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Abstract

Acid-base components of van Oss-Chaudhury-Good theory for surface energetics are ex-
tratermodynamical parameters whose direct measurement cannot be performed. Estimates
of acid-base components are obtained by solving the model equations of the theory, which
involve the experimental assessment of liquid surface tensions and contact angles for ap-
propriate liquid-solid pairs. Due to symmetries implicit in the mathematical form of such
model equations, theory admits a triple infinity of formally equivalent scales, with the same
prediction ability. This entails, in particular, the impossibility of interpreting acid-base
components in a strictly direct way. In this note we illustrate a way to select an univocal
vOCG scale by an essentially conventional assignment of the component values for suitably
chosen reference materials. The extension of the same procedure is outlined for a more
general class of multicomponent models, of which vOCG theory is a very particular case.
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1. Introduction

Multicomponent theories play an important role in modeling the interfacial interactions of
many materials and more specifically in the prediction of the solid-liquid adhesion work
and surface free energy of solid surfaces. The strategy of describing the surface interac-
tions of two materials by means of an appropriate number of “components”, pertaining to
contributions of different physico-chemical nature, is shared my a lot of models proposed
through the years. Van Oss-Chaudhury-Good (vOCGQ) acid-base theory™ =81 constitutes
one of the most known and successful multicomponent models; it expresses the work of

adhesion of a liquid [ on a solid s as

wedh = 2[\/75”’1/,“‘” +/ + \/ 75 *yﬂ (1.1)

while the surface tension of the liquid and the surface free energy of the solid are respec-

tively written as

LW [ +.— LW -
=" +2n v Vs =75 2475 s (1.2)

on having denoted with the superscript LW the Lifshizt-van del Waals components of the
materials, related to dispersive interactions, and with + and — respectively the acidic and
the basic components, which take into account the acid-base interactions between electron-
donor (basic) and electron-acceptor (acidic) sites of the molecules involved. Through the
geometrical means of basic components with acidic components, all the model equations
reflect the intrinsic complementarity of acid-base interactions, acidity and basicity being
obviously understood in a wide Lewis’ sense. Acid-base components cannot be measured
in a direct way and at the moment no significant and convincing correlation with some
absolute scale of acid-base behaviour is recognized, although some indication has been given

in the literature that the acidic component of water is 3.2 to 5.5 times the basic onel7=9],
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It is known!™#] that equations (1.1)-(1.2) are invariant under appropriate linear transfor-
mations of acid-base components. These linear transformations form a group with respect
to composition, which means that the corresponding representation matrices constitute a
nonabelian group when endowed with the usual matrix multiplication — see Theorem 1
in Section 2. Such a simple remark has important consequences, since it entails that the
only experimental measurement of surface tensions and adhesion works does not determine
vOCG components in a unique way. Model equations (1.1)-(1.2) are intrinsically compat-
ible with a multiplicity of “scales” of acid-base components, each obtainable from each
other by a suitable transformation of the invariance group, and all in principle equivalent
as for prediction ability. In the present note we address the problem of determining a
univocal vOCG acid-base scale, manipulating the acid-base components of some appropri-
ately chosen reference compounds by means of suitable transformations of the invariance
group.

The plan of the paper is the following: the main theoretical results concerning the structure
of the invariance group transformations are stated and proved in Section 2; application to
the problem of scale selection in vOCG theory is faced up in Section 3; finally, the more
general category of quadratic multicomponent theories is introduced in Section 4, and the

related problem of scale selection addressed in Section 5.

2. Analytical results

VOCG theory states that for each liquid (or solid) a triplet of components, 7™, "yl+ and

v, (respectively, AWy,

~7 ), can be defined in such a way that the surface free energy of
the material can be written according to (1.2) and the corresponding liquid-solid adhesion

work takes the form (1.1). By Young-Dupré equation we obtain then

(1 +cos8) = 2[ /WA 3 yar + ] (2.1)
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where 6 is the equilibrium contact angle of the pair. Let L and S be two sets of L > 1 liquids
and S > 1 solids, respectively; each liquid is denoted with a value of the index¢ =1,..., L,
whereas an index j = 1,...,5 distinguishes the different solids. The components of the
t-th liquid will be then written as

