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Abstract

We discuss a unified semigroup-theoretical approach to modeling polynucleotide se-

quences of RNA (ribonucleic acid) and polypeptide sequences of proteins. Primary atten-

tion is given to the existence of closed loops in these biopolymers. By way of illustration,

some mathematical facts are established and biological interpretation thereof is proposed.

The paper is addressed to biologists, chemists, physicists, and mathematicians that are

engaged in interdisciplinary research on RNA and proteins.

1 Introduction

Evolution creates new, diversified genes from ready fragments of already existent ones.

Were this done not under selection, the creation of new genes might look like random con-

catenation of respective genomic subsequences. The concatenation of subsequences is an as-

sociative process which is algebraically described by a semigroup [1–4]; but only special types

of semigroups can simulate the governing selection rules. In order to elaborate a reasonable

semigroup model of the process in question, we are going to take here into account known

constructional features of pre-mRNA (precursors of messenger RNA) and crystallized proteins

[5-8].

MATCH 
Communications in Mathematical 

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 56 (2006) 281-290  

                                          ISSN 0340 - 6253

-281-



Above all, we must consider the existence of intronic loops in pre-mRNA (assuming the

shape of a hairpin, clover- or maple-leaf) and like closed loops in crystallized proteins (single,

successive, and composite loops containing smaller built-in ones) [5]. Under the semigroup

approach that we shall consider below, all these loops will be modeled by (locally) cancelable

factors of the strings that encode respective genomic sequences. Of particular interest are factors

of the strings which represent idempotents of a modeling semigroup. In such a special case, just

the presence of complex loops with built-in smaller ones (as well as successive loops) in both

pre-mRNA and crystallized proteins unambiguously determines the type of this semigroup—it

must be just an orthodox monoid [2, 3]. Moreover, the same conclusion can be drawn from a

more general fact that genomic sequences possess fractal properties [9].

The next section will introduce some necessarily basic information from the theory of semi-

groups that will be used later on.

2 Preliminaries

This section epitomizes some known facts from [1–4; 10–15], which will be used by us for

deriving special corollaries later on.

A semigroup (S, ·) is a nonempty set with a binary operation, denoted by (·), satisfying the

associativity law: x ·(y ·z) = (x ·y) ·z for all x, y, z ∈ S. A semigroup S has an identity if there

exists an element 1 ∈ S such that 1 · x = x · 1 = x for every x ∈ S; the fact that 1 ∈ S is often

indicated in notation by writing S1 in lieu of S. Here, note that 1 can be added to (elements of)

any semigroup S, even though S did not originally contain it; usually (see [1], 1.1, p. 4 or [4],

Ch. 1, Def. 1.3, p. 2), they use, in lieu of S1, the notation S ∪ {1} to stress that S does not

contain 1. Regardless of its genesis, a semigroup S1 is specially termed a monoid.

An idempotent is an element e ∈ S such that e · e = e; for every element g of a finite

semigroup S there is the minimum exponent m, such that gm is an idempotent.

Since all semigroups that must be considered below are multiplicative ones, we shall here-

after adopt everywhere a simpler dotless notation ab instead of the formerly used a · b.

The order |S| of a finite semigroup S is the number n of its elements (|S| = n). Given

a subset A of a semigroup S, there exists the minimum subsemigroup of S containing A. It

consists of all finite products of elements of A and is denoted by 〈A〉 or A+ if the latter notation
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is more convenient (see below). In case A has only one element x, we write 〈x〉 and call

this a cyclic (or monogenic) subsemigroup of S. Any subset A of S such that 〈A〉 = S is

called a set (or system) of generators of S. There exists a minimal set (or system) of relations

among elements of S that assures uniquely reconstructing S from A; these are called generating

relations (or relators, for short, to rhyme with ”generators”). Generators and relators represent

the genetic code of a semigroup S.

Owing to the homonymy above, the molecular biologist may recall that the ‘genetic code’

in his/her own scientific area also provides the set of generators (which are in fact 4 characters

coding nucleotides) and generating relations (among the characters) that completely control

producing correct protein sequences in nature.

