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Abstract 
In the vector space of DNA sequences over the Galois field of the 64 codons (GF (64)), 
recently published, deletions and insertions (indel) could not be analyzed. Now, in order to 
include these kinds of mutations, we have defined a new Galois field over the set of extended 
triplets X1X2X3 (C125), where Xi ∈ {O, A, C, G, U}. Taking the polynomial coefficients a0, a1, 
a2 ∈ GF (5) and the bijective function f : GF (5) → {O, A, C, G, U}, where f (0) = O, f (1) = 
A, f (2) = C, f (3) = G, f (4) = U,  bijection Ψ is induced such that Ψ(a0 + a1x + a2x2) = (f (a1), 
f (a2),  f (a0)) = (X1X2X3). The field (C125, +, •) allows the definition of a novel N-dimensional 
vector space (S) over the field GF (53) on the set of all 125N sequences of extended triplets in 
which all possible DNA sequence alignments of length N are included. Here the “classical 
gap” produced by alignment algorithm corresponds to the neutral element “O”. In the vector 
space S, all mutational events that take place in the molecular evolution process can be 
described by means of endomorphisms, automorphisms and translations. In particular, the 
homologous (generalized) recombination between two homologous DNA duplexes involving 
a reciprocal exchange of DNA sequences −e.g. between two chromosomes that carry the same 

                                                           
* Robersy Sánchez: robersy@uclv.edu.cu  

Corresponding address: Apartado postal 697. Santa Clara 1. CP 50100. Villa Clara. Cuba 



genetic loci− algebraically corresponds to the action of two automorphism pairs over two 
paired DNA duplexes.  
 

1. Introduction 
 

A new N-dimensional vector space of DNA sequences over the Galois field of the 64 

codons (GF (64)) was recently presented [SAN 05]. This vector space was derived taking into 

account the order of the bases proposed in the Boolean lattice of the four DNA bases [SAN 

04] [SAN 04a]. The isomorphism ϕ: B(X) → (Z2)2 between the Boolean lattices of the four 

DNA bases B(X) and ((Z2)2, ∨, ∧) (Z2 = {0,1}), and the biological importance of base 

positions in the codons were used to state a partial order in the codon set. As a result every 

codon was represented in the field GF (64) as a binary sextuplet.  

In this vector space, gene point mutations were considered linear transformations or 

translations of the wild type gene, however deletions and insertions (indel) could not be 

considered. Now, in order to include indel mutations, we have defined a new Galois field over 

the set of elements X1X2X3 (C125), where Xi ∈{O, A, C, G, U}. This set can be called the 

extended triplet set and the elements X1X2X3, the extended triplets. At present, the starting 

base order used here comes from the recently reported Z64-algebra of the genetic code [SAN 

05a]. In this Z64-algebra, the base order {A, C, G, U} was obtained by considering the genetic 

code as a non-dimensional code scale of amino acid interaction energies in proteins. 

Like in previous articles, we have kept in mind the biological importance of base position 

in the codon to state a codon order in the genetic code. The importance of the base position is 

suggested by the error frequency (accepted mutations) found in codons. Errors on the third 

base are more frequent than on the first base, and, in turn, these are more frequent than errors 

on the second base [WOE 85] [FRI 64] [PAR 89]. These positions, however, are very 

conservative with respect to changes in polarity of coded amino acids [ALF 69].  

The principal aim of this work is to show that all mutational events that take place in the 

molecular evolution process can be described by means of endomorphisms, automorphisms 

and translations of a novel N-dimensional vector space over the Galois field GF (53). The new 

vector space defined over the set of all 125N sequences of extended triplets includes all 

possible DNA sequence alignments of length N. Here the “classical gaps” produced by 

alignment algorithms correspond to the neutral element “O”.  
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2. Theoretical model 
 

The concepts of Galois fields and vector space over a finite field are the mathematical 

basic ideas used in our model. A mathematical background about these structures can be 

found in the references [RED 67] [WAE 70] [SAN 05]. 

Our starting point is the base order {A, C, G, U} derived from the Z64-algebra of the 

genetic code [SAN 05a]. In order to analyze indel mutations, this alphabet may be extended 

including the new symbol “O” to denote base omissions (gaps) in DNA sequence alignments. 