’\,LVV + _
Yii > Yio o Vi

and a similar notation will be introduced for the corresponding components of the j-th
solid

LW ~F ~
ls,j I's,j -

Vs,j )

Equations (1.2) and (1.1) trivially generalize to any liquid, solid, and liquid-solid pair:

o _ LW + - c_ L= AW
Yii = Vi +2\/71,i v Vi=1....L Vsj = Vs

WP = (L cosbiz) = 2[\AH AR 4\ Ifor H o] Vi

provided that 6; ; and W, fjh are taken as the contact angle and the adhesion work of the

i-th liquid on the j-th solid. The previous equalities can be usefully put into a matrix form
i = X/RX; Vi=1,...,L 4, =Y/RY; VYj=1...§

W™ = (1 + cos b, ;) = 2X]RY; Vi,j (2.2)

7

by posing, for each ¢ and j,

~LW ~ LW

Vi Vs,;
Coo— A o [+ _
X, = Vi Y, = Yo R =
Vi \ Vs

(2.3)

o O =
= o o
o = O

Y

and denoting with the superscript 7 the transpose of an arbitrary matrix — it is understood
that the dispersive, acidic and basic components of any material are always nonnegative. In

the set (2.2) of LS+ L+ S5 equations, the 3L+4S5 variables ylL’iW, 72—1" ¥ and s 5, vf? ~F

v Is,50
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7,.; must be regarded as unknowns. Only the total surface tensions y1,; of liquids can be
measured independently and are taken as given parameters, together with the equilibrium
contact angles 6; ;. For L, S sufficiently large we obtain LS + L+ S > 3L 4 4S5 and (2.2)
turns out to be an overdetermined set of nonlinear equations, to be solved by means of
some best-fit algorithm. The research of any best-fit solution implies the optimization of

some merit function V' dependent on the rests
A= X{RX; =i Ay = Y/RY; 7,

1
Aiy = XL RY; — (1 +cos i), - (2.4)

Existence of best-fit solutions for V' is highly nontrivial, since no general argument can
be easily invoked. In any case, uniqueness of such solutions is excluded by the following

theorem, whose proof is immediatel78),

Theorem 1

Let A;,2=1,...,L,and B;, j =1,...,5 be some — real or complex — 3 X 3 nonsingular

matrices such that the substitutions X; — A4;X; and Y; — B;Y; leave each of the rests

(2.4) invariant. Then:

(i) Ay = B; =CVi=1,...,L, j=1,...,5, where C is any matrix satisfying CT'RC =
R;

(74) the set Gy of matrices C' as above constitutes a group with respect to the usual
matrix product. Such a group is isomorphic to the orthogonal group 0(2,1;C), and
its intersection with the the group GI(3, R) of real 3x 3 invertible matrices is isomorphic

to the orthogonal group O(2,1;R).

The lack of uniqueness for the best-fit solution easily follows because invariance of all the

rests implies invariance of V.



-296-

Theorem 2

The group G; includes the 3-parameter family of nonsingular matrices

+explwi By + wa By + w3 Es) Vwi,wy,ws € C,

where

0 10 0 01 00 O

E, = 0 00 E,=1-1 00 Es,=101 0

-1 0 0 0 0 0 0 0 -1
Proof
Since C' € Gs is nonsingular, a complex 3 x 3 matrix E exists such that

= Lo
C = exp(E Z —'
and, due to R? =T, the condition CTRC = R assumes the equivalent form
exp(RETR) = exp(—F) . (2.5)
Equation (2.5) is certainly verified if RETR = —E, i.c.
ETR = —RE — (RE)T = —RE,
which implies that RE is a skew-symietric matrix
U wi wo
RE = Q = —wi 0 —Ww3 w1, W2, w3 € C.
—Wwy w3 0
As a consequence, the matrix E is given by
1 00 0 w we 0w we
E = RQ = 0 0 1 —wq 0 —Wws3 = —Wwy W3 0
010 —Wwy Wi 0 —w; 0 —ws3

and can be rewritten as

E = w1 By +wyEy + w3 Ey
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so that
C = exp(E) = explw1 By +we Bz + w3 Es) .
The final result follows by observing that CTRC = R implies (~C)TR(-C)=R. O

A useful by-product is the following corollary.

