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Abstract

Using non-rigid group theory, it is shown that the full non-rigid(f-

NRG) group of 1,4-dimethybenzene (p-xylene) is isomorphic to the group

2× of order 36, where = 3 2 and stands for wreath product.

This group has 18 conjugacy classes and irreducible representations. Then

the character table of the full non-rigid p-xylene is derived.

1 Introduction

A rigid molecule is defined as being such that the barriers between its versions

are insuperable and there are no observable tunneling splittings. For non-rigid

molecules, there are one or more contortional large amplitude vibrations such as

inversion or internal rotation that give rise to tunneling splittings. Because of

this deformability, the non-rigid molecules exhibit some interesting properties

of intramolecular dynamics which can be studied more easily resorting to group

theory.

Group theory is one of the most powerful mathematical tools in quantum

chemistry and spectroscopy. It can predict, interpret and simplify complex
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theory and data. Group theory is the best formal method to describe the sym-

metry concept of molecular structures. Group theory for non-rigid molecules

is becoming increasingly relevant and its numerous applications to large ampli-

tude vibrational spectroscopy of small organic molecules are appearing in the

literature [1-8].

The molecular symmetry group for non-rigid molecules, where changes from

one conformation to another can occur easily, is first defined by Longuet-Higgins

[9] although there have been earlier works that suggested the need for such

a framework. When studying rigid molecules, the point group symmetry of

minimum-energy geometries can be used to label electronic and vibration/rotation

wave functions. In many cases, these symmetry groups are not isomorphic with

any of the familiar symmetry groups of rigid molecules, and their character ta-

bles are not known. For non-rigid molecules, these point group symmetries are

not useful. It is therefore of some interest and importance to develop simple

methods of calculating these character tables, which are permit the labeling

and classification of the energy levels and the vibrational functions and may

also used to deduce selection rules for the infrared transitions.

Bunker and Papoušek [10] extended the definition of the molecular symmetry

group to linear molecules using an extended molecular symmetry.

The operations of the molecular symmetry group and the three-dimensional

rotation group are used together to treat the symmetry properties of molecules

in electromagnetic fields by Watson [11].

The complete set of the molecular conversion operations that commute with

the nuclear motion operator will contain overall rotation operations that de-

scribe the molecule rotating as a whole, and intramolecular motion operations

that describe molecular moieties moving with respect to the rest of the molecule,

forms a group which is called the full non-rigid molecule group (f-NRG) by

Smeyers [12].

The method of computation of f-NRGs as described here is appropriate for

molecules which consist of a number of methyl groups attached to a rigid frame-

work. The methyl derivatives became the subject of our interest, since they are

characterized by the high intensities of the CH3 torsional and C-CH3 wagging

modes. Non-rigidity of methyl derivatives is due to torsion of methyl groups

assuming that the barrier to rotation of the methyl groups is low. The present

study investigates the f-NRG of 1,4-dimethylbenzene (p-xylene), which consists
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of two methyl groups attached to a benzene ring (Figure 1).

We show that the f-NRG of p-Xylene is of order 36 with 18 conjugacy classes

and irreducible representations. Then we deduce it character table.

Computing the f-NRGs using wreath product formalism was first introduced

by Balasubramanian [13]. The character theory of wreath product groups has

been considered and discussed in [14,15]. Other applications of wreath product

can be seen in [15-19]. Some of the previous approaches and the motivation of

our study are outlined in references [20-27].

Figure 1: Geometry of p-Xylene

2 Computing the character table of p-Xylene

To justify the mean time dynamic symmetry of the molecule, we assume that the

speed of rotations of the methyl groups su ciently high. The description of the

f-NRG of p-xylene is as follows. Note that each dynamic symmetry operation

of this molecule, considering the symmetries of the methyl groups, is composed

of two sequential physical operations. We first have a physical symmetry of the

hexagonal framework and such operations are exactly the symmetry operations

that change the carbon atoms among themselves. Let us number the carbon

atoms of the hexagonal framework which are joined to one hydrogen atom by

the letters , , and . Then the feasible symmetries of the framework in terms

of permutations on the letters , , and are = ( )( ) and = ( )( )
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It is easy to see that these permutations generate the Klein’s fourgroup

isomorphic to 2× 2. In fact the four permutations correspond to the following

operations: identity, vertical reflection, horizontal reflection and a reflection

through the center of the hexagon. After accomplishing the first framework

symmetry operation, we have to map each of the two methyl groups to itself.

The only feasible symmetry group of each methyl group is the cyclic group 3

of order three. Now let us number the three hydrogen atoms in the upward

direction of Figure 1 by 1, 2 and 3. Similarly those hydrogen atoms which are

downward are numbered by 4, 5 and 6. Therefore the symmetry group of the

methyl groups are { (1 2 3) (1 3 2)} and { (4 5 6) (4 6 5)}.
Since the horizontal reflection changes the two methyl groups, therefore we

may assume (1 4)(2 5)(3 6) is the permutation resulting the e ect of the hor-

izontal reflection. Therefore = (1 2 3) (4 5 6) (1 4)(2 5)(3 6) is the

symmetry group as a result of the symmetries of the methyl groups and the

horizontal reflection.

