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Abstract

For each tree T and each real number λ, λ 6= 0, the λ-modified Wiener index is

defined as mW λ(T ) =
∑

e∈E(T )
[nT,1(e) · nT,2(e)]

λ, where nT,1(e) and nT,2(e) denote the

number of vertices of T lying on the two sides of the edge e . It provides a novel class of

structure–descriptors which are suitable for modeling branching–dependent properties

of organic compounds. Let Tn,p be the class of trees with n vertices, p of which are

pendent vertices. In this paper, for each λ 6= 0 and each p with 3 ≤ p ≤ n − 2, we

determine the trees in Tn,p with maximal and minimal λ-modified Wiener indices.

INTRODUCTION

The Wiener index (W ) is one of the oldest and most useful molecular–graph–based

structure–descriptors [1–3]. It is the sum of distances between all unordered pairs of

vertices in the graph. Let T be a tree with vertex set V (T ) and edge set E(T ) . For
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any e ∈ E(T ), nT,1(e) and nT,2(e) denote the number of vertices of T lying on the

two sides of the edge e . For a long time it has been known [1, 3] that

W (T ) =
∑

e∈E(T )

nT,1(e) · nT,2(e) .

For more mathematical properties of the Wiener index of trees, see the review [4].

Recently, Gutman et al. [5] put forward the λ-modified Wiener index mW λ, defined

as

mW λ(T ) =
∑

e∈E(T )

[nT,1(e) · nT,2(e)]
λ (1)

where λ is a nonzero real number that may assume different values.

Obviously, for λ = 1 and λ = −1, the λ-modified Wiener index mW λ reduces to

the ordinary Wiener index W and the “modified Wiener index” mW studied in [6, 7],

respectively.

The right–hand side of eq. (1) may be understood as a sum of increments, each

associated with an edge. The contribution of the edge e, denoted by mW λ(e, T ), is

clearly equal to [nT,1(e) · nT,2(e)]
λ.

It is known [5] that for all nonzero real numbers λ, the λ-modified Wiener indices

satisfy the basic requirement of being a branching index: For a tree T on n vertices,

different from the n-vertex path Pn and the n-vertex star Sn,

mW λ(Pn) > mW λ(T ) > mW λ(Sn) if λ > 0

mW λ(Pn) < mW λ(T ) < mW λ(Sn) if λ < 0 .

Thus mW λ provides a class of structure–descriptors which are suitable for modeling

branching–dependent properties of organic compounds [5]. Vukičević [8] and Gorše

and Žerovnik [9] showed that for arbitrary different λ1, λ2, there are trees (chemical

trees if λ1, λ2 > 0) with the same number of vertices that are differently ordered by

the indices mW λ1 and mW λ2 . Vukičević and Gutman [10] deduced some conditions

under which two trees are ordered the same by mW λ for all positive or all negative

values of λ . Some chemical properties of mW λ were established by Gutman et al. [11]

and Lučić et al. [12].

Let Tn,p be the class of trees with n vertices, p of which are pendent vertices, where
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2 ≤ p ≤ n− 1 . Obviously, if T ∈ Tn,2 then T = Pn, and if T ∈ Tn,n−1 then T = Sn .

So we can assume in the rest that 3 ≤ p ≤ n− 2 .

In this paper, for each λ 6= 0 and each p with 3 ≤ p ≤ n− 2, we identify the trees

in Tn,p with maximal and minimal λ-modified Wiener indices. It is also shown that

these trees are unique and they depend only on the signs of λ and not on the actual

values of λ . Our arguments also lead to a similar result for variable Wiener indices

introduced in [13].

RESULTS

Let T be a tree. For x ∈ V (T ), dT (x) (or d(x)) denotes the degree of x . Let

V1(T ) = {x ∈ V (T )|d(x) ≥ 3} . There are d(x) components in T −x, each containing

a vertex that is adjacent to vertex x in T . These components are called the branches

of T at x .

For x, y ∈ V (T ), dT (x, y) (or d(x, y)) denotes the distance between x and y in

T , PT (x, y) (or P (x, y)) denotes the unique path in T joining x to y, Cx(P, T ) (or

Cx(P )) denotes the component containing x in the forest formed by removing the

edge incident with x in the path P (x, y) . For P = P (x, y), let nx(P, T ) (or nx(P ))

be the number of vertices Cx(P, T ) .