Corollary 2.1

For any w € C there holds

1 w 0 1 0 w
exp(wEy) = 0 1 0 exp(wEs) = | —w 1 —w?/2
w221 0o 0 1
1 0 0
exp(wE3) = | 0 € 0
0 0 e

Proof
The expression for exp(wE) is easily deduced from the definition, by taking into account

that F; is a nilpotent matrix:

o n 0 1 0 w2 0 0 0
exp(wE) = EHEI’ =T+w| 0 0 0)+5-10 0 0
n=0 —1 0 0 0 -1 0
The immediate equality Ey = —E7T leads to

.
exp(wEs) = exp(—¢ vEIT) = [Cxp(f' 'El)}

and provides the second expression. As for exp(wEs), the computation is straightforward

— it concerns the exponential of a diagonal matrix. O

Theorem 2 can be applied to prove the statement below, about the possibility of redefining

acid-base components for a particular liquid or solid.
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Theorem 3
Let 44", 4, 75 be the nonnegative acid-base components of a given material, with
W+ 2 A/Jr Yo > 0. Consider the new set of components y2W, 4+, 4=, defined by

means of

[ LW v

V| =l Vol with  CTRC = R

Vo Yo

Then, V€ € [0,1) and 7 € R a matrix C exists such that

T = B 4 2y ]

, _ —E ‘
vt =lw" w5 (2:6)
7= 2w Ve 5 e
Moreover, a suitable choice of C' leads to either y7 = 0ory~ =0.

Proof
We firstly show that the dispersive and polar contributions to surface free energy, y*W

and 24/7 v~ respectively, can take the values

Al 5[70LW'+2\/,E\/,E] 2/t = g +7\/7\/7 (2.7)

for any £ € [0,1]. To this end, we subdivide the proof in three parts and distinguish the
cases where v3 and 47 are both zero or not.

Suppose that 'y(')" > 0 and apply Corollary 2.1 to obtain, Yw; € R,

o vV VW ey

~+ = exp(wi F1) ’Y(T = 73’ . (28)

/

~ —

’ o Vo —envart —wiy/ad /2

The polynomial

Yars
Plwn) = —wi-—— —wi\/%" + /7
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has a maximum in w; = —/3" /1/7", where it takes the value

[aw s [+ " +2\/ o\ 7
’}() / Yo ) = —
m

The zeroes of P are the solutions of the equation

Ve
—wi g e/ e =0

which provides

LW + LVV+2 /,7/6|> /,\/0*
x

_ =—w; <0
/! 7
w] =
N S S LN Y N

Lk
~T + W
To v Yo !

LIV A/U
AT v , (2.9)
[+ w}
o 7o
because of the trivial inequality wf > 24/%¢%W /1/7¢ . In the interval (2.9) the square root

v/~ can assume any value from 0 to P(*\/")’OLW//Q/VJ) = [70”W + 24/ %_} /24/ 7

More precisely, for any given ¢ € [0, 1] there exists a unique w; such that

WY 4244
V=1 —F—
2v/70
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correspondingly, \/vF = /4 and
2/ = (1 —f)[wé”’#%/%x/yg] , (2.10)

whereas

LW LW - - LW | -
T =Y 2 Ve =2Vt VY = e 2y e ] (2.11)
This proves (2.7) for vy~ > 0. Notice that [0, 7" 4+ 24/~ /7] is the widest interval of
definition for both "™ and 2/7Fy~, since y*W 4+ 24/4F /v~ = 7™ + 24 /v /7, and
the square roots of the new components must be nonnegative anyway.

The case v, > 0 can be treated in a similar way by means of the transformation

A LW v Ve +wen /v
; f ot / T . _
\/‘y’+ = exp(szz) /0 = ')(T —wa/'/é“H —w% Yo /2 5 (212)
v " _
Vo /Yo

with wy € R. If hoth 4" and 4" vanish, we simply have to observe that
exp(w1 By + w2 E2) = [+ wi By + we By + o(y/w? + w?) (wi,ws) € R? = (0,0)

and introduce the transformation

/LW VYo
\/»F = CXP(W1E1 + u)zEg) 70 =

VI~ ot -

1 w1 wa £/ "//nLV(/Y 1
= —-w 1 0 0 +o(y/w? +w?) = A /W | —w2 | +o(y/wi+wd).
—uw 0 1 0 —uw
The choice of wy,ws < 0 sufficiently close to zero yields positive square roots /~vt and

V77, so that we are led to the previous cases — both acidic and basic components are

strictly positive.
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Corollary 2.1 allows now to vary the polar components by means of the substitution

A LW LW
; /,),LW ; A},LW : /yLW
+F s exp(wsBs) | /AT = | etws /4t wy €R .

