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Abstract. A 3D graphical representation of DNA sequence using a system of three carte-
sian coordinates has been derived for mathematical denotation of DNA sequence. The
three-dimensional graphical representation also avoids loss of information accompanying
alternative 2D and 3D representation in which the curve standing for DNA sequence
overlaps and intersects itself, and resolves sequences’ degeneracy. The examination of
similarities/dissimilarities among the DNA sequences belonging to eleven species illus-
trates the utility of our approach. The elements of the similarity matrix are used to
construct phylogenic tree.

1 Introduction

Mathematical analysis of the large volume genomic DNA sequence data is one of the
challenges for bio-scientists. Graphical representation of DNA sequence provides a simple
way of viewing, sorting and comparing various gene structures [1-16]. A.Nandy [12] present
a graphic representation by assigning A (adenine),G (guanine),T (thymine), and C (cyto-
sine) to the four direction,(-x),(+x),(-y),(+y), respectively. Such a representation of DNA
is accompanied by (1) some loos of visual information associated with crossing and overlap-
ping of the resulting curve by itself; (2)an arbitrary decision with respect to the choice of
the direction for the four bases. In recent years several authors outlined different graphical
representation of DNA sequences based on 2-D, 3-D or 4D [1-8,13-15]. But both 2-D and 3-D
graphical representation are accompanied with some loss of information due to overlapping
and crossing of the curve representing DNA with itself. In mathematical terms, the overlap-
ping and crossing of the curve forms repetitive closed loops or circuits in the DNA graph.
M.Randic’s 3D [7] or novel 2D [8] graphical representation and B.Liao’s 3-D [2,4] or 2D [3]
graphic representation avoid the limitations associated with crossing and overlapping, but
the representations are not unique.

Here, we present a new three-dimensional graphical representation of DNA sequences,
which has no circuit or degeneracy, so that the correspondence between DNA sequences and

∗Corresponding author E-mail: dragonbw@163.com



DNA graphs is one to one. The presented graphical representation is used to construct
phylogenic tree.

2 3-D graphical representation of DNA sequences and its
properties

We construct a map between the bases of DNA sequences and plots in 3D space,
then we will obtain a 3D representation of the corresponding DNA sequences. In 3D space
points, vectors and directions have three components, and the unit vectors representing four
nucleotides A,G,C, and T are as follows:
(m,m, m) −→ A, (

√
n,
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n,m) −→ G, (
√

n,m,
√

n) −→ C, (m,
√

n,
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n) −→ T

where m is a real number and m 6= √
n, n is a positive real number but not a perfect square

number. So that we will reduce a DNA sequence into a series of nodes P0, P1, P2, . . . , PN ,
whose coordinates xi, yi, zi(i = 0, 1, 2, . . . , N , where N is the length of the DNA sequence
being studied)satisfy 
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where ai, ci, gi and ti are the cumulative occurrence numbers of A, C, G and T, respectively,
in the subsequence from the 1st base to the i-th base in the sequence. We define a0 = c0 =
g0 = t0 = 0.
Property 1 For a given DNA sequence there is a unique 3D representation corresponding
to it.
Proof:Let (xi, yi, zi) be the coordinates of the i-th base of DNA sequence, then we have
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i.e. 
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(1)

Obviously, xi, yi and zi are irrational numbers of form sm+k
√

n, where s and k are integers.
We suppose

xi = sxm + kx

√
n

yi = sym + ky

√
n

yi = szm + kz

√
n

then we have 



ai + ti = sx

gi + ci = kx

ai + ci = sy

gi + ti = ky

ai + gi = sz

ci + ti = kz

(2)
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So, for given x-projection, y-projection and z-projection of any point P = (x, y, z) on the
sequence, after uniquely determining sx, kx, sy, ky, sz, kz from x, y and z, the number ap, gp, cp

and tp of A,G,C and T from the beginning of the sequence to the point P can be found by
solving linear system (2). By successive x-projection, y-projection and z-projection of points
on the sequence, we can recover the original DNA sequence uniquely from the DNA graph.

The vector pointing to the point Pi from the origin O is denoted by ri. The component
of ri,i.e. xi, yi and zi are calculated by Eq.(1). Let ∆ri = ri− ri−1, then we have Property 2.
Property 2 For any i = 1, 2, . . . , N , where N is the length of the studied DNA sequence,
the vector ∆ri has only four possible direction. Furthermore, the length of ∆ri,i.e.,|∆ri|, is
always equal to

√
m2 + 2n or

√
3m2, for any i = 1, 2, . . . , N .

