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Abstract : Discretization of the non-linear Poisson-Boltzmann Equation equation results in a
system of non-linear algebraic equations with symmetric Jacobian. The Newton algorithm is the
most useful tool for solving non-linear equations. It consists of solving a series of linear system of
equations (Jacobian system). In this article, we are adaptively defining tolerance of the Jacobian
system. We prove the convergence of our method. Numerical experiment shows that compared to
the traditional method our approach can save a substantial amount of computational work. The
presented algorithm can be easily incorporated into an existing molecular dynamics simulator.

1 Introduction

There has been work done on numerically solving nonlinear elliptic partial differential
equations (PDEs). For example, Schwarz alternating methods [8, and references therein],
multigrid methods [9; 12], pre-conditioned FFT [11]. Lets consider the following non-
linear elliptic problem

− div (ε grad p) + f(p, x, y) = b(x, y) in Ω, (1)

p(x, y) = pD on ∂ΩD, (2)

g(x, y) = −ε grad p on ∂ΩN . (3)

The above problem is the Poisson-Boltzmann equation arising in molecular bio-physics.
See the References [2; 10; 12; 13; 14; 15; 16; 20; 21]. Here Ω is a polyhedral domain in Rd



(d = 2, 3), the source function b is assumed to be in L2(Ω) and the medium property ε
is uniformly positive. ε can be discontinuous in space. In the equations (2) and (3), ∂ΩD

and ∂ΩN represents Dirichlet and Neumann part of the boundary. f(p, x, y) represents
nonlinear part of the equation. In biophysics literature the medium properties ε is referred
as the permitivity [12; 13; 14; 15; 16; 20]. It takes the values of the appropriate dielectric
constants in the different regions of the domain Ω. The equation (1), (2) and (3) models
a wide variety of processes with practical applications. For example, pattern formation
in biology, viscous fluid flow phenomena, chemical reactions, biomolecule electrostatics,
crystal growth, etc. The Poisson-Boltzmann equation (PBE) one of the most popular
continuum models for describing electrostatic interactions between molecular solutes in
salty, aqueous media. The importance of the equation (1) for modelling biomolecules is
well established (see [2; 10; 11; 12, and references therein]). The continuum electrostatics
plays an important role in several areas of biomolecular simulation. For example, diffu-
sional processes to determine ligand-protein and protein-protein binding kinetics, implicit
solvent molecular dynamics of biomolecules, solvation and binding energy calculations
to determine ligand-protein and protein-protein equilibrium binding constants, aid in ra-
tional drug design, and biomolecular titration studies. Equation (1) is solved by many
molecular dynamics simulators [16; 21; 22; 23] for studying electorstatic interactions.

There are various methods for discretizing the nonlinear equation (1). For example,
methods of Finite Elements, Finite Volumes and Finite Differences. Generally the equa-
tion (1) is discretized by the Finite Volume Method (see [16]). We are discretizing the
equation (1) by the Finite Volume Method [1; 3; 7; 18] on quadrilateral mesh. For the
convergence of the Finite Volume Method for non-linear partial differential equations,
we refer to the References [3; 19, and references therein]. Discretization of the equation
(1) results in a system of non-linear algebraic equations. In this research work, we are
interested in computationally efficient solution of the formed non-linear system. A Finite
Volume discretization of the nonlinear elliptic equation results in a system of non-linear
equations

F(p) := A1 ph + A2(ph)− bh = 0. (4)

Here F = [F1(p), F2(p), · · · , Fn(p)]T , A1 is the discrete representation of the symmetric
continuous operator −div (ε grad) and A2 is the discrete representation of the non-linear
operator f(p, x, y). For a Finite Volume Method, the degrees of freedom (DOF) are
associated with the cell centers. Each degree of freedom or each cell in a mesh result
in a discrete equation. Thus discretization of the equation (1) on a quadrilateral mesh
consisting of n degrees of freedom results in n× 1 nonlinear system of equations.

An outline of the article is as follows. In the Section 2, Newton-Krylov and Quasi-
Newton-Krylov algorithms are presented for solving non-linear system arising from the
discretization of the nonlinear elliptic problems. Section 3 presents a convergence analysis
of the Quasi-Newton algorithm. Section 4 reports numerical work and Finally Section 5
concludes the article.
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2 Newton-Krylov Algorithm

Linearizing the non-linear operator (4) by the Taylor series around some initial guess p0

F(p) = F(p0) + J(p0) ∆p, (5)

where J is the Jacobian matrix and J(p0) is the value of the Jacobian at the initial guess
p0. ∆p is the difference between the vectors p and p0; i.e., ∆p = p − p0. J is a n × n
(n is the degree of freedom) linear system and is given as

J :=

(
∂Fi

∂pj

)
=




∂F1

∂p1

∂F1

∂F2

· · · ∂F1

∂pn
∂F2

∂p1

∂F2

∂F2

· · · ∂F2

∂pn
...