— — —ws3 ,
A ~ A
) (&

y
For instance, in the case v;" > 0 the final transformation assumes the form

\/W VE %fw_l_z\/g\/g

VAt = sy Jof

0

Vi
SRR N I

and coincides with (2.6) by posing
1— 16" + 2% 10
2 Yo

whenever £ # 1. If £ = 1 we get v~ = 0, as requested. An analogous result can be

n = 2ws —In

established by starting from equation (2.12), with the only difference that v+ = 0 for an

appropriate value of the parameter ws. ]

Remark

For any given vector (v/1&W +/vF 1/ )7 satisfying vEW + 24/7F1/75 > 0 it is always
possible to perform a linear transformation C' = exp(wi By +we By + w3 EBs), wy, wa, ws € R,
so that the new acidic and base components vanish:

AET \/—
/ JIW o o+ ]~
A/ 247 A/ o
exp(w1 By + woEs +wsEs) |/ Yo = . (2.13)

o 0
Yo 0
As explicitly written in the previous equation, the new dispersive component must he set

to 7 EW + 24 /’y(fw /7y, owing to the invariance of v2W + 2 /4+ /4. Coudition (2.13) is

equivalent to

1

[ LW
0
1 +
Yo = exp(—w] E1 - UJZE2 - w;;E;;) 0 = (214)
o\ /7%

NN N 0
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) ChR -1

1 hR —1 P ‘
= | ws (S]]?R —wy %) =|oc]|, with R=/w?—2ww, e RUIR
T

, (811R+, ChR—l)
wi R W37R2
and ChR = (e + ¢ %)/2, ShR = (e® —¢~F)/2 VR € C. We have to show that any vector

(po )T satisfying p, 7,0 > 0 and p% + 207 = 1 can be obtained from (2.14) for a suitable

choice of wy,wsz,ws € R. Actually, it can be proved even more: that the following map

(w1, wa, wy) € {(501, X9, v3) € R®: ;z‘g — Qaqay > 0} _

,ChR -1
ChR —wj————
h Wi ;
ShR ChR -1 2 o
u)z( I —ng) € (; cp*4207r =1, poo,T€ER
~¢ShR ~ ChR -1
o (T e )

is onto — although not one-to-one. Therefore, we can confine ourselves to consider R > 0
and the entire functions ChR, (ChR — 1)/R*, ShR/R will never vanish. Our first goal is
to choose R and wj in such a way that p = pg, any preassigned real value. We preliminary

take R in such a way that ChR > pg and then we determine an w3 € R which satisfies

,ChR-1

Existence of the above wg — and its uniqueness up to a change of sign — is obvious since
both ChR and (ChR —1)/R? are strictly positive. The product wyws is now uniquely fixed
and for the components o, 7 we have o7 = (1 — p2)/2. A very tedious but rather simple
algebraic calculation shows that the parameters wy, wz, can be always chosen in such a
way that (o, 7) = (09, 79) for any given (g, 7o) satisfying oo = (1 — p3)/2.

This remark implies that Theorem 3 can be put in a stronger — although not particularly

useful, as a rule — form, by extending the validity of (2.6) also to the case £ = 1.
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The previous result gives us the possibility of assigning the vOCG components of a partic-
ular liquid almost arbitrarily. A natural question is whether after this assignation a certain
amount of indeterminacy is still available. An investigation of the spectral properties of

matrices in Gy provides a satisfactory answer to the problem.

Theorem 4
Let C € G3. Then:
(i) there holds det(C' — AI) = det(C ™! — Al), so that if ) is an eigenvalue, A7! also is.