The order of an element g ∈ S is the order |〈g〉| = q of the cyclic subsemigroup 〈g〉. Here,

〈g〉 = {g1, g2, . . . , gq} is the set of the first q powers of g, which are all distinct elements of

S, whereas every subsequent power gt (t > q) of g necessarily coincides with the respective

element of 〈g〉. Thus, for an element g ∈ S of finite order there exists the minimum number

r, such that gr = gs for some s > r; the number r is called the index of an element g. Also,

there exists the minimum number p such that gr = gr+p; the number p is called the period of

an element g. The element e = gm (m = 0 (mod p); m ≥ r) is an idempotent in the cyclic

subsemigroup 〈g〉. Note that a subset G = {gr, gr+1, . . . , gq} ⊆ 〈g〉 (q = r + p − 1) is a

cyclic subgroup of S of order p, with the same idempotent gm as an identity. The pair (r, p)

of the numbers is called the type of an element g. For any two naturals r and p there exists a

monogenic semigroup of type (r, p). Two finite monogenic semigroups are isomorphic iff (if

and only if) their types coincide. Thus, from the standpoint of isomorphism, for every type

there is the only finite monogenic semigroup having this type. The latter circumstance is of

crucial importance for modeling different processes and objects (see the Introduction, [14] and,

especially [4, 11]), when a model should be analogous to what is simulated with it.

An element a ∈ S is called regular if a ∈ aSa, i.e., if there is x ∈ S such that a = axa.

Hence, it follows that the elements e = ax and f = xa are idempotents and, moreover, the

element e (element f ) serves as a left (right) unit for a; if also e = f , then a is a group element

(belonging to a certain subgroup of the semigroup S). Conversely, if an element a has a left

(right) unit belonging to the set aS (set Sa), then a is, obviously, regular. An element a is regular

iff the main left ideal {a} ∪ Sa (main right ideal {a} ∪ aS) is generated by some idempotent.
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Elements a and b are called inverse for one another (or, as a noun, inverses) if aba = a and

bab = b. Every regular element a has at least one inverse A∗. A semigroup is called regular if

all its elements are regular.

A regular semigroup S is called inverse if for each s ∈ S, there is a unique inverse element

t ∈ S such that sts = s and tst = t. We shall write this element t as s∗ (like in the general case

of regular semigroups) or as s−1 (like in a more specific case of groups).

A regular semigroup S is called orthodox [2, 3] if the set E(S) of all its idempotents is a

semigroup. Let V (a) denote the set of all inverses of an element a ∈ S, in S; then for any two

elements a, b ∈ S either V (a) = V (b) or V (a) ∩ V (b) = ∅. This determines an equivalence

relation ∼ on the elements of S: for a, b ∈ S a ∼ b iff V (a) = V (b). Thus, any orthodox

semigroup S can be distributed into a direct sum of all its disjoint subsets V (a). Let further

s ∈ S and e ∈ E(S), then ses∗ ∈ E(s), one can thus derive nested (built-in) idempotent words

from any idempotent ones of S (see Theorem 1.1.9 on p. 9 in [2]).

Of special interest are regular semigroups without skew pairs of idempotents (see [10]). Let

S be a regular semigroup with the set of idempotents E(S). Given x, y ∈ S, we say that (x, y)

is a skew pair if xy 
∈ E(S) whereas yx ∈ E(S). A regular semigroup that contains a skew

pair of idempotents is not orthodox (see [10], below Def. 1 on p. 265). We shall use just the

orthodox monoid as a case of the monoid without skew pairs (see Proposition 2, below).

At this point, we should note that the theory of semigroups has intensively been used in

the theory of automata and mathematical linguistics [4, 11]. Part of the terminology in the last

two theories came from physicists, logicians, and other specialists [12–14]; this gives a curious

mixture sometimes, but it is rather convenient in practice; and we want to introduce some useful

notions from it.

An alphabet A is a finite set, whose elements are characters; |A| = d. Evidently, a case

in point can be the 4 characters above that code nucleotides. Throughout this text, A will

simultaneously perform the function of the set of generators of a certain finite semigroup S =

〈A〉); we shall denote by M the monoid obtained by adding 1 to S (M = S1).

A word (over the alphabet A) is a finite sequence (a1, a2, . . . , al) of letters of A; the integer

l is the length of the word. In practice, the notation (a1, a2, . . . , al) is shortened to a1a2 · · · al.

The empty word, which is the unique word of length 0, is denoted by 1 (which is also consistent

with the identity above). One says that a word u is a factor of a word w if w = aub, where a

-284-



and b are not necessarily nonempty words.

The set of all words over a finite alphabet A that also includes the empty word is denoted

by A∗. (Note that a∗ above and A∗ here is the usual allowed connotation.) Equipped with the

concatenation of words, A∗ is the free (multiplicative) monoid on the set A, with the empty word

as an identity. A language L of A∗ is a set of words over A (L ⊂ A∗). The following property

is a necessary attribute of the language describing genomic sequences. Namely, a language L

is called factorial [12] if L = F (L), where F (L) denotes the set of all the factors of all words

of L; evidently, in this case, M = M(L) = 〈L〉 ∪ {1}.

