ISSN 0340 - 6253

MODIFIED WIENER INDICES OF TREES

Bing Zhang and Bo Zhou^{*}

Department of Mathematics, South China Normal University, Guangzhou 510631, P. R. China

(Received October 11, 2005)

Abstract

For each tree T and each real number λ , $\lambda \neq 0$, the λ -modified Wiener index is defined as ${}^{m}W_{\lambda}(T) = \sum_{e \in E(T)} [n_{T,1}(e) \cdot n_{T,2}(e)]^{\lambda}$, where $n_{T,1}(e)$ and $n_{T,2}(e)$ denote the number of vertices of T lying on the two sides of the edge e. It provides a novel class of structure–descriptors which are suitable for modeling branching–dependent properties of organic compounds. Let $\mathcal{T}_{n,p}$ be the class of trees with n vertices, p of which are pendent vertices. In this paper, for each $\lambda \neq 0$ and each p with $3 \leq p \leq n-2$, we determine the trees in $\mathcal{T}_{n,p}$ with maximal and minimal λ -modified Wiener indices.

INTRODUCTION

The Wiener index (W) is one of the oldest and most useful molecular–graph–based structure–descriptors [1–3]. It is the sum of distances between all unordered pairs of vertices in the graph. Let T be a tree with vertex set V(T) and edge set E(T). For

^{*}Corresponding author. E-mail: zhoubo@scnu.edu.cn

any $e \in E(T)$, $n_{T,1}(e)$ and $n_{T,2}(e)$ denote the number of vertices of T lying on the two sides of the edge e. For a long time it has been known [1, 3] that

$$W(T) = \sum_{e \in E(T)} n_{T,1}(e) \cdot n_{T,2}(e)$$

For more mathematical properties of the Wiener index of trees, see the review [4].

Recently, Gutman et al. [5] put forward the λ -modified Wiener index ${}^{m}W_{\lambda}$, defined as

$${}^{m}W_{\lambda}(T) = \sum_{e \in E(T)} \left[n_{T,1}(e) \cdot n_{T,2}(e) \right]^{\lambda}$$
(1)

where λ is a nonzero real number that may assume different values.

Obviously, for $\lambda = 1$ and $\lambda = -1$, the λ -modified Wiener index ${}^{m}W_{\lambda}$ reduces to the ordinary Wiener index W and the "modified Wiener index" ${}^{m}W$ studied in [6, 7], respectively.

The right-hand side of eq. (1) may be understood as a sum of increments, each associated with an edge. The contribution of the edge e, denoted by ${}^{m}W_{\lambda}(e,T)$, is clearly equal to $[n_{T,1}(e) \cdot n_{T,2}(e)]^{\lambda}$.

It is known [5] that for all nonzero real numbers λ , the λ -modified Wiener indices satisfy the basic requirement of being a branching index: For a tree T on n vertices, different from the n-vertex path P_n and the n-vertex star S_n ,

$${}^{m}W_{\lambda}(P_{n}) > {}^{m}W_{\lambda}(T) > {}^{m}W_{\lambda}(S_{n}) \quad \text{if} \quad \lambda > 0$$
$${}^{m}W_{\lambda}(P_{n}) < {}^{m}W_{\lambda}(T) < {}^{m}W_{\lambda}(S_{n}) \quad \text{if} \quad \lambda < 0$$

Thus ${}^{m}W_{\lambda}$ provides a class of structure–descriptors which are suitable for modeling branching–dependent properties of organic compounds [5]. Vukičević [8] and Gorše and Žerovnik [9] showed that for arbitrary different λ_{1}, λ_{2} , there are trees (chemical trees if $\lambda_{1}, \lambda_{2} > 0$) with the same number of vertices that are differently ordered by the indices ${}^{m}W_{\lambda_{1}}$ and ${}^{m}W_{\lambda_{2}}$. Vukičević and Gutman [10] deduced some conditions under which two trees are ordered the same by ${}^{m}W_{\lambda}$ for all positive or all negative values of λ . Some chemical properties of ${}^{m}W_{\lambda}$ were established by Gutman et al. [11] and Lučić et al. [12].