As a result, a new triplet set can be built with elements X1X2X3 where Xi ∈{O, A, C, G, U}. 

This set can be called the extended triplet set C125 and the elements X1X2X3, the extended 

triplets. 

Now, considering the order in the set {O, A, C, G, U} and the biological importance of the 

base position in the codon, it is possible to establish an order in the extended triplet set, i.e. 

from triplet OOO to UUU. First, in the triplets X1X2X3 keeping invariables bases X1 and X2, 

the third base X3 is consecutively changed until all possibilities are exhausted. Next, a similar 

variation is applied to the first base and finally to the second one, i.e. the variations are 

introduced from the less biologically relevant base to the most relevant base in the codon. 

Then, the ordered triplet set shown in the Table 1 was obtained.  

 

2.1. Nexus between the Galois Field Elements and the Set of Codons 
 

As one can see in Table 1, a bijection is suggested between the orders in the extended 

triplet set and the GF (53) elements. In particular, there is a bijective function f: GF (5) → {O, 

A, C, G, U}, between the elements of GF (5) and the letters Xk ∈{O, A, C, G, U}. This 

function is explicitly given by the equalities: 

 

f (0) = O, f (1) = A, f (2) = C, f (3) = G, f (4) = U 

 

Next, taking into account the biological importance of base positions in codons, we can 

state the bijective function Ψ : GF (53) → C125 between the extended triplet set and the 

polynomial representation of GF (53) elements: 

Ψ (a0 + a1x + a2x2) = (f (a1), f (a2), f (a0)) = X1X2 X3 
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Table 1.  Ordered set of extended triplets corresponding to the elements of GF (53). 
O A C G U a 

I II III I II III I II III I II III I II III 
 
 

0 000 OOO 25 001 OAO 50 002 OCO 75 003 OGO 100 004 OUO O
1 100 OOA 26 101 OAA 51 102 OCA 76 103 OGA 101 104 OUA A
2 200 OOC 27 201 OAC 52 202 OCC 77 203 OGC 102 204 OUC C 
3 300 OOG 28 301 OAG 53 302 OCG 78 303 OGG 103 304 OUG G

O 

4 400 OOU 29 401 OAU 54 402 OCU 79 403 OGU 104 404 OUU U
5 010 AOO 30 011 AAO 55 012 ACO 80 013 AGO 105 014 AUO O
6 110 AOA 31 111 AAA 56 112 ACA 81 113 AGA 106 114 AUA A
7 210 AOC 32 211 AAC 57 212 ACC 82 213 AGC 107 214 AUC C 
8 310 AOG 33 311 AAG 58 312 ACG 83 313 AGG 108 314 AUG G

A 

9 410 AOU 34 411 AAU 59 412 ACU 84 413 AGU 109 414 AUU U
10 020 COO 35 021 CAO 60 022 CCO 85 023 CGO 110 024 CUO O
11 120 COA 36 121 CAA 61 122 CCA 86 123 CGA 111 124 CUA A
12 220 COC 37 221 CAC 62 222 CCC 87 223 CGC 112 224 CUC C 
13 320 COG 38 321 CAG 63 322 CCG 88 323 CGG 113 324 CUG G

C 

14 420 COU 39 421 CAU 64 422 CCU 89 423 CGU 114 424 CUU U
15 030 GOO 40 031 GAO 65 032 GCO 90 033 GGO 115 034 GUO O
16 130 GOA 41 131 GAA 66 132 GCA 91 133 GGA 116 134 GUA A
17 230 GOC 42 231 GAC 67 232 GCC 92 233 GGC 117 234 GUC C 
18 330 GOG 43 331 GAG 68 332 GCG 93 333 GGG 118 334 GUG G

G 

19 430 GOU 44 431 GAU 69 432 GCU 94 433 GGU 119 434 GUU U
20 040 UOO 45 041 UAO 70 042 UCO 95 043 UGO 120 044 UUO O
21 140 UOA 46 141 UAA 71 142 UCA 96 143 UGA 121 144 UUA A
22 240 UOC 47 241 UAC 72 242 UCC 97 243 UGC 122 244 UUC C 
23 340 UOG 48 341 UAG 73 342 UCG 98 343 UGG 123 344 UUG G