It is easy to see that the function f(t) = [t(n− t)]λ is increasing if λ > 0 and

decreasing if λ < 0 for 1 ≤ t ≤ n
2

. We will use this fact frequently in our proof.

For positive integers p and n with 3 ≤ p ≤ n−1, let k = bn−1
p
c and r = n−1−kp .

Let Fn,p denote the tree formed by joining a vertex c to one end vertex of each of

p paths, p − r of which have k vertices and r of which have k + 1 vertices. Clearly

Fn,p ∈ Tn,p .

Lemma 1. Let T ∈ Tn,p with |V1(T )| ≥ 2 . Then there is a tree T ∗ ∈ Tn,p with

|V1(T
∗)| = 1 such that mW λ(T

∗) < mW λ(T ) if λ > 0 and mW λ(T
∗) > mW λ(T ) if

λ < 0 .

Proof. Let x, y ∈ V1(T ) so that d(x, y) is as small as possible and P = P (x, y) . If

d(x, y) > 1, then vertices on P except x and y all have degree two. Let nx = nx(P )

and ny = ny(P ) . Assume that ny ≤ nx . Then ny ≤ n
2

.
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Let z denote the vertex joined to y in the path P so that z = x if d(x, y) = 1,

and let w be one of the other vertices joined to y . Let nw be the number of vertices

separated from y by the edge yw . Let T ′ denote the tree formed from T by removing

edge yw and replacing it with an edge zw joining vertices z and w . Note that

T ′ ∈ Tn,p . It is easy to see that

mW λ(T
′)− mW λ(T ) = mW λ(zy, T ′)− mW λ(zy, T )

= [(ny − nw)(n− (ny − nw))]λ − [ny(n− ny)]
λ .

(2)

Suppose that λ > 0 . Since ny − nw < ny ≤ n
2

and f(t) = [t(n− t)]λ is an

increasing function for 1 ≤ t ≤ n
2
, we have from (2) that mW λ(T

′) < mW λ(T ) .

Similarly, if λ < 0, then mW λ(T
′) > mW λ(T ) .

Iterating the transformation from T to T ′ yields the tree T ∗ as required. 2

Lemma 2. Let T ∈ Tn,p with V1(T ) = {c} and T 6= Fn,p . Then mW λ(T ) > mW λ(Fn,p)

if λ > 0 and mW λ(T ) < mW λ(Fn,p) if λ < 0 .

Proof. Since T has p pendent vertices, the degree of c is p and the remaining n−1−p

vertices all have degree two. Since T 6= Fn,p, there are two branches, say B1 and B2

of T at c with B1 = Pa, B2 = Pb such that b ≥ a + 2 and a ≥ 1 . Let u (resp. v)

be the pendent vertices of T in the branches B1 (resp. B2). Let u1 (resp. v1) be the

neighbors of c in B1 (resp. B2). Let T ′ denote the tree formed from T by removing the

edge incident with v and adding an edge uv joining v to u . Since d(c, v) = b ≥ 3 > 1,

we have T ′ ∈ Tn,p . Clearly, a + b + 1 < n and

mW λ(T
′)− mW λ(T ) = mW λ(cu1, T

′)− mW λ(cv1, T )

= [(a + 1)(n− a− 1)]λ − [b(n− b)]λ .

Since a+1 < min{b, n−b} ≤ n
2
, we have mW λ(T

′) < mW λ(T ) if λ > 0 and mW λ(T
′) >

mW λ(T ) if λ < 0 .

Iterating the transformation from T to T ′ yields the tree T ∗ as required. 2
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Theorem 3. Let T ∈ Tn,p and T 6= Fn,p, where 3 ≤ p ≤ n− 2 . Then

mW λ(T ) > mW λ(Fn,p) if λ > 0

mW λ(T ) < mW λ(Fn,p) if λ < 0 .

Proof. Since p ≥ 3, we have |V1(T )| ≥ 1 . If |V1(T )| ≥ 2, we have by Lemmas 1 and

2 that there is a tree T ∗ ∈ Tn,p with |V1(T
∗)| = 1 such that mW λ(Fn,p) ≤ mW λ(T

∗) <

mW λ(T ) if λ > 0 and mW λ(Fn,p) ≥ mW λ(T
∗) > mW λ(T ) if λ < 0 . So suppose that

|V1(T )| = 1 . Since T 6= Fn,p, the result follows from Lemma 2. 2

In the proof of Theorem 3, we use the techniques from [14], where the total distance

was studied.