The spectrum of C' always includes +1 or —1;

(77) the eigenvalues of C' = exp(w1 E1 + wo By + w3 Es), wi,ws,wy € C, are
1 eq/w;‘;wilwz 6,7\/;4;;724‘11;02

for w2 — 2wiws # 0, whereas in the opposite case there is a unique eigenvalue +1 with
geometric multiplicity 1. In any case, for (wy,ws,ws) # (0,0,0) the eigenspace of +1

— kernel of ' — I — coincides with the following set

Ker(C 1) = Iu(wg wy —w)t MGC\{O}}.

Proof

From the definition of G3 we have that CTR = RC~! and therefore
CTR—AR = RC™' - )R — (CT —\DR = R(C™' = Al ,
which implies
det(CT — AI) detR = detR det(C™ — AI) <= det(CT — AI) = det(C™ — AI)

so that C and C'~! have the same characteristic polynomial of order three. This proves

T

item (¢). As for item (ii), we preliminary observe that if (21 2 23)" is an eigenvector



of B = w\Ey 4+ wyBy + w3 B3 with eigenvalue A, then the same (2 2 23)7 provides an

eigenvector of exp E with eigenvalue e*:

Ty o] 1 1 [e o] A" T 1y
" _ n . _ A
expE | o = —F o = — | a2 =¢ T9
n! n!
r3 n=0 €3 n=0 xr3 r3

The spectrum of E is readily determined by means of the characteristic equation

— K w1 wo
det(E — pl) = det | —wy w3 — 0 = — i 4+ p(wh — 20w2) = 0
—w1 0 —wy — [

which provides 4 = 0, {\/wg) — 2wiws, —\/Lug — 2wywy. Consequently, whenever w? —

2wiwy # 0 the matrix exp(E) admits three simple eigenvalues:

1 C+' w2 —2wywy . wZ-2wiwsy
and the eigenspace Kerlexp(E) — I| = Ker(E) is specified by the nontrivial solutions
(21 23 23)" of
0 wy wo o Fwirs +wory = 0
0= —Wwy W3 0 ) — —woty +wizre = 0
—w; 0 —ws €3 —wia1 —wsaxg = 0

that is by (z1 24 .Tg)T = tHwswy — wy )T, t € C\ {0}. In the case w? — 2wiw, = 0 the only
eigenvalue of E is 0, with geometric multiplicity 1. The matrix can be then put into the

Jordan form

E=0Q"

in terms of an appropriate nonsingular matrix (). We deduce the expression for the
t f ppropriat lar 3 x 3 mat W 1

exponential

n

>~ 1 010
eXp(E)zQ_lzm g g (1) Q=Q7" T+

o o O
oo

n=0

0
1
0
11 1/2 11 1/2
=Q7'l0o 1 1 |Q=0Q'TQ, T 01 1 ,
00 1 00
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whose eigenvectors coincide with those of the triangular matrix T, up to the transformation

Q). The eigenspace KerT — [ is easily obtained from

0=10 0 1 9 = T3 =
00 0 T3 0 3 =10

and we conclude that the geometric multiplicity of the only eigenvalue +1 is also 1. The

eigenspace Ker[exp(E) — I is therefore the same obtained in the previous case. O

An immediate consequence of Theorem 4 is the corollary below.

Corollary 4.1
A nonzero vector (1 2 xg)T € C? is invariant through the linear transformation defined

by C = exp(w1 By + w2y + w3 E3), (w1,wa,wz) € C*\ {(0,0,0)}, if and only if
C = exp[u(—23E1 + 22B + 21 E;3))

for some p € C\ {0}. m|

3. Determination of scales in vOCG theory

We are now ready to apply the previous results to the problem of scale definition in vOCG
theory. Suppose that the acid-base components 'yll"gv, 71""“, Y1,0 of a material — referred to
as “primary” reference chemical, from now on — have been estimated in some way. Under
the general assumption that 74" 4+ 21/7F~v; > 0, we can use Theorem 3 to redefine the

cowmponents according to

wW = ’7”11/* \/'71 0\ /10
" LW‘*'Z\/ 1,0\ 7 ,0 9 (3.1)