...
. . .

...
∂Fn

∂p1

∂Fn

∂p2

· · · ∂Fn

∂pn




,

Finite Volume discretization result in a symmetric Jacobian matrix. In the Section 3, we
use the symmetric nature of the Jacobian for proving convergence of the Newton method.
Setting equation (5) equal to zero reads

J(p0) ∆p = −F(p0), (6)

The above linear system is the basis for the Newton’s algorithm for finding the zeros of
the non-linear vector function F(p). A Newton’s iteration for solving non-linear system
(4) is

J(pk) ∆pk = −F(pk), (7)

pk+1 = pk + ∆pk k = 0, 1, 2, . . . , m. (8)

A Newton-Krylov Algorithm is given by the Algorithm 1. In the Quasi-Newton method,

Algorithm 1: Newton-Krylov Algorithm

Mesh the domain;
Form the non-linear system : F(p);
Set the iteration counter : k = 0 ;
while k ≤ maxiter or ‖∆p‖L2 ≤ tol or ‖F(p)‖L2 ≤ tol do

Solve the discrete system : J(pk) ∆p = −F(pk) with a fixed tolerance;
pk+1 = pk + ∆p;
k++;

end

we are solving the Jacobian equation (7) approximately. We are solving the system
J(pk) ∆pk = −F(pk) + rk with ‖rk‖ is chosen adaptively. We have implemented the
quasi-Newton iteration in the Algorithm 2. In the Algorithms 1 and 2, ‖ · ‖L2 denotes
the discrete L2 norm and maxiter is the maximum allowed Newton’s iterations. It is
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Algorithm 2: Quasi-Newton-Krylov Algorithm

Mesh the domain;
Form the non-linear system : F(p);
Set the iteration counter : k = 0 ;
while k ≤ maxiter or ‖∆p‖L2 ≤ tol or ‖F(p)‖L2 ≤ tol do

Solve the discrete system : J(pk) ∆p = −F(pk) with a tolerance 1.0× 10−(k+1);
pk+1 = pk + ∆p;
k++;

end

interesting to note the stopping criteria in the Algorithm 2. We are using three stopping
criteria in the Algorithm. Apart from the maximum allowed iterations. We are using L2

norm of residual vector (‖F(p)‖L2) and also L2 norm of difference in scalar potential vector
(‖∆p‖L2) as stopping criteria for the Algorithm. Generally in the literature, maximum
allowed iterations and the residual vector are used as stopping criteria [12; 13; 14, and
references therein]. If the Jacobian is singular than the residual vector alone cannot
provide a robust stopping criteria.

In the next section we shows that both the L2 norm of the difference vector ‖∆p‖L2

and L2 norm of the residual vector ‖F(p)‖L2 converges quadratically.

3 Convergence of the Quasi-Newton method

Let the vector function F(p) is differentiable and its Jacobain J(p) satisfies the following

I : - Inverse of the Jacobian is bounded. Means, there exists a number h > 0 such that

‖J(p∗)−1‖ <
1

h
.

II : - The Jacobian is Lipschitz continuous. There exists a number β > 0 such that for
all p in the interval ‖p− p∗‖ ≤ β, the Jacobian satisfies

‖J(p) − J(p∗)‖ ≤ L ‖p− p∗‖.

Here L is the Lipschitz constant.

III : - Solution of system of equations J(pk) ∆p = −F(pk) + rk is more accurate near
convergence such that

‖rk‖ ≤ C1 ‖F(pk)‖2 and ‖rk‖ ≤ C2 ‖∆pk‖2. (9)

Then, the Quasi-Newton-Krylov method pn := p− J(p)−1 [F(p) + rk] converge as

1 : - ‖pn − p∗‖ ≤ C3 ‖p∗ − p‖2.

2: - ‖F(pn)‖ ≤ C4 ‖F(p)‖2.
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We bound inverse of the Jacobian matrix by using its symmetric nature. For a symmetric
matrix B, following are equivalent

inverse is bounded; i.e.,

‖B−1‖ ≤ 1

k
, (10)

and for any vector v

‖B v‖ ≥ k ‖v‖. (11)

Here the number k > 0. In-equalities (10) and (11) are equivalent for a symmetric
matrix B. Now we use the Lipschitz continuity of the Jacobian, and also the equivalent
expressions (10) and (11) for bounding inverse of the Jacobian.