For integer r with 1 ≤ r ≤ bp
2
c, let Dn,p,r be the tree formed by attaching r and

p − r pendent edges to the two end vertices of a path Pn−p . Clearly, Dn,p,r ∈ Tn,p .

We call Dn,p,r a generalized double star . Let Sn,p = Dn,p,b p
2
c .

Lemma 4. Let T ∈ Tn,p with |V1(T )| ≥ 3 . Then there is a tree T ∗ ∈ Tn,p with

|V1(T
∗)| = 2 such that mW λ(T

∗) > mW λ(T ) if λ > 0 and mW λ(T
∗) < mW λ(T ) if

λ < 0 .

Proof. Let x, y ∈ V1(T ) such that d(x, y) is as large as possible. Let P = P (x, y)

with nx = nx(P ) and ny = ny(P ) .

Choose w, z ∈ V1(T ) in the path P such that both d(x,w) and d(z, y) are as small

as possible.

Obviously, min{nx + d(x,w), ny + d(z, y)} ≤ n
2

. Assume that ny + d(z, y) ≤
nx + d(x,w) and then ny + d(z, y) ≤ n

2
.

Let d(z, y) = r and let z = z0, z1, . . . , zr = y be the path from z to y . Let n′z be

the total number of vertices of the branches at z except the two branches containing

a vertex in the path P .

Let u1, u2, . . . , udT (z)−2 be the neighbors of z outside P in T . Let T ′ be the tree

obtained from T by removing edge zui and replacing it with an edge yui for all

i = 1, 2, . . . , dT (z)− 2 .
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It is easy to see that

mW λ(T
′)− mW λ(T ) =

r∑

i=1

[mW λ(zi−1zi, T
′)− mW λ(zi−1zi, T )]

with

mW λ(zi−1zi, T
′) = [(r − i + ny + n′z) (n− (r − i + ny + n′z))]

λ

mW λ(zi−1zi, T ) = [(r − i + ny) (n− (r − i + ny))]
λ .

For i = 1, 2, . . . , r, since

n− (r − i + ny + n′z)− (r − i + ny)

= n− 2r − 2ny − n′z + 2i

= (n− r − ny)− (r + ny + n′z) + 2i

≥ d(x,w) + nx + n′z − (r + ny + n′z) + 2i

= d(x,w) + nx − (r + ny) + 2i > 0 ,

we have r− i + ny < n− (r− i + ny + n′z). So for i = 1, 2, . . . , r, we have r− i + ny <

min{r− i + ny + n′z, n− (r− i + ny + n′z)} ≤ n
2
, which implies that mW λ(zi−1zi, T

′) >

mW λ(zi−1zi, T ) if λ > 0 and mW λ(zi−1zi, T
′) < mW λ(zi−1zi, T ) if λ < 0 . Hence we

have mW λ(T
′) > mW λ(T ) if λ > 0 and mW λ(T

′) < mW λ(T ) if λ < 0 . 2

Lemma 5. Let T ∈ Tn,p with V1(T ) = {x, y} . Let P = PT (x, y) with ny = ny(P ) ≤
n
2
. If Cy(P ) is not a star, then there is a tree T ∗ ∈ Tn,p with V (T ∗) = V (T ),

|V1(T
∗)| = {x, y∗} and P ∗ = PT ∗(x, y∗) such that nx(P

∗, T ∗) = nx(P, T ), Cy∗(P
∗, T ∗)

is a star, mW λ(T
∗) > mW λ(T ) if λ > 0 and mW λ(T

∗) < mW λ(T ) if λ < 0 .

Proof. Since Cy(P ) is not a star, it has a branch B at y, which is a path Ps with s ≥ 2.