U 

24 440 UOU 49 441 UAU 74 442 UCU 99 443 UGU 124 444 UUU U
a In this table it is possible to see the bijection between the triplet set and the set of 3-tuples in (Z5)3, which 

are also the coefficients of the polynomials in the GF (53). The corresponding integer number of every 3-tuples 
is also shown. I. Triplet index number. II. Polynomial coefficients. III. Extended triplets 

 

 

The polynomial coefficient a2 of the terms with a maximal degree a2x2 corresponds to the 

base in the second codon position. The coefficient of the term with degree 1 corresponds to 

the first codon position, and finally, the coefficient of the term of degree 0 is assigned to the 

third codon position. That is, the degree of the polynomial terms decreases according to the 

biological meaning of the corresponding base. Notice that coefficients ai correspond −for 

every triplet− to the integer digits of its 3-tuple vector representation in GF (53). The reverse 

of this integer digit sequence corresponds to the integer representation in base 5 of the triplet 

index number (see Table 1). So, as an example, the following bijections are given: 
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7 ↔ 012  ↔ 210 ↔ 2 +  x ↔ AOC 

44 ↔ 134  ↔ 431 ↔ 4 + 3x+ x2 ↔ GAU  

117  ↔ 432  ↔ 234 ↔ 2 + 3x+ 4x2 ↔ GUC 

 

In particular, we will use the bijective function f [s] such that f: s → GF (53), between the 

subset of the integer number s = {0, 1… 124} and the elements of GF (53). According to the 

above example f [7] = 2 + x, f [44] = 4 + 3 x + x2 and f [117] = 2 + 3 x + 4 x2. 

 

2.2. Vector Spaces over the Genetic Code Galois Field 
 

Now, by means of the function Ψ, a product operation can be define in set C125. Let Ψ -1 be 

the inverse function of Ψ  then, for all pair of codons X1Y1Z1∈ C125 and X2Y2Z2 ∈ C125, their 

product “•” will be: 

 

X1Y1Z1 • X2Y2Z2 = Ψ [Ψ -1(X1Y1Z1) Ψ -1(X2Y2Z2) mod g(x)] 

That is to say, the product between two triplets is obtained from the product of their 

corresponding polynomial module g(x), where g(x) is an irreducible polynomial of second 

degree over GF (5). Since there are 40 irreducible polynomials of second degree, 40 possible 

variants are available to choose the product between two extended triplets. It is not difficult to 

prove that the set of codons C125\{OOO} = C125
* with the operation product “•” is an Abelian 

group (C125
*, •). Likewise, a sum operation is defined by using the sum operation in GF (53). 

In this field, the sum is carried out by means of the polynomial sum in the usual fashion with 

polynomial coefficients reduced by module 5. 

Then, for all pairs of codons X1Y1Z1∈ C125 and X2Y2Z2 ∈ C125, their sum “+” will be: 

 

X1Y1Z1 + X2Y2Z2  = Ψ [Ψ-1(X1Y1Z1) + Ψ-1(X2Y2Z2) mod 5] 

 

As a result, the set of codons (C125, +) with operation “+” is an Abelian group and the set 

(C125, +, •) is a field isomorphic to GF(53). After that, the product of a codon XYZ ∈ C125 can 

be defined by the element αi ∈ GF (53). For all αi ∈ GF (53) and for all XYZ ∈ C125, this 

operation will be defined as: 
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αi (XYZ) = Ψ [αi Ψ -1(XYZ) mod 5]  

 

This operation is analogous to the multiplication rule of a vector by a scalar. So, (C125, +) 

can be considered a one-dimensional vector space over GF (53). The canonical base of this 

space is the triplet OOA. This structure can be called the vector space of extended triplets 

over GF (53). Such structure can be extended to the N-dimensional sequence space (S) 

consisting of the set of all 125N DNA alignment sequences with N extended triplets. 