For a vector v, we can write

‖J(p) v‖ = ‖J(p∗) + (J(p)− J(p∗))v‖, (12)

by the in-equality ‖a + b‖ ≥ ‖a‖ − ‖b‖

‖J(p) v‖ ≥ ‖J(p∗) v‖ − ‖(J(p)− J(p∗))v‖, (13)

using in-equality (11) and also matrix norm in-equality ‖Ax‖ ≤ ‖A‖ ‖x‖

‖J(p) v‖ ≥ k ‖v‖ − ‖J(p) − J(p∗)‖ ‖v‖, (14)

by the Lipschitz continuity of the Jacobian

‖J(p) v‖ ≥ k ‖v‖ − L ‖p− p∗‖ ‖v‖ (15)

≥ [k− L ‖p− p∗‖] ‖v‖, (16)

now using the in-equality (10), inverse of the Jacobian is bounded as

‖J(p)−1‖ ≤
(

1

k− L ‖p− p∗‖
)

. (17)

The fundamental theorem of calculus asserts that there is t ∈ [0, 1] such that

F(z)− F(x) =

∫ 1

0

J [x + t (z− x)] (z− x) dt. (18)
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By the definition of the Quasi-Newton iteration, we have

pn − p∗ = p− J(p)−1 [F(p) + r]− p∗, (19)

= (p− p∗) + J(p)−1 [F(p∗)− F(p)]− J(p)−1 r, (20)

using equation (18)

pn − p∗ = (p− p∗) + J(p)−1

(∫ 1

0

[J(p + t (p− p∗))] (p∗ − p) dt

)
− J(p)−1 r, (21)

= (p− p∗) J(p) J (p)−1 + J(p)−1

(∫ 1

0

[J(p + t (p− p∗))] (p∗ − p) dt

)
− J(p)−1 r,

(22)

= J(p)−1

∫ 1

0

[J(p + t (p∗ − p))− J(p)] (p∗ − p) dt− J(p)−1 r, (23)

taking norm of both the sides of the above equation and using ‖x− y‖ ≤ ‖x‖ + ‖y‖,
‖x y‖ ≤ ‖x‖ ‖y‖, ‖∫ x‖ ≤ ∫ ‖x‖

‖pn − p∗‖ ≤ ‖J(p)−1‖
∫ 1

0

‖J(p + t (p∗ − p))− J(p)‖ ‖p∗ − p‖ dt + ‖J(p)−1‖ ‖r‖,
(24)

by the Lipschitz continuity of the Jacobian; i.e., ‖J(p + t (p∗ − p))− J(p)‖ ≤ L t ‖p∗ − p‖.
We get

‖pn − p∗‖ ≤ ‖p∗ − p‖ ‖J(p)−1‖
∫ 1

0

L t ‖p∗ − p‖ dt + ‖J(p)−1‖ ‖r‖, (25)

≤ ‖p∗ − p‖2 ‖J(p)−1‖ L

2
+ ‖J(p)−1‖ ‖r‖, (26)

since ‖r‖ ≤ C2 ‖p∗ − p‖2

‖pn − p∗‖ ≤ ‖p∗ − p‖2 ‖J(p)−1‖ L

2
+ C2 ‖J(p)−1‖ ‖p∗ − p‖2, (27)

combining above in-equality and in-equality (17)

‖pn − p∗‖ ≤ ‖(p∗ − p)‖2

(
L

2.0 [k− L ‖p− p∗‖] +
2.0 C2

2.0 [k− L ‖p− p∗‖]
)

, (28)

or

‖pn − p∗‖ ≤ ‖(p∗ − p)‖2

(
L + 2.0 C2

2.0 [k− L ‖p− p∗‖]
)

. (29)
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For proving the second convergence result. We use multi-dimensional mean-value lemma;
i.e.,

‖F(x)− F(y)− J(y) (x− y)‖ ≤ l

2
‖x− y‖2. (30)

Combining mean value lemma with the definition of the Quasi-Newton iteration pk+1 =
pk − J(pk)

−1 (F(pk) + r) reads

∥∥F(pk+1)− F(pk) + J(pk)
[
J(pk)

−1 (F(pk) + r)
]∥∥ ≤ l

2

∥∥J(pk)
−1 (F(pk) + r)

∥∥2
,

since J J−1 = I

‖F(pk+1)− F(pk) + F(pk) + r‖ ≤ l

2

∥∥J(pk)
−1 (F(pk) + r)

∥∥2
,

using ‖x + y‖ ≤ ‖x‖ − ‖y‖

‖F(pk+1)‖ ≤ l

2

∥∥J(pk)
−1 (F(pk) + r)

∥∥2
+ ‖r‖, (31)

≤ l

2

[‖J(pk)
−1‖2 ‖F(pk) + r‖2

]
, (32)

