 3 0 -3 4 1 -2 2 -1 0 0 0 0 0 0 0 2
χ23 8 8 8 8 8 -4 -4 -4 -4 0 0 0 4 4 -8 0 0 0 0 0 0 -1
χ24 8 8 8 8 8 4 4 4 4 0 0 0 -4 -4 -8 0 0 0 0 0 0 -1
χ25 16 10 4 -2 -8 -12 -6 0 6 8 2 -4 -4 2 0 0 0 0 0 0 0 -2
χ26 16 10 4 -2 -8 12 6 0 -6 8 2 -4 4 -2 0 0 0 0 0 0 0 -2
χ27 16 -8 4 -2 1 0 0 0 0 0 0 0 0 0 0 4 -2 1 0 0 0 4
χ28 16 -8 4 -2 1 0 0 0 0 0 0 0 0 0 0 4 -2 1 0 0 0 4
χ29 24 15 6 -3 -12 -6 -3 0 3 -4 -1 2 6 -3 0 0 0 0 0 0 0 0
χ30 24 15 6 -3 -12 -6 -3 0 3 -4 -1 2 6 -3 0 0 0 0 0 0 0 0
χ31 24 15 6 -3 -12 6 3 0 -3 -4 -1 2 -6 3 0 0 0 0 0 0 0 0
χ32 24 15 6 -3 -12 6 3 0 -3 -4 -1 2 -6 3 0 0 0 0 0 0 0 0
χ33 24 6 -3 -3 6 12 0 -3 3 4 -2 1 0 0 0 4 1 -2 2 -1 0 0
χ34 24 6 -3 -3 6 -12 0 3 -3 4 -2 1 0 0 0 4 1 -2 -2 1 0 0
χ35 24 6 -3 -3 6 12 0 -3 3 4 -2 1 0 0 0 4 1 -2 2 -1 0 0
χ36 24 6 -3 -3 6 -12 0 3 -3 4 -2 1 0 0 0 4 1 -2 -2 1 0 0
χ37 24 6 -3 -3 6 12 0 -3 3 4 -2 1 0 0 0 -4 -1 2 -2 1 0 0
χ38 24 6 -3 -3 6 -12 0 3 -3 4 -2 1 0 0 0 -4 -1 2 2 -1 0 0
χ39 24 6 -3 -3 6 12 0 -3 3 4 -2 1 0 0 0 -4 -1 2 -2 1 0 0
χ40 24 6 -3 -3 6 -12 0 3 -3 4 -2 1 0 0 0 -4 -1 2 2 -1 0 0
χ41 32 -4 -4 5 -4 -8 4 -2 1 0 0 0 0 0 0 0 0 0 0 0 0 2
χ42 32 -4 -4 5 -4 -8 4 -2 1 0 0 0 0 0 0 0 0 0 0 0 0 2
χ43 32 -4 -4 5 -4 8 -4 2 -1 0 0 0 0 0 0 0 0 0 0 0 0 2
χ44 32 -4 -4 5 -4 8 -4 2 -1 0 0 0 0 0 0 0 0 0 0 0 0 2
χ45 32 -16 8 -4 2 0 0 0 0 0 0 0 0 0 0 8 -4 2 0 0 0 -4
χ46 48 12 -6 -6 12 0 0 0 0 -8 4 -2 0 0 0 0 0 0 0 0 0 0
χ47 48 12 -6 -6 12 0 0 0 0 -8 4 -2 0 0 0 0 0 0 0 0 0 0
χ48 48 -24 12 -6 3 0 0 0 0 0 0 0 0 0 0 -4 2 -1 0 0 0 0
χ49 48 -24 12 -6 3 0 0 0 0 0 0 0 0 0 0 -4 2 -1 0 0 0 0
χ50 64 -8 -8 10 -8 -16 8 -4 2 0 0 0 0 0 0 0 0 0 0 0 0 -2
χ51 64 -8 -8 10 -8 16 -8 4 -2 0 0 0 0 0 0 0 0 0 0 0 0 -2