Obviously, this set is isomorphic to the set of all N-tuples (x1,…,xN) where xi ∈ C125. Then, set 

S can be represented by all N-tuples (x1,…,xN) ∈ (C125)N. As a result, the N-dimensional vector 

space of S over GF (53) will be the direct sum 

 

S = (C125) N = C125 ⊕ C125 ⊕... ⊕ C125 (N times) 

 

The sum and product in S are carried out by components (Redéi, 1967). That is, for all α ∈ 

GF (53) and for all s, s’∈S we have: 

 

s + s’ = ( s1, s2,…, sN) + (s1’, s2’,…, sN’) = (s1 + s1’ + s2 + s2’,…, sN  + sN’) 

 

α s = α (s1, s2… sN) = (α s1, α s2… α sN) 

 

Next, it can be proved that (S, +) is an Abelian group with the N-tuple se = (OOO, 

OOO…OOO) as its neutral element. The canonical base of this space is the set of vectors: 

 

e1 = (OOA, OOO, … , OOO), e2 = ( OOO, OOA,…, OOO), . . . , eN = (OOO, OOO,..., OOA) 

 
 

As a result, every sequence s ∈ S has a unique representation: 

s = α1 e1 + α2 e1+…+ αN eN  (αi ∈ GF (53)) 

It is usually said that the N-tuple (α1, α2,..., αN) is the coordinate representation of s in the 

canonical bases {ei ∈ C125 , i = 1, 2,…, N} of S. 
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3. Results and Discussion 
 

Evidently, the Galois field of codons is not unique. Actually, we have obtained forty 

isomorphic Galois fields, each one with the product operation defined from one of the forty 

irreducible polynomials. It is convenient, however, to choose a more biologically significant 

Galois field.  

 

The most attractive irreducible polynomials are the primitive polynomials. If α is a root of 

a primitive polynomial then their powers αn (n = 1,… 124) are the elements of the 

multiplicative group of GF (125), i.e. α is a group generator. As it was shown in [SAN 05], a 

product operation in a Galois field generated by a primitive polynomial is carried out in a very 

simple way (see Table 2). Just twenty of the forty irreducible polynomials are primitives.  

 

In [SAN 05a] the sum operation is a manner to consecutively obtain all codons from the 

codon AAC in such a way that the genetic code will represent a non-dimensional code scale 

of amino acid interaction energy in proteins. Here, in order to consecutively obtain all codons 

from the codon AAC, primitive polynomials are chosen with root α = 2 + x + x2 

−corresponding to codon AAC. Only primitive polynomial g(x) = 2 + 3 x 2 + x 3 has the root 

α, in this way the product operation is unique.  

 

Notice that, in the vector space S, all 125N possible DNA alignment sequences of length N 

are represented. Here the “classical gap”, produced by alignment algorithms corresponds to 

the neutral element “O”. The neutral element appears from algebraic operations with codons. 

For instance, in the additive group (C125, +), the inverse of codons X1AX3 coding to 

hydrophilic amino acids are the codons (-X1)U(-X3) that in turn code to hydrophobic amino 

acids. The sum of a X1AX3 codon to a X1UX3 codon produces an extended triplet X1OX3. Then, 

this sum introduces, at least, one base deletion in the obtained extended triplet. In general, 

indel mutations found in the molecular evolution process can be described by means of 

algebraic operations in (C125, +, •), i.e. any deletion or insertion presented in any mutant DNA 

sequence is described by means of algebraic transformations of the corresponding wild type 

gene. 
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Table 2. Logarithm table of the elements of the GF(53) generated by the primitive polynomial 
g(x) = 2 + 3 x2 + x3. 
Element f[1] f[2] f[3] f[4] f[5] f[6] f[7] f[8] f[9] f[10] f[11] f[12] 

n (1)  0 93 31 62 25 4 42 105 102 118 74 97 
Element f[13] f[14] f[15] f[16] f[17] f[18] f[19] f[20] f[21] f[22] f[23] f[24] 

n 71 11 56 73 9 35 12 87 40 43 104 66 
Element f[25] f[26] f[27] f[28] f[29] f[30] f[31] f[32] f[33] f[34] f[35] f[36] 

n 50 23 30 28 106 29 14 1 20 86 67 8 
Element f[37] f[38] f[39] f[40] f[41] f[42] f[43] f[44] f[45] f[46] f[47] f[48] 