LW

'710 /10
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with € € [0,1) and 5 € R arbitrarily chosen. By applying the linear transformation (3.1)
to all the chemicals of the set, we get a preliminary definition of the acid-base scale. Such
a definition is obviously not yet complete, since Corollary 4.1 states that there exists a

one-parameter group of linear transformations C3 — C3:

LW LW
VA VAEY

S(p) - vt | —— exp {,u(—w'ny] /1 Byt ’y’1r‘WE3)] VAt , (3.2)

~

Y v

with ¢ € C, through which (\/7EW (/47 +/~7)7 is invariant.
If ')'2%4/, Y305 Yoo e now the components of another material — the “secondary” reference

chemical —, the linear transformation (3.2) allows us to write

S TW A
Y2 12,0

~T — A
T2 = €exp {M(*\/ 7 B+ \/71+E2 + /7" Es)} 7o

Y2

in such a way that the residual parameter u can be possibly fixed by assigning one of the

numbers /74 A /73 or /45 . The choice is not arbitrary, since:
(@) the vectors (\/¥FW, v/, \/+7) and (4 /","QL,B'V-, V50 \ Ya,0) must be linearly in-

dependent, otherwise

(V138" /7505 \/720) € Ker [eXp [M(*\/v'fEl /1 Bt '7’{‘“153)} - H}

and therefore

AW A y o
+ - Y
Vil | = epfu(—y BB VB | A | = |V

T2 ~

]

i

V€ C. Components y4, 45, 45 do not depend on p and no full definition of the

scale is possible;
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(b) the transformation S(p) can be explicitly written as
AW =CrnvEY + Cia 7’;0 +Cis \/’a
\/E=C21 ’))0 "+ Cos ’)”;0+Cz3\/a
\/E =Cy ")>L[? +Cs ’)”;:n + C':;:;\/’;_‘O

Ch(pr) — 1
Cyy = Ch(pr) — ”‘(’“‘%)

Cia = _\/E AW Ch(//”z) - 1_\/? Sh(r/t"J
Cis = \/EM _ \/A,F A Ch(llriz)—l
Cot = —/7f Sh(m‘) B \/E Lo %
Ch(pr) — L, - Sh(pr
Ca = Ch(pr)— \/’Z\/i ! /“” AT M

Cl -1
i 1(/“)

with

Cas —
C3 = _\/,7 A LW Ch( M’ \/7 Sh(pr)

Cyy = w—%

Cys = — ” %  Chipr) ﬁ Sh(r,“«)

and r = /vEW + 2\/'Fﬁ All the square roots of the new components are given
by expressions of the form
a + bet" + ce HT

for suitable constants a, b, ¢ dependent on & ﬂ , y2 01 V205 AW~ 47 and on the
component. Constraints on the admissible values of i € C come from the requirement
that each \/W \/'E \/E be real and nonnegative. Typically, p will belong to
some real interval.

We expect that whenever the secondary reference chemical is chosen appropriately, so as to

accomplish conditions (a) and () for some yu, the parameter takes a uniquely determined
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value = p* by assigning one of the components 4"

75, 75 . A mapping through S(z*)
of the whole component set will provide the requested scale.

It is noticeable that the self-consistency of the method imposes all the square roots of the
final components to be nonnegative, thus not any choice will yield satisfactory results. In

this sense, both primary and secondary reference material must be selected “judiciously”,

and the conventional values of the corresponding components assigned in a proper way.

4. Quadratic multicomponent theories

In the late 60s a prototype of multicomponent theory was already proposed by Owens and
Wendt['l (OW), in order to determine the specific contribution of dispersive and “polar”
interactions to the whole work of adhesion. This is accomplished by the definition of

suitable dispersive and polar contributions for each material, in such a way that
_d P . oAl P
M=+ Vs = Vs T s

for liquids and solids respectively. The work of adhesion becomes, accordingly,

vpradh — 2[ /,\/g /ld+ /7?7{’] ,

a sort of geometric-mean rule being separately applied to dispersive and polar components.
The theory can be easily extended, for instance to take specifically into account hydrogen-

bonding interactions
d H dy p H
n= Yo = e TV AT
17adh
Wk = 2y fydy + yJadaf + 7
by introducing further appropriate components, labelled by H. A recent revision of vOCG
theory led Qin and Changl''="1 (QC) to propose a new, in principle more general three-