Table 3
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3f 9a 9b 6i 18a 6j 6k 6l 2f 6m 6n 6o 6p 6q 2g 6r 6s 6t 2h 6u 4c 12b
χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1
χ3 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
χ4 1 1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 1 1
χ5 -1 -1 -1 1 1 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ6 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ7 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 1 1
χ8 0 0 0 0 0 0 0 0 1 1 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1
χ9 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
χ10 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ11 1 1 1 1 1 -1 -1 -1 -2 -2 -2 -2 -2 -2 0 0 0 0 2 2 2 2
χ12 1 1 1 1 1 -1 -1 -1 2 2 2 2 2 2 0 0 0 0 -2 -2 -2 -2
χ13 1 1 1 -1 -1 1 1 -1 -2 -2 -2 -2 -2 -2 0 0 0 0 2 2 -2 -2
χ14 1 1 1 -1 -1 1 1 -1 2 2 2 2 2 2 0 0 0 0 -2 -2 2 2
χ15 0 0 0 0 0 0 0 0 2 2 2 2 2 2 0 0 0 0 2 2 0 0
χ16 0 0 0 0 0 0 0 0 -2 -2 -2 -2 -2 -2 0 0 0 0 -2 -2 0 0
χ17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 -2 -2 -2 0 0 2 2
χ18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 0 0 -2 -2
χ19 -1 2 -1 0 0 -2 1 0 -4 -1 2 -4 -1 2 2 -1 2 -1 0 0 4 1
χ20 -1 2 -1 0 0 -2 1 0 4 1 -2 4 1 -2 -2 1 -2 1 0 0 -4 -1
χ21 -1 2 -1 0 0 2 -1 0 -4 -1 2 -4 -1 2 -2 1 -2 1 0 0 -4 -1
χ22 -1 2 -1 0 0 2 -1 0 4 1 -2 4 1 -2 2 -1 2 -1 0 0 4 1
χ23 -1 -1 -1 -1 -1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ24 -1 -1 -1 1 1 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ25 1 -2 1 0 0 2 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ26 1 -2 1 0 0 -2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ27 -2 -2 1 0 0 0 0 0 8 -4 2 -4 2 -1 0 0 0 0 0 0 0 0
χ28 -2 -2 1 0 0 0 0 0 -8 4 -2 4 -2 1 0 0 0 0 0 0 0 0
χ29 0 0 0 0 0 0 0 0 -4 -1 2 -4 -1 2 -2 1 -2 1 0 0 4 1
χ30 0 0 0 0 0 0 0 0 4 1 -2 4 1 -2 2 -1 2 -1 0 0 -4 -1
χ31 0 0 0 0 0 0 0 0 -4 -1 2 -4 -1 2 2 -1 2 -1 0 0 -4 -1
χ32 0 0 0 0 0 0 0 0 4 1 -2 4 1 -2 -2 1 -2 1 0 0 4 1
χ33 0 0 0 0 0 0 0 0 -6 0 -3 -3 3 0 -2 -2 1 1 -2 1 -4 2
χ34 0 0 0 0 0 0 0 0 -6 0 -3 -3 3 0 2 2 -1 -1 -2 1 4 -2
χ35 0 0 0 0 0 0 0 0 6 0 3 3 -3 0 2 2 -1 -1 2 -1 4 -2
χ36 0 0 0 0 0 0 0 0 6 0 3 3 -3 0 -2 -2 1 1 2 -1 -4 2
χ37 0 0 0 0 0 0 0 0 -2 4 1 -5 1 -2 2 2 -1 -1 2 -1 -4 2
χ38 0 0 0 0 0 0 0 0 -2 4 1 -5 1 -2 -2 -2 1 1 2 -1 4 -2
χ39 0 0 0 0 0 0 0 0 2 -4 -1 5 -1 2 -2 -2 1 1 -2 1 4 -2
χ40 0 0 0 0 0 0 0 0 2 -4 -1 5 -1 2 2 2 -1 -1 -2 1 -4 2
χ41 2 -1 -1 -2 1 0 0 0 -8 -2 4 4 1 -2 4 -2 -2 1 0 0 0 0