n 83 120 38 6 80 46 10 79 3 119 95 109 
Element f[49] f[50] f[51] f[52] f[53] f[54] f[55] f[56] f[57] f[58] f[59] f[60] 

n 84 19 121 116 75 123 99 103 49 48 15 122 
Element f[61] f[62] f[63] f[64] f[65] f[66] f[67] f[68] f[69] f[70] f[71] f[72] 

n 113 107 55 94 96 78 88 53 64 36 89 101 
Element f[73] f[74] f[75] f[76] f[77] f[78] f[79] f[80] f[81] f[82] f[83] f[84] 

n 7 52 81 61 13 54 59 98 114 69 39 27 
Element f[85] f[86] f[87] f[88] f[89] f[90] f[91] f[92] f[93] f[94] f[95] f[96] 

n 34 2 115 26 16 60 32 117 45 51 37 77 
Element f[97] f[98] f[99] F[100] f[101] f[102] f[103] F[104] f[105] f[106] f[107] f[108] 

n 110 111 41 112 44 90 92 85 65 22 47 33 
Element f[109] f[110] f[111] F[112] f[113] f[114] f[115] F[116] f[117] f[118] f[119] f[120] 

n 57 68 17 72 108 18 5 100 58 21 70 91 
Element f[121] f[122] f[123] F[124]        

n 24 82 63 76         
1Here, codon AAC corresponds to the primitive root α = 2 + x + x2 , i.e.  f[s] = (2 + x + x2)n mod g(x) and n = 
logarithm base α of f[s] = logα f[s]. The properties of this logarithm function are alike to the classical definition 
in arithmetic: 

i. logα (f[x]*f[y]) = (logα f[x] + logα f[y]) mod 124 = (nx + ny) mod 124 
ii. logα (f[x]/f[y]) = (logα f[x] - logα f[y]) mod 124 = (nx - ny) mod 124 

iii. logα f[x]m = m logα f[x] mod 124 
 

3.1. Transformations of the DNA Extended Sequences  
 

Gene mutations can be considered as linear transformations of the wild type gene in the N-

dimensional vector space of DNA sequences. These linear transformations are 

endomorphisms and automorphisms. In particular, there are some remarkable automorphisms. 

Automorphisms are one-one transformations on the group (C125)N,  such that, for all extended 

DNA sequences α and β in (C125)N and a∈GF (124), we have: 

 

f (a⋅ (α+β))= a⋅f (α) + a⋅f (β) 
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That is, automorphisms forecast mutation reversions, and if the molecular evolution 

process went by through automorphisms then, the observed current DNA sequences would 

not depend on the mutational pathway followed by the ancestral DNA sequences. In addition, 

the set of all automorphisms is a group.  

For every endomorphism (or automorphism) f: (C125)N → (C125)N, there is a N×N matrix: 

 
















=

NNN

N

aa

aa
A

...
...

...

1

111

 

 

where the rows are the image vectors f(ei) and i = 1, 2,…N. This matrix will be called the 

representing matrix of the endomorphism f with respect to the canonical base ei {i = 1,2…,N}.  

As in [SAN 05], single point mutations can be considered local endomorphisms. An 

endomorphism f: S → S will be called local endomorphism if there exists k ∈ {1, 2,…, N} and 

aik ∈ GF (125) (i = 1, 2,…,N) such that: 

 

f(ei)  = aikek + ei, for i≠k,  

and 

f(ek)  =  akkek 

This means that:  

)...,,...,(),...,(
1

2121 n

n

i
ikin xaxxxxxxf ∑

=

=  

It is evident that a local endomorphism will be a local automorphism if, and only if, the 

element akk is different from cero. The local endomorphism f will be considered diagonal if 

f(ek) = (0,…,akk,…,0) = akkek and f(ei) = ei, for i ≠ k. This means that: 

 

f(x1, x2,…xN) = (x1, x2,…akk xk,…xN) 

 

The previous concepts allow us to present the following theorem: 
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 Theorem 1. For every single point mutation changing the codon αi of the wild type gene α = 

(α1, α2,…, αi,…, αN) (α different from the null vector) by the codon βi of the mutant gene β = 

(α1, α2,…,βI,…, αN ), there is: 

i. At least a local endomorphism f such that f(α) = β. 

ii. At least a local automorphism f such that f(α) = β. 

iii. A unique diagonal automorphism f such that f(α) = β if, and only if, the codons αi and 

βi of the wild type and mutant genes, respectively, are different of OOO. 