Let $\mathcal{T}_{n,p}$ be the class of trees with *n* vertices, *p* of which are pendent vertices, where

 $2 \leq p \leq n-1$. Obviously, if $T \in \mathcal{T}_{n,2}$ then $T = P_n$, and if $T \in \mathcal{T}_{n,n-1}$ then $T = S_n$. So we can assume in the rest that $3 \leq p \leq n-2$.

In this paper, for each $\lambda \neq 0$ and each p with $3 \leq p \leq n-2$, we identify the trees in $\mathcal{T}_{n,p}$ with maximal and minimal λ -modified Wiener indices. It is also shown that these trees are unique and they depend only on the signs of λ and not on the actual values of λ . Our arguments also lead to a similar result for variable Wiener indices introduced in [13].

RESULTS

Let T be a tree. For $x \in V(T)$, $d_T(x)$ (or d(x)) denotes the degree of x. Let $V_1(T) = \{x \in V(T) | d(x) \ge 3\}$. There are d(x) components in T - x, each containing a vertex that is adjacent to vertex x in T. These components are called the *branches* of T at x.

For $x, y \in V(T)$, $d_T(x, y)$ (or d(x, y)) denotes the distance between x and y in T, $P_T(x, y)$ (or P(x, y)) denotes the unique path in T joining x to y, $C_x(P, T)$ (or $C_x(P)$) denotes the component containing x in the forest formed by removing the edge incident with x in the path P(x, y). For P = P(x, y), let $n_x(P, T)$ (or $n_x(P)$) be the number of vertices $C_x(P, T)$.

It is easy to see that the function $f(t) = [t(n-t)]^{\lambda}$ is increasing if $\lambda > 0$ and decreasing if $\lambda < 0$ for $1 \le t \le \frac{n}{2}$. We will use this fact frequently in our proof.

For positive integers p and n with $3 \le p \le n-1$, let $k = \lfloor \frac{n-1}{p} \rfloor$ and r = n-1-kp. Let $F_{n,p}$ denote the tree formed by joining a vertex c to one end vertex of each of p paths, p - r of which have k vertices and r of which have k + 1 vertices. Clearly $F_{n,p} \in \mathcal{T}_{n,p}$.

Lemma 1. Let $T \in \mathcal{T}_{n,p}$ with $|V_1(T)| \geq 2$. Then there is a tree $T^* \in \mathcal{T}_{n,p}$ with $|V_1(T^*)| = 1$ such that ${}^{m}W_{\lambda}(T^*) < {}^{m}W_{\lambda}(T)$ if $\lambda > 0$ and ${}^{m}W_{\lambda}(T^*) > {}^{m}W_{\lambda}(T)$ if $\lambda < 0$.

Proof. Let $x, y \in V_1(T)$ so that d(x, y) is as small as possible and P = P(x, y). If d(x, y) > 1, then vertices on P except x and y all have degree two. Let $n_x = n_x(P)$ and $n_y = n_y(P)$. Assume that $n_y \le n_x$. Then $n_y \le \frac{n}{2}$.

Let z denote the vertex joined to y in the path P so that z = x if d(x, y) = 1, and let w be one of the other vertices joined to y. Let n_w be the number of vertices separated from y by the edge yw. Let T' denote the tree formed from T by removing edge yw and replacing it with an edge zw joining vertices z and w. Note that $T' \in \mathcal{T}_{n,p}$. It is easy to see that

$${}^{m}W_{\lambda}(T') - {}^{m}W_{\lambda}(T) = {}^{m}W_{\lambda}(zy, T') - {}^{m}W_{\lambda}(zy, T)$$

= $[(n_{y} - n_{w})(n - (n_{y} - n_{w}))]^{\lambda} - [n_{y}(n - n_{y})]^{\lambda}.$ (2)

Suppose that $\lambda > 0$. Since $n_y - n_w < n_y \leq \frac{n}{2}$ and $f(t) = [t(n-t)]^{\lambda}$ is an increasing function for $1 \leq t \leq \frac{n}{2}$, we have from (2) that ${}^m W_{\lambda}(T') < {}^m W_{\lambda}(T)$.

Similarly, if $\lambda < 0$, then ${}^{m}W_{\lambda}(T') > {}^{m}W_{\lambda}(T)$.