Let v be the vertex in B that is adjacent to y in T . Denote by u1, u2, . . . , udT (y)−2 all

other neighbors of y outside P . Let T ′ be the tree obtained from T by removing edge

yui and replacing it with an edge vui for all i = 1, 2, . . . , dT (y)− 2 . It is easy to see

that
mW λ(T

′)− mW λ(T ) = mW λ(yv, T ′)− mW λ(yv, T )

= [(ny − 1)(n− ny + 1)]λ − [s(n− s)]λ .
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Since s < ny − 1 < n
2
, we have mW λ(T

′) > mW λ(T ) > 0 if λ > 0 and mW λ(T
′) <

mW λ(T ) > 0 if λ < 0 . 2

Lemma 6. Let T ∈ Tn,p with V1(T ) = {x, y} . Let P = PT (x, y) with nx = nx(P ) >

n
2
. If Cx(P, T ) is not a star and Cy(P, T ) is a star, then either there is a tree T ∗ ∈ Tn,p

with V (T ∗) = V (T ), V1(T
∗) = V1(T ) and PT ∗(x, y) = P such that nx(P, T ∗) ≤ n

2
,

Cx(P, T ∗) has exactly one branch with at least two vertices and Cy(P, T ∗) is a star, or

T ∗ = Dn,p,1 . In either case, mW λ(T
∗) ≥ mW λ(T ) if λ > 0 and mW λ(T

∗) ≤ mW λ(T )

if λ < 0 .

Proof. There are two cases.

Case 1. There are two branches, say B1 and B2 of Cx(P, T ) at x with B1 = Ps1 ,

B2 = Ps2 , and s2 ≥ s1 ≥ 2 . Let u (resp. v) be the pendent vertex of T in B1 (resp.

B2). Let T ′ be the tree obtained from T by removing the edge incident with u and

adding an edge vu . By similar argument as in Lemma 2, we have mW λ(T
′) > mW λ(T )

if λ > 0 and mW λ(T
′) < mW λ(T ) if λ < 0 .

Case 2. There is exactly one branch, say Ps of Cx(P, T ) at x with s ≥ 2 . Label the

vertices of P as x = z0, z1, . . . , zr = y . For a pendent edge xu of T , let T ′ be the tree

obtained from T by removing edge xu and replacing it with an edge yu . It is easy to

see that

mW λ(T
′)− mW λ(T ) = mW λ(z0z1, T

′)− mW λ(zr−1zr, T )

= [(nx − 1)(n− nx + 1)]λ

− [(nx + r − 1)(n− nx − r + 1)]λ .

Subcase 2.1. nx > n+1
2

. We have nx ≥ n
2
+1 and then n−nx−r+1 < n−nx+1 ≤ n

2
.

Thus we have mW λ(T
′) > mW λ(T ) if λ > 0 and mW λ(T

′) < mW λ(T ) if λ < 0 .

Subcase 2.2. nx = n+1
2

and r > 1 . Then we have n− nx− r + 1 = n+1
2
− r < n−1

2
=

nx − 1 and so mW λ(T
′) > mW λ(T ) if λ > 0 and mW λ(T

′) < mW λ(T ) if λ < 0 .

Subcase 2.3. nx = n+1
2

and r = 1 . Then we have n − nx − r + 1 = n−1
2

= nx − 1

and so mW λ(T
′) = mW λ(T ) .

Iterating the transformations from T to T ′ in Cases 1 and 2 yields the tree T ∗ as

required. 2
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Lemma 7. Let T = Dn,p,r with r < bp
2
c. Then mW λ(Sn,p) > mW λ(T ) if λ > 0 and

mW λ(Sn,p) < mW λ(T ) if λ < 0 .

Proof. Since r < bp
2
c, it is easy to see that

mW λ(Dn,p,r+1)− mW λ(Dn,p,r) = [(n− p + r)(p− r)]λ − [(r + 1)(n− r − 1)]λ .

Since r + 1 < min{n − p + r, p − r} ≤ n
2
, we have mW λ(Dn,p,r+1) > mW λ(Dn,p,r) if

λ > 0 and mW λ(Dn,p,r+1) < mW λ(Dn,p,r) if λ < 0 . Iterating the procedure, we prove

the lemma. 2

Theorem 8. Let T ∈ Tn,p and T 6= Sn,p, where 3 ≤ p ≤ n− 2 . Then

mW λ(T ) < mW λ(Sn,p) if λ > 0

mW λ(T ) > mW λ(Sn,p) if λ < 0 .

Proof. If |V1(T )| = 1 and T 6= Dn,p,1, then from the proof of Lemma 2 we have

mW λ(Dn,p,1) > mW λ(T ) for λ > 0 and mW λ(Dn,p,1) < mW λ(T ) for λ < 0 .