 

Proof: Since genes are included in the vector space over a Galois Field, this proves is 

similar to those reported in [SAN 05]. � 

 

According to the last theorem, any point mutation presented in the vector space (C125)N of 

all DNA alignment sequences of length N sequences are described by means of 

automorphisms of the corresponding wild type gene. Specifically, the most frequent 

mutations can be described by means of diagonal automorphisms [see SAN 05]. For example, 

the sequence α=UAUAUGAGUGAC can be considered. Let us suppose that, with successive 

mutations, this sequence becomes the sequence β = UGUAUAAGUOAG. According to Table 

1 these sequences correspond in the vector space (C125)4 to vectors α = (f [24], f [108], f [84], 

f [42]) and β = (f [99], f [106], f [84], f [28]). Hence, according to the Theorem, there exists a 

diagonal endomorphism f, so that β = f(α). Our Galois field is generated by the primitive 

polynomial g(x) = 2 + 3 x 2 + x 3. In this field, the root α = 2 + x + x2 −corresponding to codon 

AAC− is a generator of the multiplicative group. Next, by means of Table 2 we can compute: 

 



















=

]29[000
0]1[00
00]61[0
000]55[

])42[],84[],108[],24[(])28[],84[],106[],99[(

f
f

f
f

ffffffff  

 

On the other hand, mutations can be considered translations of the wild type gene in the N-

dimensional vector space of the DNA extended sequences. In the Abelian group (C125, +), for 

two extended triplets a, b ∈ (C125, +), equation a+ x = b always has a solution. Then, for all 
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pair of aligned sequences α, β ∈ (C125, +)N there is always a sequence κ ∈ (C125, +)N so that α 

+ κ = β. That is, there exists translation T: α → β. Translation Tk with constant k acting on 

triplet x will be represented as:  

Tk (x) = x + k 

Next, given applications:W , the composition  of 

translations g and f is defined by

YX gf →→

(())(( xfgxfg

YWfg →:o

))=o . It is well known that the set of all 

translations with composition operations is a group G. 

 

3.2. Stabilizer subgroup of the wild type conserved regions 
 

It is well known that in a wild type ORF, normally, not all codon sequences are susceptible 

to experimental mutations. Usually, conserved variables and hypervariables regions are found 

in genes. A typical case is the antibody where heavy chain variable domain (VH) and a light 

chain variable domain (VL) are found. Within VL and VH, there are "hot spots" of variability. 

These hot spots of variability were termed hypervariable regions. The hypervariable regions 

of the heavy and light chains together form the antigen binding site of the immunoglobulin 

molecule. Next, let P be the subset of mutant DNA sequences conserving the same regions 

from a wild type DNA coding sequence α0 ∈ (C125)N. Then, according to the group theory 

[RED 67], the set St (α0) of automorphisms f ∈ G that preserves these regions is a subgroup 

of G, that is: 

  

St (α0) = {f ∈ G, such that: f (α0) = β ∈ P} ⊂ G 

 

This subgroup could be called the stabilizer subgroup in G of the conserved regions of wild 

type α0. Notice that the stabilizer subgroup St (α0) is connected with the homologous 

recombination that involves a reciprocal exchange of DNA sequences −e.g. between two 

chromosomes that carry the same genetic loci. The homologous recombination algebraically 

corresponds to the action of two automorphism pairs that could be included in the St (α0) (see 

Fig. 1).  
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α  f(α)

 g(α')α' 
f, g Homologous DNA 

duplexes pair 
Reciprocal 
recombinants 

f -1(β) 
f -1, g -1 

β 

g -1(β')β' 
 

Figure 1. The homologous (generalized) recombination between two homologous DNA 
duplexes algebraically corresponds to the action of two automorphism pairs over two paired 
DNA duplexes. The two automorphism pairs express a reciprocal exchange of DNA 
sequences and could be included in the subgroup of automorphism St (α0). 