Iterating the transformation from T to T' yields the tree T^* as required. \Box

Lemma 2. Let $T \in \mathcal{T}_{n,p}$ with $V_1(T) = \{c\}$ and $T \neq F_{n,p}$. Then ${}^m\!W_\lambda(T) > {}^m\!W_\lambda(F_{n,p})$ if $\lambda > 0$ and ${}^m\!W_\lambda(T) < {}^m\!W_\lambda(F_{n,p})$ if $\lambda < 0$.

Proof. Since T has p pendent vertices, the degree of c is p and the remaining n-1-p vertices all have degree two. Since $T \neq F_{n,p}$, there are two branches, say B_1 and B_2 of T at c with $B_1 = P_a$, $B_2 = P_b$ such that $b \ge a + 2$ and $a \ge 1$. Let u (resp. v) be the pendent vertices of T in the branches B_1 (resp. B_2). Let u_1 (resp. v_1) be the neighbors of c in B_1 (resp. B_2). Let T' denote the tree formed from T by removing the edge incident with v and adding an edge uv joining v to u. Since $d(c, v) = b \ge 3 > 1$, we have $T' \in \mathcal{T}_{n,p}$. Clearly, a + b + 1 < n and

$${}^{m}W_{\lambda}(T') - {}^{m}W_{\lambda}(T) = {}^{m}W_{\lambda}(cu_{1},T') - {}^{m}W_{\lambda}(cv_{1},T)$$
$$= [(a+1)(n-a-1)]^{\lambda} - [b(n-b)]^{\lambda}$$

Since $a+1 < \min\{b, n-b\} \le \frac{n}{2}$, we have ${}^m\!W_{\lambda}(T') < {}^m\!W_{\lambda}(T)$ if $\lambda > 0$ and ${}^m\!W_{\lambda}(T') > {}^m\!W_{\lambda}(T)$ if $\lambda < 0$.

Iterating the transformation from T to T' yields the tree T^* as required. \Box

Theorem 3. Let $T \in \mathcal{T}_{n,p}$ and $T \neq F_{n,p}$, where $3 \leq p \leq n-2$. Then

$${}^{m}W_{\lambda}(T) > {}^{m}W_{\lambda}(F_{n,p}) \quad if \quad \lambda > 0$$
$${}^{m}W_{\lambda}(T) < {}^{m}W_{\lambda}(F_{n,p}) \quad if \quad \lambda < 0 .$$

Proof. Since $p \geq 3$, we have $|V_1(T)| \geq 1$. If $|V_1(T)| \geq 2$, we have by Lemmas 1 and 2 that there is a tree $T^* \in \mathcal{T}_{n,p}$ with $|V_1(T^*)| = 1$ such that ${}^mW_{\lambda}(F_{n,p}) \leq {}^mW_{\lambda}(T^*) < {}^mW_{\lambda}(T)$ if $\lambda > 0$ and ${}^mW_{\lambda}(F_{n,p}) \geq {}^mW_{\lambda}(T^*) > {}^mW_{\lambda}(T)$ if $\lambda < 0$. So suppose that $|V_1(T)| = 1$. Since $T \neq F_{n,p}$, the result follows from Lemma 2. \Box

In the proof of Theorem 3, we use the techniques from [14], where the total distance was studied.

For integer r with $1 \leq r \leq \lfloor \frac{p}{2} \rfloor$, let $D_{n,p,r}$ be the tree formed by attaching r and p-r pendent edges to the two end vertices of a path P_{n-p} . Clearly, $D_{n,p,r} \in \mathcal{T}_{n,p}$. We call $D_{n,p,r}$ a generalized double star. Let $S_{n,p} = D_{n,p,\lfloor \frac{p}{2} \rfloor}$.

Lemma 4. Let $T \in \mathcal{T}_{n,p}$ with $|V_1(T)| \geq 3$. Then there is a tree $T^* \in \mathcal{T}_{n,p}$ with $|V_1(T^*)| = 2$ such that ${}^{m}W_{\lambda}(T^*) > {}^{m}W_{\lambda}(T)$ if $\lambda > 0$ and ${}^{m}W_{\lambda}(T^*) < {}^{m}W_{\lambda}(T)$ if $\lambda < 0$.

Proof. Let $x, y \in V_1(T)$ such that d(x, y) is as large as possible. Let P = P(x, y) with $n_x = n_x(P)$ and $n_y = n_y(P)$.

Choose $w, z \in V_1(T)$ in the path P such that both d(x, w) and d(z, y) are as small as possible.