By definition, a cancelable word ufv = a1a2 · · · ak (u, f, v ∈ L; a1, . . . , ak ∈ A), with

a (locally) cancelable factor f = asas+1 · · · as+t (1 < s ≤ s + t ≤ k), is a word for which

ufv = uv in M ; here, ”locally” merely reminds us that, in general, there may also exist other

pairs u′ and v′ (u′, v′ ∈ M) for which u′fv′ 
= u′v′.

Employing the monoid M , in this paper, is needed to us because we shall propose an alge-

braic model in which all factors of L that encode closed loops in pre-RNA (resp. crystallized

proteins) are cancelable, as the respective products of elements in M , factors. This allows us to

deduce some ‘orthographic rules’ for the genomic-sequence language, which can practically be

used in the analysis of natural polynucleotide and polypeptide sequences.

Since biological data are insufficient for the exact characterization of M , some model ap-

proximations have to be employed. Here, we should recall that the closed loops in pre-RNA and

crystallized proteins may be singular and multiple, following one another along the chain; there

exist also bigger composite loops containing smaller built-in ones [5] (see [6–8]). Evidently,

our model should take into account this whole variety of loops. Since closed-loop subsequences

comprise the major part of a genomic sequence, we thereby describe the fractal properties of

such a sequence, which was comprehensively studied in [9]. One can readily reformulate the

notion of the fractality of a genomic sequence (or just of a closed-loop subsequence) in alge-

braic terms as follows. Let u = u1u2 and v = v1v2 be two arbitrary (locally) cancelable factors

representing closed loops. Consider four derivative words w1 = uv, w2 = vu, w3 = u1vu2,

and w4 = v1uv2. Obviously, according to the biological background, it must be claimed, in

this case, that all of the four derivative words w1, w2, w3, and w4 should be (locally) cancelable

factors of respective words, of L, in their own right. Here, we note that the only type of regular

monoid that has these same properties for its arbitrary idempotent words, u and v (u2 = u and
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v2 = v in M ), is the orthodox monoid M (see Theorem 1.1.9 on p. 9 in [2] or [3]). Thus, to

our model, the orthodox monoid M is of special use. On a wider scale, the derivation of longer

(not necessary idempotent) factors of a genomic sequence from shorter ones, in the same fractal

manner as we described deriving w3 and w4 above, was experimentally confirmed in [9].

We can also discuss additional evidence for M being an orthodox monoid. Let Mk (k ≥ 1)

locally denote the family of all the nk k-ary products u1u2 · · · uk of elements of M . Since all

elements of Mk can be reduced to respective elements of M (Mk ⊆ M), one can introduce the

parameter µk(u), which is equal to the share of an element u ∈ M in Mk. Let M describe some

evolutionary process and let the consecutive powers M1 = M,M 2,M3, et seq. of M simulate

its successive (elementary) stages; in our context, such stages can be imitated, for example, by

reproductive events of the polynucleotide synthesis. In every specific situation, the type of the

monoid M can play the principal role. If, for the sake of a gedanken experiment, we assume

that M is a group G, we obtain ∀u, k (u ∈ G, k ≥ 1) that µk(u) = 1
|G| = const; in other

words, the share of any element u, of a group G, in Gk does not depend on k. Apparently, it is

impossible to use a group as the model for any evolutionary process; on the contrary, groups are

known to be the best language for describing equilibria and invariant actions (such as symmetry

operations). Thus, the monoid M cannot be a group. On the other hand, M should be kindred

enough to a group because our model simulating long-term evolution should also assure the

invariability of any kind of living organisms, for a (large) number of generations. The monoid

which is not a group, but which is the most kindred to it, is an inverse monoid. Since any inverse

semigroup is an orthodox semigroup, one can legitimately assert that M is, indeed, an orthodox

monoid, which also corroborates the reasoning above.

At last, let w = u1f1u2f2 · · ·utftut+1 (ui, fj ∈ L; 1 ≤ j < i ≤ t + 1) be a word (string)

representing the polypeptide sequence of a crystallized protein (resp. a polynucleotide sequence

of a pre-mRNA), where factors f1, f2, . . . , ft correspond to (all) closed loops of a crystallized

protein (resp. pre-mRNA). We are briefly going to employ an algebraic model in which every

factor fj (1 ≤ j ≤ t) representing a closed loop is a (locally) cancelable factor of w, and

conversely. In this model, removing a cancelable factor f of a cancelable word ufv, which

produces an algebraically equal abbreviated word uv, simulates a fundamental biological pro-

cess called splicing (i.e., converting pre-mRNA into mRNA). The validity of the ‘abbreviating’

equality ufv = uv is confirmed by the well-known basic fact that both original pre-mRNA
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and its successor mRNA store up the same reproductive genetic information, in organisms. It

will enable us to determine some properties of the genomic language L, to which we shall turn

below.