 

For instance, the pair f and f -1 acts over the homologous strands α and β to produce the 

homologous reciprocal recombinants f(α) and f -1(β). Likewise, the pair g and g-1 acts over the 

homologous strands α' and β' to produce the homologous reciprocal recombinants g(α') and g-

1(β'). As a result, two reciprocal recombinant DNA sequences are generated. In particular, if 

homologous recombination results in an exact exchange of genetic information, then the 

automorphism pairs are diagonal automorphisms. Since evolution could not happen without 

genetic recombination, this algebraic description is biologically relevant. If it were not 

possible to exchange material between (homologous) chromosomes, the content of each 

individual chromosome would be irretrievably fixed in its particular alleles. When mutations 

occurred, it would not be possible to separate favourable and unfavourable changes [LEW 

04]. Hence, the study of the automorphism subgroup involved in this transformation −the 

homologous recombination−  could reveal new rules of molecular evolution process so far 

unknown. 

 

3.3. Finite Abelian group of DNA sequences  
 

The multiple sequence alignment is the corner stone of Bioinformatic. Now, some subset 

of DNA alignment sequences with length N will be analysed. By means of multiple sequence 

alignments, it is possible to find in the DNA genomic sequences small subregions in which 

there are not introduced gaps.  
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Figure 2. An example of alignment group: . 
Building blocks correspond to ungapped sub-sequences (power of Z

6
5

12
2

6
5

15
2

12
5 )()()()()( ZZZZZS ⊕⊕⊕⊕=

2).  
 

 

For instance, if  multiple sequence alignments of open reading frames (ORF) from gene 

super families are observed, small blocks of ungaped aligned sequences from different genes 

can be detected. These small blocks of codon sequences may be called “building blocks” (see 

Fig 2). Theoretically, a building block will be a set of aligned sequences X1 X2…XN where Xi 

∈ {A, C, G, U} (i = 1…N) with some evolutionary relationship between them. The building 

blocks with length N can be described by vector spaces over GF (64); in particular, these can 

be described by the Abelian group ((C64)N, +) of the N-dimensional vector space of  DNA 

sequences. Whereas regions with gaps can be described by means of the group ((C125)N, +).  

 

Notice that groups (C64, +) and (C125, +) are isomorphic to the p-groups (p a prime number) 

(Z2)3
 (a 2-group) and (Z5)3

 (a 5-group) respectively. It is well known that every Abelian group 

can be written as a direct sum of p-groups [DUB 63]. Actually, in the set of all alignment 

sequences with length N, several finite Abelian groups over the subsets of all 

possible alignment sequences (N = nqp nnnmmm ++++++ ...... 2121 52 1+…+np+m1+…+mq) can be defined. 

An example of these is shown in Fig 1. These groups may be called “alignment groups”.  

 

If a finite group G is written as a direct sum G = G1 ⊕ G2 ⊕…⊕ Gs, then endomorphism 

ring End(G) is isomorphic to the ring of matrices (Aij), where Aij∈Hom(Gi,Gj), with the usual 

matrix operations. In our case the endomorphism that transform the DNA alignment sequence 

α into β (α, β ∈ G) is represented by a matrix with only non-cero elements in the principal 

diagonal. These diagonal elements are sub-matrices Ai i∈ End(Gi) (o Aii ∈ Aut(Gi)). 
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Finally, since the canonical decomposition of an Abelian group G into p-groups is unique 

up to isomorphism [DUB 63], it is possible to characterize alignment groups for a fixed 

sequence length N. That is to say, two alignment groups can have different p-group 

decompositions and simultaneously be isomorphic by holding the same canonical 

decomposition into p-groups. This algebraic description biologically suggests that the same 

biological architectural principium underlies the alignment groups with the same canonical 

decomposition into p-groups. Here the basic construction materials come from building 

blocks. It could also corresponds to the fact that in the molecular evolution process, the new 

genetic information frequently comes into being from the rearrangements of existing genetic 

material in the chromosomes. 