parameter model whose equations reduce to

1wy 1wy
VI:§(Pld)~7PlPIb "//Szé(Pg)Z*Ps‘Pj

wh = pipt — (PP + PP,
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the superscripts d, a and b corresponding to LW -dispersive, Lewis-acidic and Lewis-basic
components respectively. Although not developed to predict adhesion work or surface free
energy, other models show a very similar structure. A well-known example is Drago’s
theoryl14=18] which distinguishes "acidic” and "basic” solvents (electron acceptors and

donors) and writes the enthalpy of adduct formation for any acceptor-donor pair as
—AH = C,Cp+ E4sEB

where the subscripts A and B indicate acceptor and donor and E and C represent elec-
trostatic and covalent contributions. Analogous empirical two-parameters relationships
for free energy have also been established by electrochemical techniques by Edwards!™,
Mulliken®! and Foss!'?). Drago’s theory may be readily extended to take into account the
eventual co-existence of acidic and basic sites in the same molecule by an equation of the
0]

2
form/?

—AH = C'AC,B + CBC,,q + EAEb + E};EA . (41)

In recent papersl”?1] it has been recognized that from a mathematical point of view the
GvOC theory should be classified in the realm of Linear Free Energy or Solvation Energy
Relationships (LFER or LSER)I?2:2)] | where a thermodynamical quantity @, pertaining in
this case to Lewis acid-base properties of two materials X and Y, is expressed as a sum of
pairwise products of some material coefficients
Q=) X

The index i refers to the class of the coefficient: dispersive, acidic, basic and so forth,
while symbols X and V" pertain to the interacting materials. Such a kind of relations is
22,23

widely applied in physical organic chemistryl . All the above multicomponent models

involve bilinear and quadratic forms of components, for adhesion work and surface free
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energy respectively: they will be called Quadratic Multicomponent Models. Not all the
multicomponent theories have the same structure; an interesting counterexample is the
model by Wul2423! who distinguishes dispersive and “polar” contributions to adhesion

work, as in WO, but adopting a harmonic-mean combining rule instead of a geometric-

mean approximation
d.d P
pradh _ 4| 717 Nt
- ~d o ~P P
Yo + s Y1+ s

The general mathematical form of quadratic multicomponent models is immediately rec-

ognized. The model equations appear to be the same of vOCG theory in matrix notation
w=XTRX ~,=YTRY w = oxTRY (4.2)

or the only third equation as in the case of Drago’s theory, depending on whether it
does make sense to consider or it is of interest to model interactions of a material with
itself (in theories like vOCG, QC or OW, self-interaction describes surface free energy or
surface tension). Now, however, X and Y denote c-dimensional column vectors of material
components (e.g. for each liquid and solid) or quantities simply related to them (square
roots of components, suitably scaled components, etc.), while R is any real, symmetrical
nonsingular ¢ X ¢ “structure” matrix characteristic of the model. If dy,...,d. denote the
(real and nonvanishing) eigenvalues of R and sgn(z) the sign function, by an appropriate
linear transformation of vectors X and Y it is always possible to reduce the structure

matrix to the standard form

sgn(dy) (0]

R = o
@) sgn(d.)

Multicomponent models of the form (4.2) are thus properly different only if their structure

matrices do not share the same signature {sgn(d;),...,sgn(d.)}, otherwise they should be

regarded as mathematically equivalent up to a linear redefinition of components??] — i.e.

up to a isomorphism.
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5. Scale definition in quadratic multicomponent theories

In a way similar to the proof of Theorem 1 it is easy to check that the model equations
(4.2) are invariant through any linear transformation X — CX, Y — CY, whenever the

real matrix C satisfies CTRC = R. The set of matrices C
G = {C real ¢ x ¢ nonsingular matrix : CTRC = R} (5.1)

forms a nonabelian group with respect to the common product, since I"RI = R, while

CTRC = C implies (C"1)TRC~! = R and finally

CTrRC =R, DTRD =R = (¢DYYRCD = DYCTRCD = DTRD = R.