If we set = (1 2 3) = (4 5 6) and = (1 4)(2 5)(3 6) then = (

× ) : where : denotes the semi-direct product. As a matter of

fact we have = 3 2, where denotes wreath product. Now the e ect

of the vertical operation is to interchange the carbon atoms { } with { }.
In this event the methyl frameworks remain fixed and hence the f-NRG of the

molecule is the direct product of with a cyclic group of order two, namely

2× . If we calculate the character table of the group , then using standard

methods we can complete the character table of the group 2 × . Note that

the number of conjugacy classes, as well as the number of irreducible characters

of the group 2 × is twice those of . Therefore in the next section we give

the details of computing the character table of the group .

3 The Character table of the group

In the previous section we mentioned that has the following presentation

= ( × ) : , where = (1 2 3) = (4 5 6) and =

(1 4)(2 5)(3 6). It is obvious that and are permutations of order three and

is of order two, i.e. 3 = 3 = 2 = . Further calculations show that
1 = The group has order 18 and its elements are either in the set

= { 2 2 2 2 2} or .
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Conjugacy classes of are obtained by the action of , by conjugation,

on as well as the action of × and on . Under the

action of on we have the following conjugacy classes. { } with size
1, { } with size 2, { 2 } with size 2, { } with size 1, { 2 2} with size 1
and { 2 2} with size 2.

The conjugacy classes of contained in are as follows: { 2 2 }
with size 3, { 2 2 } with size 3 and { 2 2 } with size 3.

Therefore has 9 conjugacy classes, hence 9 irreducible characters.

An element of the form 1 1 , where and belong to , is called a

commutator, and the subgroup of generated by all the commutators is called

the commutator subgroup of G and is denoted by 0. It is well-known that the

number of irreducible characters of with degree 1 is equal to the number of

the elements in the abelian group 0, see [28].

In the above group, it is easy to see that 0 = 2 is a group of order

3 and hence has | 0| = 6 irreducible characters of degree 1. Since the

sum of the square of the degrees of the irreducible characters of must be

equal to | | = 18, therefore the remaining irreducible characters of all have

degree 2 and there ate three of them. Further calculations show that the center

( ) of is the following ( ) = { 2 2}. Since 0 is an abelian

group, hence 0 = 6, the cyclic group of order 6, and since ( ) is

non-abelian, hence ( ) = 3, the symmetric group of order 6. We use the

above information to complete part of the character table of by lifting the

characters of the quotient groups 6 and 3. Note that if in general N is a

normal subgroup of G and if : C is a character of the quotient group
, then ˆ defined by ˆ : C, ˆ( ) = ( ) , is a character of .

Moreover if is irreducible, then ˆ is also irreducible. In this case we say that

the character of G/N if lifted the character ˆ of .

From 0 = 0 = 6 and by lifting the characters of the cyclic

group of order 6 to we obtain the values of all the characters of degree 1 in

. From ( ) = ( ) ( ) = 3 we are able to calculate the values

of one of the irreducible characters of degree 2 of G by lifting the irreducible

characters of degree 2 of 3 to . Next we use the orthogonality relation of rows

and columns of the character table to compute the whole character table of

as follows. Note that in the following table we have = 3 and ¯ denotes

complex conjugate of .
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Table 1. The character table of the group

18 9 9 18 18 9 6 6 6
2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

2 1 ¯ ¯ 1 1 ¯

3 1 ¯ ¯ 1 1 ¯

4 1 ¯ ¯ 1 1 ¯

5 1 ¯ ¯ 1 1 ¯

6 1 1 1 1 1 1 1 1 1

7 2 1 1 2 2 1 0 0 0

8 2 ¯ 2¯ 2 1 0 0 0

9 2 ¯ 2 2¯ 1 0 0 0

As we mentioned earlier the full non-rigid group of p-Xylene is of the form

= 2 × , where 2 is isomorphic to the cyclic group of order 2 In fact if

= ( )( ) corresponds to the vertical operation of the molecule framework,

then 2 = { } where 2 = The character table of the cyclic group of

order 2 is

1 1 1

2 1 1

The group has 18 conjugacy classes and hence 18 irreducible characters

which may be written as the product = 1 2 1 9. The values of

on the whole of can be calculated according to the following rules:

( )( ) = ( )

( )( ) =

(
( ) if = 1

( ) if = 2

where is an arbitrary element of , and is an irreducible character of

where 1 9. In this way the whole character table of the group is

obtained.

4 Conclusion

We have developed the group theory and character table of the non-rigid p-

Xylene as a wreath product group and it consists of 36 operations divided into
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18 conjugacy classes and irreducible representations. The derived character

table would also be valuable in other applications such as in the context of

chemical applications of graph theory [29] and aromatic compounds [30]. In

the case of chemical applications of graph theory, applications can range from

enumeration of isomers to the automorphism groups of chemical graphs. In

other fields such as theory of quarks and generalized special unitary groups,

such wreath products and their double groups find important applications.
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