3 Main results

We begin this section with the following statement.

Proposition 1. Let a word f t = (a1a2 · · · as)
t (s ≥ 2;∀t ∈ N) be a cancelable factor of a

longer word uf tv (uf tv = uv in M ). Moreover, let g = aπ1aπ2 · · · aπs be (another) word

obtained by an arbitrary circular permutation π of characters a1, a2, . . . , as in f . Then ∀t ∈ N

gk (1 ≤ k ≤ t − 1) is also a cancelable factor of the word uf tv, in M .

Proof. First, recall that both the multiplication in M and concatenation of factors are associa-

tive operations. Therefore, for any k, t (1 ≤ k ≤ t− 1) and π we have uf tv = ux(gk)yv = uv.

Here, taking into account the periodicity of the factor f and the definition of the factor g,

we obtain that xy = f t−k (t − k ≥ 1). Then, according to the conditions of Proposition 1,

uxyv = uf t−kv = uv. Hence, it follows that ux(gk)yv = uxyv (t − k ≥ 1); consequently, gk

is indeed a cancelable factor of the word uf tv, which completes the proof. �

Evidently, the number of all orthographically distinct factors g in the conditions of Propo-

sition 1 equals the number of all pairwise incongruous cyclic shifts of a string a1a2 · · · as. In

addition, it is clear that all (not necessarily distinct) factors gk (1 ≤ k ≤ t− 1) can be canceled

out in the factor f t, of uf tv, in [s(t − k) + 1] algebraically equivalent ways.

Apparently, Proposition 1 may be helpful in the context of alternative splicing when one

considers introns lying in longer periodic factors of a genomic sequence; in particular, this

may propose the first practical rule for compiling the genomic-sequence language L. It is rather

easier to detect just one cyclic realization of some loop sequence and purely theoretically deduce

from it all the other ”rotated” ones than to find every possible case by chance. Note that he

possibility of circular permutations in genomic sequences was experimentally studied in [16].

Now recall that closed loops comprise the major part of a genomic sequence (see [5–8]).

Therefore, speaking of the fractality of genomic sequences [9], we legitimately raise a question

about the fractality of closed-loop sequences (i.e., cancelable factors). Here, mention that the

general model of closed loops above allows one to describe the fractality of cancelable factors
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provided that M is an orthodox monoid and cancelable factors correspond to idempotents of

M . In this connection, we propose also the following result, borrowed from [17].

Proposition 2. Let a word e = a1a2 · · · ac represent an idempotent of an orthodox monoid M .

Let further h = aπ1aπ2 · · · aπc be (another) word obtained by an arbitrary circular permutation

π of characters a1, a2, . . . , ac in e. Then h also represents an idempotent of M .

Proof. As known (see [10], below Def. 1 on p. 265), the statement is true for c = 2, when

e = xy. Consider the next case c = 3, when e = uvw. Using the associativity of the product

uvw, in M , and denoting vw by b, we can reduce this case to the precedent one; therefore,

bu = vwu is an idempotent as well. Similarly, denoting uv by a, we obtain that wa = wuv is

also an idempotent. Thus, our statement holds good for c = 3, too. Since the procedure can

further inductively be extended to the case c = 4 et seq, we arrive at the general proof. �

In addition, note that inverted repeats can be redefined in terms of the involutory operation

(∗), given in the definition of the inverse semigroup above. Indeed, one can set a = u∗ (u = a∗)

and c = g∗ (g = c∗) because a and u, as well as c and g, are strongly complementary characters

of the alphabet B (|B| = 4) of nucleotides, as it takes place in decoding the polynucleotide

sequence of DNA. Accordingly, any inverted repeat b takes the following form:

b = b1b2 · · · bs(b1b2 · · · bs)
∗ = b1b2 · · · bsb

∗
s · · · b∗2b∗1. (1)

Were (1) specifically written down for an element of an inverse semigroup, one could also

rewrite it as follows

b = b1b2 · · · bs(b1b2 · · · bs)
−1 = b1b2 · · · bsb

−1
s · · · b−1

2 b−1
1 . (2)

However, then, the sequence b in (1) and (2) is an idempotent one, in every inverse (sub-

)semigroup to which it belongs; and we do presuppose that M contains an inverse submonoid

M÷ ({1} ⊆ M÷ ⊆ M). Here, it is necessary to recall that the inverted repeats normally enter

into all intronic loops in pre-mRNA. From the semigroup-theoretical point of view, these loops

would be treated in perfect analogy to closed loops in crystallized proteins ([5–8]) and to their

abiological counterparts, studied in the general polymer chemistry ([18]). This is particularly

favorable in the case of interdisciplinary research.
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