As in the case of vOCG theory, scale multiplicity due to the invariance transformation
group (5.1) has the important consequence that the material parameters (components)
of a quadratic multicomponent model do not necessarily admit a direct interpretation,
unless they are susceptible of a direct measurement. Due to the “extrathermodynamical”
character of material components, such a constraint is quite typical. As an example,
vOCG acid-base components are calculated only by surface tension and contact angle
data, solving the same model equations of the theory, and cannot be estimated in a direct
way. The unique alternative would be to establish a correspondence of a suitable vOCG
scale with some other scales of acid-base strength admitting a direct measurement of model
parameters, a correspondence which is missing at the present state of the art.

One can also immediately prove that matrices C' € G have very special spectral properties,
since if A € C is an eigenvalue of C, so is A™'. Matrices C' € G may also be interpreted
as describing changes of bases in the linear space R¢ endowed with a bilinear symmetric
metric of matrix representation R, provided that the change of bases preserves the metric.

G can then be visualized as a metric-preserving group and identified with the (generalized)
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orthogonal group O(c4,c—;R), on having denoted with ¢4 and ¢— the number of positive

[26] Once again, we have a confirmation that

and negative eigenvalues of R, respectively
the multicomponent model and its invariance group of transformations depend uniquely
on the signature of the structure matrix R. In this respect, it is worthy of note that
interchanging ¢4 with ¢_ is equivalent to replacing the metric by its negative and thus
gives the same group.

As an analytic manifold the group O(c4, c—;R) has dimension ¢(¢—1)/2, with ¢ = ¢4 4c_.
This means that locally the elements of the group are completely specified by ¢(c—1)/2 real
parameters through an analytical parametrization defined in a suitable neghborhood of 0
in Re(=1/2 From a topological point of view this Lie group is not connected, consisting of
4 connected topological components, but it is always possibile — and physically reasonable
— to confine ourselves to the only connected component containing the unity, that is the
¢ X ¢ unit matrix I. Such a choice seems anyway satisfactory, since the connected topological
component containing unity constitutes a subgroup?®!, often denoted as SOT(cu,c_; R).
The structure of the group in a neighborhood of unity can be detailed described in an

elementary way. Indeed any matrix close to unity can be written into the form

I+eD + o(e) (e = 0) (

[}
[}V
=

in terms of the scalar e € R and of any ¢ X ¢ real matrix D satisfying

[[+eDT +o(e)]R[I+eD+o(e)) = R (e—0)

or, equivalently,

RD+DTR = 0. (5.3)

By using the symmetry of the structure matrix R, equation (5.3) reduces to

RD+(RD)T =0
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and therefore the most general form of D must be
D=RT"Q (5.4)

on having denoted with € any real skewsymmetric ¢ x ¢ matrix, which depends on ¢(¢—1)/2
parameters. Vice versa, a simple calculation shows that whenever (5.3) is satisfied the
exponential of D

s 1 D\n
exp(D) = —D" = lim (I+—
= n! n—+oo n

belongs to G. Matrices in the connected component of G containing I can be expressed as

exponentials of some generator D and used to chose scales.

In order to remove multiplicity and specify a unique well-defined scale, a conventional
assignment of component values to some reference compounds is needed. The most gen-
eral matrix C' € G is completely determined by ¢(c — 1)/2 parameters, thus the reference
components must be chosen accordingly. Selection of a scale for a specific quadratic mul-
ticomponent model requires a detailed analysis, similar to that previously illustrated for
vOCG theory. Nevertheless the general strategy does not change in an appreciable way
when the group O(2,1; R) involved in vOCG analysis is replaced by a generic O(e4,c—;R).
For instance, the selection of component scales for the extended Drago model (4.1) can be

accomplished by transformation matrices of the form

—w1 0 Wq ws
W wo ws .
C = exp Vw, e R, 2=1,2,...,6
—Wy —WwWs —Ws 0 :
—w9 —w1 0 we

obtained from (5.4) by the idempotent structure matrix

oo~ O
oo o
—_ o oo
o= OO
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and the most general 4 x 4 skew-symmetric matrix Q. The most important consequence
is that, since the dimensionality of the invariance group involved does not depend on
the detailed signature of the model structure matrix, the number of material components
which is necessary to assign in order to select a specific scale is typically related only to

the number ¢ of components per material assumed by the theory.
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