Proof:Actually, the components of ∆ri,i.e., ∆xi, ∆yi and ∆zi can be calculated for each
possible residue (A,G,C and T) at the i-th position of the DNA sequence by using Eq.(1).
For example, when the i-th residue is A, we find ∆xi = m, ∆yi = m and ∆zi = m. This result
is independent of the conformation state of the (i-1)-th residue. The two numbers (m,m,m)
are called the direction of ∆ri. The direction number and the length of ∆ri for each possible
residue type at the i-th position are summarized as follows.

Table 1: Four possible direction

∆xi ∆yi ∆zi |∆ri|
A m m m

√
3m2
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n
√
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n m
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T m
√

n
√

n
√

m2 + 2n

Property 3 There is no circuit or degeneracy in our three-dimensional graphical represen-
tation.
Proof: We assume that: (1) the number of nucleotide forming a circuit is l; (2) the number
of A,G,C and T in a circuit is a′, g′, c′ and t′, respectively. So a′ + g′ + c′ + t′ = l. Because
a′A, g′G, c′C and t′T form a circuit, the following equation holds:

ai(m,m, m) + gi(
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√
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√
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n) = (0, 0, 0)

i.e. 
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√
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√
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√
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√
n = 0

a′m + g′m + c′
√
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√
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(3)

Clearly Eq.(3) hold if , and only if a′ = g′ = c′ = t′ = 0. Therefore, l = 0, which means no
circuit exists in this graphical representation.
Property 4 The 3D representation possesses the reflection symmetry.
Proof:usually the sequence is expressed in the order from 5′ to 3′. Suppose that the 3D
representation for DNA sequence is described by (xi, yi, zi), i = 0, 1, 2, . . . , N . Suppose again
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that the 3D representation for the reverse sequence, i.e, the same sequence but from 3′ to 5′

is described by (x̂i, ŷi, ẑi), we find




x̂i = xN − xN−i

ŷi = yN − yN−i

ẑi = zN − zN−i

(4)

3 Application

3.1 Properties of mutations

Since all morphological and physiological characters of organisms are ultimately con-
trolled by the genetic information carried by DNA, any mutational changes in these characters
are due to some change in DNA molecules. There are four basic types of changes in DNA.
They are substitution of a nucleotide for another nucleotide, deletion of nucleotides, insertion
of nucleotides, and inversion of nucleotides. We shall consider the properties of mutations
based on this 3D graphical representation of DNA sequence. We assume the mutation ap-
pear on the i-th base. Let (xi, yi, zi), (x′i, y

′
i, z

′
i) be the coordinates of the primal base and

mutational base, respectively. ∆xi = x′i−xi,∆yi = y′i− yi,∆zi = z′i− zi. The three numbers
(∆xi, ∆yi,∆zi) are called the direction of the mutation. In table 2, we list the properties of
mutations.

3.2 Similarity analysis

For any sequence, we have a set of points (xi, yi, zi), i = 1, 2, 3, . . . , N , where N is the length
of the sequence. The coordinates of the geometrical center of the points, denoted by x0, y0

and z0, may be calculated as follows:

x0 =
1
N

ΣN
i=1xi, y

0 =
1
N

ΣN
i=1yi, z

0 =
1
N

ΣN
i=1zi (5)

The element of covariance matrix CM of the points are defined:




CMxx = 1
N

∑N
1 (xi − x0)(xi − x0)

CMxy = 1
N

∑N
1 (xi − x0)(yi − y0) = CMyx

CMxz = 1
N

∑N
1 (xi − x0)(zi − z0) = CMzx

CMyy = 1
N

∑N
1 (yi − y0)(yi − y0)

CMyz = 1
N

∑N
1 (yi − y0)(zi − z0) = CMzy

CMzz = 1
N

∑N
1 (zi − z0)(zi − z0)

(6)

The above nine numbers give a quantitative description of a set of point (xi, yi, zi), i =
1, 2, . . . , N , scattering in a three-dimensional space. The eigenvalues of CM are applied to
make analysis of similarity.

As an example, we assume m = 1
2 , n = 3

4 , then we compute the similarities among eleven
mitochondrial sequences belonging to different species and present their phylogenic tree. In
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Table 2: Properties of mutations

∆xi ∆yi ∆zi direction
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Ω → − corresponds a deletion, while − → Ω corresponds a insertion, Ω ∈ {A,C, G, T}

Table 3: The (x0, y0, z0) and eigenvalues for the mitochondrial sequences belonging to 11
species

(x0, y0, z0) eigenvalues(1.0e+004)