≤ l

2

[‖J(pk)
−1‖2 (‖F(pk)‖+ ‖r‖)2] , (33)

≤ l

2

[‖J(pk)
−1‖2

(‖F(pk)‖2 + ‖r‖2 + 2.0 ‖F(pk)‖ r
)]

, (34)

≤ l

2

[‖J(pk)
−1‖2

(‖F(pk)‖2 + C1‖F(pk)‖2 + 2.0 C1 ‖F(pk)‖3
)]

, (35)

≤ l

2
‖F(pk)‖2

[‖J(pk)
−1‖2 (1.0 + C1 + 2.0 C1 ‖F(pk)‖)

]
, (36)

using the in-equality (17) for bounding inverse of the Jacobian

‖F(pk+1)‖ ≤ ‖F(pk)‖2

[
l

2

(
L

[k− L ‖p− p∗‖]
)2

(1.0 + C1 + 2.0 C1 ‖F(pk)‖)
]

. (37)

4 Numerical Experiments

We are solving the simplified Poisson Boltzmann equation (38) on Ω = (−1, 1)× (−1, 1)
with k = 1.0 [2; 10; 11; 12]. Problems with discontinuity in ε are of practical applications
[10]. The domain Ω is divided into four equal sub-domains as shown in the Figure 1 based
on the medium properties ε. It should be noted that elliptic problems with discontinuous
coefficients can produces very ill conditioned linear systems.

−∇ · (ε∇p) + k sinh(p) = f in Ω, (38)

p(x, y) = x3 + y3 on ∂ΩD. (39)
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ε1 = 100.0 ε2 = 1.0

ε3 = 100.0ε4 = 1.0

O

(a) In the sub-domain Ωi, ε = εi,
i = 1, . . . , 4.

ε1 = 10.0 ε2 = 1.0

ε3 = 10.0ε4 = 1.0

O

(b) In the sub-domain Ωi, ε = εi,
i = 1, . . . , 4.

Figure 1: Distribution of medium property ε in the domain Ω = [−1, 1]× [−1, 1]. Domain
Ω is divided into four equal sub-domains Ωi.

Here source function f is

f = 2.0 y (y − 1) + 2.0 x (x− 1)− 100.0 (x− 1) y (y − 1) exp [x (x− 1) y (y − 1)]

For solving the linear systems, we are using ILU-preconditioned the Conjugate-Gradient
(CG) method. For the Newton algorithm the tolerance of the CG method is 1.0× 10−15.
For the quasi-Newton method the tolerance of the CG method varies with the iterations
k of the Algorithm 2 as follows: 1.0× 10−(k+1), k = 0, 2, . . . , 14.

In the first computation, we assume the distribution of ε is given by the Figure 1(a).
Thus in the first and third quadrants of the domain ε = 100.00 and in the second and
fourth quadrant of the domain ε = 1.0. Figures 2(a), 2(b) and 4 reports the outcome
of our numerical work. The Figure 2(a) presents convergence of the quasi-Newton and
Newton methods. The Figure 2(b) compares convergence of the quasi-Newton and Newton
methods. The Figure 4 is showing the computational complexity of the quasi-Newton and
the Newton methods. It can be seen from the Figures. Even if initial iterations of the
Newton-Krylov algorithm are solved approximately, the convergence rate of the algorithm
remains unaffected. As was found through theoretical analysis. The Figure 4 shows that
such an approximation saves a substantial amount of computational effort.

In the second comptation, we assume the distribution of ε is given by the Figure 1(b).
Figures 4(a), 4(b) and 4 are the outcome of our numerical work. These results again
suggest that initial iterates can be solved approximately without sacrificing convergence.
Such an approximation saves a great amount of computational effort.

It can be noticed in the Figures 2(a), 2(b), 4(a) and 4(b), that accuracy of the solution
through both approaches is same after 9 or 10 iterations.

5 Conclusions

We have presented a Quasi-Newton method for solving non-linear system of equation
with symmetric Jacobian matrix. A convergence analysis of the method is also presented.
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Discretization of the non-linear Poisson-Botzmann equation results in a non-linear system
with symmetric Jacobian matrix. Numerical work shows that the presented technique
is computationally efficient compared to the traditional method. An efficient solution
technique for Poisson-Boltzmann equation is interest to the researchers in computational
chemistry, bio-physics, molecular dynamics, etc. The presented algorithm can be easily
implemented in an existing simulator.
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Pasteur, Strasbourg, France, 2003; also available online from http://www-irma.
u-strasb.fr/irma/publications/2003/03036.ps.gz.

[5] S. S. Chow, Finite element error estimates for nonlinear elliptic equations of monotone
type, Numer. Math., 54, 373–393, 1989.
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