Obviously, $\min\{n_x + d(x, w), n_y + d(z, y)\} \leq \frac{n}{2}$. Assume that $n_y + d(z, y) \leq n_x + d(x, w)$ and then $n_y + d(z, y) \leq \frac{n}{2}$.

Let d(z, y) = r and let $z = z_0, z_1, \ldots, z_r = y$ be the path from z to y. Let n'_z be the total number of vertices of the branches at z except the two branches containing a vertex in the path P.

Let $u_1, u_2, \ldots, u_{d_T(z)-2}$ be the neighbors of z outside P in T. Let T' be the tree obtained from T by removing edge zu_i and replacing it with an edge yu_i for all $i = 1, 2, \ldots, d_T(z) - 2$. It is easy to see that

$${}^{m}W_{\lambda}(T') - {}^{m}W_{\lambda}(T) = \sum_{i=1}^{r} [{}^{m}W_{\lambda}(z_{i-1}z_{i},T') - {}^{m}W_{\lambda}(z_{i-1}z_{i},T)]$$

with

$${}^{m}W_{\lambda}(z_{i-1}z_{i},T') = \left[(r-i+n_{y}+n_{z}') \left(n-(r-i+n_{y}+n_{z}') \right) \right]^{\lambda}$$
$${}^{m}W_{\lambda}(z_{i-1}z_{i},T) = \left[(r-i+n_{y}) \left(n-(r-i+n_{y}) \right) \right]^{\lambda}.$$

For $i = 1, 2, \ldots, r$, since

$$n - (r - i + n_y + n'_z) - (r - i + n_y)$$

= $n - 2r - 2n_y - n'_z + 2i$
= $(n - r - n_y) - (r + n_y + n'_z) + 2i$
 $\ge d(x, w) + n_x + n'_z - (r + n_y + n'_z) + 2i$
= $d(x, w) + n_x - (r + n_y) + 2i > 0$,

we have $r - i + n_y < n - (r - i + n_y + n'_z)$. So for i = 1, 2, ..., r, we have $r - i + n_y < min\{r - i + n_y + n'_z, n - (r - i + n_y + n'_z)\} \leq \frac{n}{2}$, which implies that ${}^{m}W_{\lambda}(z_{i-1}z_i, T') > {}^{m}W_{\lambda}(z_{i-1}z_i, T)$ if $\lambda > 0$ and ${}^{m}W_{\lambda}(z_{i-1}z_i, T') < {}^{m}W_{\lambda}(z_{i-1}z_i, T)$ if $\lambda < 0$. Hence we have ${}^{m}W_{\lambda}(T') > {}^{m}W_{\lambda}(T)$ if $\lambda > 0$ and ${}^{m}W_{\lambda}(T') < {}^{m}W_{\lambda}(T)$ if $\lambda < 0$. \Box

Lemma 5. Let $T \in \mathcal{T}_{n,p}$ with $V_1(T) = \{x, y\}$. Let $P = P_T(x, y)$ with $n_y = n_y(P) \le \frac{n}{2}$. If $C_y(P)$ is not a star, then there is a tree $T^* \in \mathcal{T}_{n,p}$ with $V(T^*) = V(T)$, $|V_1(T^*)| = \{x, y^*\}$ and $P^* = P_{T^*}(x, y^*)$ such that $n_x(P^*, T^*) = n_x(P, T)$, $C_{y^*}(P^*, T^*)$ is a star, ${}^{m}W_{\lambda}(T^*) > {}^{m}W_{\lambda}(T)$ if $\lambda > 0$ and ${}^{m}W_{\lambda}(T^*) < {}^{m}W_{\lambda}(T)$ if $\lambda < 0$.