Chi (295.9726,285.3599,322.3035) 0.0001, 0.0003, 8.9809

Gor (297.1336,284.6920,320.7827) 0.0001, 0.0004, 8.9702

Hyl (299.4339,285.1499,319.8300) 0.0001, 0.0003, 8.9084

L. cat (287.7326,286.8672,315.9325) 0.0001, 0.0003, 8.7160

M. fas (294.7454,288.2121,321.2512) 0.0001, 0.0002, 8.8982

M. fus (294.1449,285.6169,320.6446) 0, 0.0002, 8.8555

M. mul (294.1523,286.9625,320.5563) 0, 0.0003, 8.8654

M. syl (293.0922,286.3371,320.3946) 0.0001, 0.0005, 8.7998

Pon (299.7722,279.9737,321.3893) 0, 0.0005, 8.9272

S. sci (288.3447,290.4896,313.3262) 0.0001, 0.0003, 8.7007

T. syr (288.3530,288.9300,315.3849) 0.0001, 0.0006, 8.6510

Chi: Chimpanzee; Gor; Gorilla; Hyl: Hylobates; L.cat: Lemur catta; M.fas: Macaca fascicu-
laris; M.fus: Macaca fuscata; M.mul: Macaca mulatta; M.syl: Macaca sylvanus; Pon: Pongo;
S.sci: Saimiri sciureus ; T.syr: Tarsius syrichta.
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table 3, we list the (x0, y0, z0) belonging to 11 species. In Table 4, we show the similarity
matrix.

In order to facilitate the quantitative comparison of different species in terms of their col-
lective parameters, we introduce a distance scale and an angle scale as defined below. Suppose
that there are two species i′ and j′, the parameters are λi′

1 , λi′
2 , λi′

3 , λj′
1 , λj′

2 , λj′
3 , respectively,

where λi′
1 , λi′

2 , λi′
3 are the three eigenvalues of matrix CMi′ corresponding to species i′. We will

illustrate the use of the 3-D quantitative characterization of DNA sequence with an examina-
tion of similarities/dissimilarties among the eleven species. We construct a three-component
vector consisting of the three eigenvalues of matrix CM. The underlying assumption is that if
two vectors point to a similar direction in the three-dimensional space, and then the two DNA
sequences represented by the three-component vectors are similar. The similarities among
such vectors can be computed by calculating the Euclidean distance between the end point
of the vectors. The distance di′j′ between the two vectors is:

di′j′ =
√

(λi′
1 − λj′

1 )2 + (λi′
2 − λj′

2 )2 + (λi′
3 − λj′

3 )2 (7)

The smaller Euclidean distance, the more similar are the DNA sequences. That is to say,
the distances between evolutionary closely related species are smaller, while those between
evolutionary disparate species are larger.

Table 4: The similarity/dissimilarity matrix(1.0e+004) for the coding sequences based on the Euclidean distances

between the end points of the 3-component vectors of the eigenvalues of the CM matrices

Species Chi Gor Hyl L. cat M. fas M. fus M. mul M. syl Pon S. sci T. syr

Chi 0 0.0107 0.0725 0.2649 0.0827 0.1254 0.1155 0.1811 0.0537 0.2802 0.3299

Gor 0 0.0618 0.2542 0.0720 0.1147 0.1048 0.1704 0.0430 0.2695 0.3192

Hyl 0 0.1924 0.0102 0.0529 0.0430 0.1086 0.0188 0.2077 0.2574

L. cat 0 0.1822 0.1395 0.1494 0.0838 0.2112 0.0153 0.0650

M. fas 0 0.0427 0.0328 0.0984 0.0290 0.1975 0.2472

M. fus 0 0.0099 0.0557 0.0717 0.1548 0.2045

M. mul 0 0.0656 0.0618 0.1647 0.2144

M. syl 0 0.1274 0.0991 0.1488

Pon 0 0.2265 0.2762

S. sci 0 0.0497

T. syr 0

Observing Table 4, we find that the more similar species pairs are Chimpanzee ∼ Gorilla

and Macaca fascicularis ∼ Macaca mulatta, while Lemur catta and Tarsius syrichta are
dissimilar to others. Therefore, the classification of species provided that the numbers of
their coding sequences are sufficiently large, can be generally performed in terms of the two
matrices as listed in Table 3. In other words, with the continuous increase in the number
of coding sequences for various species, it is possible to perform the cluster analysis by the
distance matrices.
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The elements of the similarity matrix are used to construct phylogenic tree using the
maximum parsimony method. In figure 1, we show the phylogenic tree belonging to eleven
species.

Figure 1: phylogenic tree

4 Conclusion

High complexity and degeneracy are major problems in previous DNA sequence repre-
sentations. Our representation provides a direct plotting method to denote DNA sequences
without degeneracy. From the DNA graph, the A,T,G and C usage as well as the origi-
nal DNA sequence can be recaptured mathematically without loss of textual information.
The current three-dimensional graphical representation of DNA sequences provides differ-
ent approaches for both computational scientists and molecular biologists to analysis DNA
sequences efficiently with different parameter n and m.
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