If |V1(T )| ≥ 3, then by Lemma 4, there is a tree T ∗ ∈ Tn,p with |V1(T
∗)| = 2

such that mW λ(T
∗) > mW λ(T ) for λ > 0 and mW λ(T

∗) < mW λ(T ) for λ < 0 . So

suppose that |V1(T )| = 2 . Let V1(T ) = {x, y} and P = PT (x, y), nx = nx(P, T ) and

ny = ny(P, T ) .

Suppose that T is not a generalized double star. There are two cases.

Case 1. nx, ny ≤ n
2

. By Lemma 5, there is a generalized double star D ∈ Tn,p

satisfying mW λ(D) > mW λ(T ) if λ > 0 and mW λ(D) < mW λ(T ) if λ < 0 .

Case 2. max{nx, ny} > n
2
, say, nx > n

2
. Then ny < n

2
. If Cy(P, T ) is not a star, we

have by Lemma 5 that there is a tree T ′ ∈ Tn,p with V (T ′) = V (T ), |V1(T
′)| = {x, y′}

and P ′ = PT ′(x, y′) such that nx(P
′, T ′) = nx, Cy′(P

′, T ′) is a star, mW λ(T
′
) >

mW λ(T ) if λ > 0 and mW λ(T
′
) < mW λ(T ) if λ < 0 . If Cx(P

′, T ′) is not a star,

we have by Lemma 6 that either there is a tree T ′′ ∈ Tn,p with V (T ′′) = V (T ′),

V1(T
′′) = V1(T

′), PT ′′(x, y′) = P ′ such that nx(P
′, T ′′) ≤ n

2
, Cx(P

′, T ′′) has exactly

one branch with at least two vertices and Cy′(P
′, T ′′) is a star, or T ′′ is the generalized

double star Dn,p,1, satisfying mW λ(T
′′) ≥ mW λ(T

′) if λ > 0 and mW λ(T
′′) ≤ mW λ(T

′)
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if λ < 0 in either case. Now using Lemma 5 again if T ′′ 6= Dn,p,1, there is a generalized

double star D′ ∈ Tn,p satisfying mW λ(D
′) > mW λ(T

′′) > mW λ(T ) if λ > 0 and

mW λ(D
′) < mW λ(T

′′) < mW λ(T ) if λ < 0 . Thus for D = D′ or Dn,p,1, we have

mW λ(D) > mW λ(T ) if λ > 0 and mW λ(D) < mW λ(T ) if λ < 0 .

Combining Cases 1 and 2 and using Lemma 7, the result follows. 2

By Theorems 3 and 8, we obtain the main result of this paper:

Theorem 9. Let T ∈ Tn,p and T 6= Fn,p, Sn,p, where 3 ≤ p ≤ n− 2 . Then

mW λ(Fn,p) < mW λ(T ) < mW λ(Sn,p) if λ > 0

mW λ(Sn,p) < mW λ(T ) < mW λ(Fn,p) if λ < 0 .

By Theorem 9, the trees in Tn,p with the smallest and the largest λ-modified

Wiener indices are determined for any nonzero real λ . The λ-modified Wiener indices

of the extremal trees are given by

mW λ(Fn,p) = p
k∑

i=1

[i(n− i)]λ + (n− 1− pk) [(k + 1)(n− k − 1)]λ

mW λ(Sn,p) = p(n− 1)λ +
n−1−p∑

i=1

[(⌊
p

2

⌋
+ i

) (
n−

⌊
p

2

⌋
− i

)]λ

where k = bn−1
p
c.

We point out that the notation in [10] can be used in proof of all our lemmas and

theorems.

Vukičević and Žerovnik [13] initiated the study of the variable Wiener indices,

defined as

λW (T ) =
1

2

∑

e∈E(T )

[
|V (T )|λ − nT,1(e)

λ − nT,2(e)
λ
]

.

Let T ∈ Tn,p and T 6= Fn,p, Sn,p, where 3 ≤ p ≤ n−2 . Using the fact that the function

g(t) = tλ + (n − t)λ is decreasing if λ > 1 and increasing if λ < 1 for 1 ≤ t ≤ n
2

and

similar arguments as above, we can obtain the following similar result for variable

Wiener indices λW :

λW (Fn,p) < λW (T ) < λW (Sn,p) if λ > 1

λW (Sn,p) < λW (T ) < λW (Fn,p) if λ < 1 .
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