 

4. Conclusions 
 

In this paper, the starting point to analyze deletions and mutations in DNA sequences is the 

extended triplet set with elements X1X2X3, where Xi∈{O, A, C, G, U}. Taking into account the 

order in the set {O, A, C, G, U} and the biological importance of base positions in the codon, 

it is possible to establish a bijection between the extended triplet set and the Galois field 

GF(53). This bijection allows us to define the Galois field of the extended triplet set. Over this 

new field, a new N-dimensional vector space is defined in the set of all possible DNA 

alignment sequences where gene mutations can be considered linear transformations or 

translations of the wild type gene.  

 

For every single point mutation in the wild type gene, there is at least an automorphism 

that transforms the wild type in the mutant gene. So, automorphism- group could be a useful 

tool to study the mutational pathway followed by genes in the N-dimensional vector space of 

all possible DNA alignment sequences. 

 

Besides this, the set St (α0) of automorphisms that conserve the same regions from a wild 

type DNA coding sequence α0 ∈ (C125)N is a subgroup connected with the homologous 

recombination that involves a reciprocal exchange of DNA sequences −e.g. between two 

chromosomes that carry the same genetic loci.  The homologous recombination algebraically 

corresponds to the action of two automorphism pairs that could be included in the St (α0) 
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By means of multiple sequence alignments, it is possible to define several finite Abelian 

groups −alignment groups− over the subsets of all possible alignment 

sequences (N = n

qp nnnmmm ++++++ ...... 2121 52

1+…+np+m1+…+mq). Two alignment groups can have different p-group 

decompositions and simultaneously be isomorphic holding the same canonical decomposition 

into p-groups. For alignment groups with the same canonical p-group, decompositions could 

underlie the same biological architectural principium. 

This algebraic structure of DNA sequences over the extended Galois field of the genetic 

code is an attempt to formalize the biological interpretation of the multiple sequence 

alignment results, the corner stone of Bioinformatic. Our first approach leads us to the 

concept of building blocks in DNA sequences that could be a key to help us understand how 

DNA genomic sequences are assembled.  

     

Acknowledgments 
This research was supported within the framework of a VLIR-IUS Collaboration 

Programme. 

 

References 
[ALF 69] Alf-Steinberger, C., 1969. The genetic code and error transmission. Proc. Natl. 

Acad. Sci. USA., 64, 584-591 

[DUB 63] Dubreil, P., Dubreil-Jacotin, M. L. 1963. Lecciones de álgebra moderna. Editorial 

Reverté. 

[FRI 64] Friedman, S.M. Weinstein, I..B. 1964. Lack of fidelity in the translation of 

ribopolynucleotides. Proc. Natl. Acad. Sci. USA, 52, 988-996. 

[LEW 04] Lewin, B. 2004. Genes VIII. Oxford University Press.  

[PAR 89] Parker, J. 1989. Errors and alternatives in reading the universal genetic code. 

Microbiol. Rev., 53, 273-298. 

[RED 67] Redéi, L. 1967. Algebra, Vol.1. Akadémiai Kiadó., Budapest.  

[SAN 04] Sánchez, R., Grau, R. and Morgado, E. 2004. The genetic code Boolean lattice. 

MATCH Commun. Math. Comput. Chem., 52, 29-46. 

[SAN 04a] Sánchez, R., Grau, R., Morgado, E. Grau. 2005. A genetic code Boolean structure. 

I. The meaning of Boolean deductions. Bull Math Biol, 67, 1–14. 

- 19 -



[SAN 05] Sánchez, R., Grau, R., Morgado, E. 2005. A new DNA sequences vector space on a 

genetic code Galois field. MATCH Commun. Math. Comput. Chem. 54, 3-28.  

[SAN 05a] Sánchez, R., Grau, R., Morgado, E. 2005. Gene algebra from a genetic code 

algebraic structure. J. Math. Biol. 51, 431 - 457. 

[WAE 70] van der Waerden, B.L.1970. Algebra, Vol. 1. Chapter V. Ungar, New York.  

[WOE 85] Woese, C.R. 1985. On the evolution of the genetic code. Proc. Natl. Acad. Sci. 

USA., 54, 1546-1552.  

 

- 20 -


