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Abstract

We present some lower and upper bounds for the Schultz molecular topological

index (MTI) in terms of the graph invariants such as the number of vertices, the

number of edges, minimum vertex degree, maximum vertex degree, and the Wiener

index.

INTRODUCTION

Let G be a connected simple graph with n vertices. The adjacency matrix A of

G is an n× n matrix (Aij) such that Aij = 1 if the vertices i and j are adjacent and

0 otherwise. The distance matrix D of G is an n × n matrix (Dij) such that Dij is

just the distance between the vertices i and j. The degree vi of the vertex i is the

number of its first neighbors. The molecular topological index (MTI) of the graph G

introduced by Schultz [1] in 1989 is defined as

MTI = MTI(G) =
n∑

i=1

[v(A + D)]i



where v = (v1, v2, . . . , vn) is the 1 × n vector of the vertex degrees of G. Properties

of MTI can be found in [2, 3, 4].

Setting Di =
n∑

j=1
Dij. It is easy to see that MTI can be written as [4]

MTI = MTI(G) =
n∑

i=1

(vi)
2 +

n∑

i=1

viDi .

Recall that the Wiener index of a connected graph G can be written as [5] W =

W (G) = 1
2

n∑
i=1

Di and that the first Zagreb index of G is defined as [6, 7] M1 =

M1(G) =
n∑

i=1
(vi)

2. Thus

MTI(G) = M1(G) +
n∑

i=1

viDi .

BOUNDS FOR MTI

Let G be a connected simple graph with n vertices, minimum vertex degree δ and

maximum vertex degree ∆. Klavžar and Gutman [4] noted that

δ2n + 2δW (G) ≤ MTI(G) ≤ ∆2n + 2∆W (G)

with equality (on both sides) if and only if G is regular. From this they derived the

following simple bounds using the Wiener index:

2δW (G) < MTI(G) ≤ 4∆W (G) .

In addition, the equality on the right–hand side holds if and only if G is a complete

graph.

First we present a lower bound for MTI in terms of the number of vertices and

the number of edges.

Theorem 1. Let G be a connected simple graph with n vertices and m edges. Then

MTI(G) ≥ 4(n− 1)m

with equality if and only if the diameter of G is at most two.

Proof. Let nk be the number of vertices of degree k in the graph G for every

1 ≤ k ≤ n− 1. Then

M1 =
n−1∑

k=1

k2nk .
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Since Di ≥ vi + 2(n− vi − 1) = 2n− vi − 2 for any vertex i, it follows that

n∑

i=1

viDi ≥
n−1∑

k=1

knk(2n− k − 2) .

Hence

MTI(G) ≥
n−1∑

k=1

k2nk +
n−1∑

k=1

knk(2n− k − 2) .

Note that
n−1∑
k=1

knk = 2m. We have

MTI(G) ≥ (2n− 2)
n−1∑

k=1

knk = 4(n− 1)m.

From the arguments above, MTI(G) = 4(n− 1)m if and only if Di = vi + 2(n−
vi − 1) for every vertex i, i.e., the diameter of G is at most two. 2

Corollary 2. Let G be a connected simple graph with n vertices. Then

MTI(G) ≥ 4(n− 1)2

with equality if and only if G is a star.

Corollary 3. Let G be a connected simple graph with n vertices.

(1) If G is a unicyclic graph, then

MTI(G) ≥ 4n(n− 1)

with equality if and only if G is a quadrangle, a pentagon or a graph formed by

attaching n− 3 pendent edges to a vertex of a triangle.

(2) If G is a bicyclic graph, then

MTI(G) ≥ 4(n− 1)(n + 1)

with equality if and only if G is one of the graphs in Figure 1.
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Figure 1. Bicyclic graphs of diameter 2.
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The following result concerns the MTI of a graph and its complement.

Corollary 4. Let G be a simple graph with n ≥ 4 vertices, and G its complement. If

both G and G are connected, then

MTI(G) + MTI(G) ≥ 4(n− 1)

(
n

2

)

with equality if and only if the diameters of G and G are both two.

Proof. By the connectedness of G and G, the diameters of G and G are both at least

two. Let m and m be the number of edges of G and G, respectively.

By Theorem 1,

MTI(G) ≥ 4(n− 1)m

with equality if and only the diameter of G is two. Similarly,

MTI(G) ≥ 4(n− 1)m

with equality if and only if the diameter of G is two.

It follows that

MTI(G) + MTI(G) ≥ 4(n− 1)(m + m) = 4(n− 1)

(
n

2

)

with equality if and only if the diameters of G and G are both two. 2

For any positive integer n ≥ 5, let G be the graph formed by replacing a fixed

vertex, say u of a pentagon by n − 4 isolated vertices (and joining them to the two

neighbors of u). Then the diameters of G and G are both two. Corollary 4 echoes

the following result in [8, 9]: W (G) + W (G) ≥ 3
(

n
2

)
and this bound is best possible

for all n ≥ 5.

Now we consider upper bounds for MTI.

Theorem 5. Let G be a connected simple graph with n vertices, m edges and diameter

D. Then

MTI(G) ≤ 2D(n− 1)m− (D − 2)M1(G)

with equality if and only if the diameter of G is at most two.

Proof. Since Di ≤ vi + D(n− vi − 1) for any vertex i, it follows that

MTI(G) ≤ M1(G) +
n∑

i=1

vi [vi + D(n− vi − 1)] = 2D(n− 1)m− (D − 2)M1(G) .
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From the arguments above, MTI(G) = 2D(n− 1)m− (D − 2)M1(G) if and only

if Di = vi + D(n − vi − 1) for every vertex i, i.e., the diameter of G is at most two.

2

Theorem 6. Let G be a connected simple graph with n vertices and m edges, mini-

mum vertex degree δ and maximum vertex degree ∆. Then

MTI(G) ≤ 2m(δ + ∆)− nδ∆ + 2∆W (G)

with equality if and only if G is regular.

Proof. From [10] or [11],

M1 ≤ 2m(δ + ∆)− nδ∆

with equality if and only if G has only two types of degrees δ and ∆. Note also that

n∑

i=1

viDi ≤ 2∆W (G)

with equality if and only if G is ∆-regular.

By combining the upper bounds for M1 and
n∑

i=1
viDi, the result follows. 2

Theorem 7. Let G be a connected simple graph with n vertices and m edges. Then

MTI(G) ≤ m
(

2m

n− 1
+ n− 2

)
+ 2(n− 1)W (G)

with equality if and only if G is a complete graph.

Proof. From [12]

M1 ≤ m
(

2m

n− 1
+ n− 2

)

with equality if and only if G is either a star or a complete graph.

Note also that
n∑

i=1

viDi ≤ 2(n− 1)W (G)

with equality if and only if G is a complete graph.

By the definition of MTI, the result holds. 2
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