χ42 2 -1 -1 -2 1 0 0 0 8 2 -4 -4 -1 2 -4 2 2 -1 0 0 0 0
χ43 2 -1 -1 2 -1 0 0 0 -8 -2 4 4 1 -2 -4 2 2 -1 0 0 0 0
χ44 2 -1 -1 2 -1 0 0 0 8 2 -4 -4 -1 2 4 -2 -2 1 0 0 0 0
χ45 2 2 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ46 0 0 0 0 0 0 0 0 -4 -4 -4 2 2 2 0 0 0 0 4 -2 0 0
χ47 0 0 0 0 0 0 0 0 4 4 4 -2 -2 -2 0 0 0 0 -4 2 0 0
χ48 0 0 0 0 0 0 0 0 8 -4 2 -4 2 -1 0 0 0 0 0 0 0 0
χ49 0 0 0 0 0 0 0 0 -8 4 -2 4 -2 1 0 0 0 0 0 0 0 0
χ50 -2 1 1 2 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ51 -2 1 1 -2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Continue of table 3
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12c 4d 12d 4e 4f 12e 8a
χ1 1 1 1 1 1 1 1
χ2 -1 1 1 -1 1 1 -1
χ3 -1 -1 -1 -1 -1 -1 -1
χ4 1 -1 -1 1 -1 -1 1
χ5 0 0 0 0 0 0 0
χ6 0 0 0 0 0 0 0
χ7 1 -1 -1 1 1 1 -1
χ8 -1 1 1 -1 -1 -1 1
χ9 -1 -1 -1 -1 1 1 1
χ10 1 1 1 1 -1 -1 -1
χ11 2 0 0 -2 0 0 0
χ12 -2 0 0 2 0 0 0
χ13 -2 0 0 2 0 0 0
χ14 2 0 0 -2 0 0 0
χ15 0 -2 -2 0 0 0 0
χ16 0 2 2 0 0 0 0
χ17 2 0 0 2 0 0 0
χ18 -2 0 0 -2 0 0 0
χ19 -2 -2 1 0 0 0 0
χ20 2 2 -1 0 0 0 0
χ21 2 -2 1 0 0 0 0
χ22 -2 2 -1 0 0 0 0
χ23 0 0 0 0 0 0 0
χ24 0 0 0 0 0 0 0
χ25 0 0 0 0 0 0 0
χ26 0 0 0 0 0 0 0
χ27 0 0 0 0 2 -1 0
χ28 0 0 0 0 -2 1 0
χ29 -2 2 -1 0 0 0 0
χ30 2 -2 1 0 0 0 0
χ31 2 2 -1 0 0 0 0
χ32 -2 -2 1 0 0 0 0
χ33 -1 0 0 0 0 0 0
χ34 1 0 0 0 0 0 0
χ35 1 0 0 0 0 0 0
χ36 -1 0 0 0 0 0 0
χ37 -1 0 0 0 0 0 0
χ38 1 0 0 0 0 0 0
χ39 1 0 0 0 0 0 0
χ40 -1 0 0 0 0 0 0
χ41 0 0 0 0 0 0 0
χ42 0 0 0 0 0 0 0
χ43 0 0 0 0 0 0 0
χ44 0 0 0 0 0 0 0
χ45 0 0 0 0 0 0 0
χ46 0 0 0 0 0 0 0
χ47 0 0 0 0 0 0 0
χ48 0 0 0 0 -2 1 0
χ49 0 0 0 0 2 -1 0
χ50 0 0 0 0 0 0 0
χ51 0 0 0 0 0 0 0

Continue of table 3

5 Conclusions

The character table for ammonia tetramer has been deduced from:
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− the structure of group:

S4[S3] = (S3 × S3 × S3 × S3) ∧ S
′
4.

− the group is divided in 51 classes, the sum of the squares of whose dimensions gives the order of
the group:

4× (1)2 +2× (2)2 +4× (3)2 +4× (4)2 +4× (6)2 +6× (8)2 +4× (16)2 + 12× (24)2 +5× (32)2+

4 × (48)2 + 2 × (64)2 = 31104.

− the number of elements of these of the 51 classes are; 1, 8, 24, 32, 16, 12, 72, 144, 96, 54, 216,
216, 108, 216, 81, 108, 432, 432, 648, 1296, 972, 288, 576, 576, 1152, 864, 1728, 864, 1728, 2592, 36,
144, 144, 72, 288, 288, 216, 432, 432, 864, 324, 648, 108, 432, 432, 648, 1296, 972, 1296, 2592 and
3888.
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