Proof. Since $C_y(P)$ is not a star, it has a branch B at y, which is a path P_s with $s \ge 2$. Let v be the vertex in B that is adjacent to y in T. Denote by $u_1, u_2, \ldots, u_{d_T(y)-2}$ all other neighbors of y outside P. Let T' be the tree obtained from T by removing edge yu_i and replacing it with an edge vu_i for all $i = 1, 2, \ldots, d_T(y) - 2$. It is easy to see that

$${}^{m}W_{\lambda}(T') - {}^{m}W_{\lambda}(T) = {}^{m}W_{\lambda}(yv, T') - {}^{m}W_{\lambda}(yv, T)$$

= $[(n_{y} - 1)(n - n_{y} + 1)]^{\lambda} - [s(n - s)]^{\lambda}$

Since $s < n_y - 1 < \frac{n}{2}$, we have ${}^m\!W_{\lambda}(T') > {}^m\!W_{\lambda}(T) > 0$ if $\lambda > 0$ and ${}^m\!W_{\lambda}(T') < {}^m\!W_{\lambda}(T) > 0$ if $\lambda < 0$. \Box

Lemma 6. Let $T \in \mathcal{T}_{n,p}$ with $V_1(T) = \{x, y\}$. Let $P = P_T(x, y)$ with $n_x = n_x(P) > \frac{n}{2}$. If $C_x(P,T)$ is not a star and $C_y(P,T)$ is a star, then either there is a tree $T^* \in \mathcal{T}_{n,p}$ with $V(T^*) = V(T)$, $V_1(T^*) = V_1(T)$ and $P_{T^*}(x, y) = P$ such that $n_x(P,T^*) \leq \frac{n}{2}$, $C_x(P,T^*)$ has exactly one branch with at least two vertices and $C_y(P,T^*)$ is a star, or $T^* = D_{n,p,1}$. In either case, ${}^mW_\lambda(T^*) \geq {}^mW_\lambda(T)$ if $\lambda > 0$ and ${}^mW_\lambda(T^*) \leq {}^mW_\lambda(T)$ if $\lambda < 0$.

Proof. There are two cases.

Case 1. There are two branches, say B_1 and B_2 of $C_x(P,T)$ at x with $B_1 = P_{s_1}$, $B_2 = P_{s_2}$, and $s_2 \ge s_1 \ge 2$. Let u (resp. v) be the pendent vertex of T in B_1 (resp. B_2). Let T' be the tree obtained from T by removing the edge incident with u and adding an edge vu. By similar argument as in Lemma 2, we have ${}^m\!W_\lambda(T') > {}^m\!W_\lambda(T)$ if $\lambda > 0$ and ${}^m\!W_\lambda(T') < {}^m\!W_\lambda(T)$ if $\lambda < 0$.

Case 2. There is exactly one branch, say P_s of $C_x(P,T)$ at x with $s \ge 2$. Label the vertices of P as $x = z_0, z_1, \ldots, z_r = y$. For a pendent edge xu of T, let T' be the tree obtained from T by removing edge xu and replacing it with an edge yu. It is easy to see that

$${}^{m}W_{\lambda}(T') - {}^{m}W_{\lambda}(T) = {}^{m}W_{\lambda}(z_{0}z_{1},T') - {}^{m}W_{\lambda}(z_{r-1}z_{r},T)$$
$$= [(n_{x}-1)(n-n_{x}+1)]^{\lambda}$$
$$- [(n_{x}+r-1)(n-n_{x}-r+1)]^{\lambda}.$$

$$\begin{split} & \textbf{Subcase 2.1.} \ n_x > \frac{n+1}{2} \ . \ \text{We have} \ n_x \geq \frac{n}{2} + 1 \ \text{and then} \ n - n_x - r + 1 < n - n_x + 1 \leq \frac{n}{2} \ . \\ & \text{Thus we have} \ ^m\!W_\lambda(T') > ^m\!W_\lambda(T) \ \text{if} \ \lambda > 0 \ \text{and} \ ^m\!W_\lambda(T') < ^m\!W_\lambda(T) \ \text{if} \ \lambda < 0 \ . \\ & \textbf{Subcase 2.2.} \ n_x = \frac{n+1}{2} \ \text{and} \ r > 1 \ . \ \text{Then we have} \ n - n_x - r + 1 = \frac{n+1}{2} - r < \frac{n-1}{2} = n_x - 1 \ \text{and so} \ ^m\!W_\lambda(T') > ^m\!W_\lambda(T) \ \text{if} \ \lambda > 0 \ \text{and} \ ^m\!W_\lambda(T') < ^m\!W_\lambda(T) \ \text{if} \ \lambda < 0 \ . \\ & \textbf{Subcase 2.3.} \ n_x = \frac{n+1}{2} \ \text{and} \ r = 1 \ . \ \text{Then we have} \ n - n_x - r + 1 = \frac{n-1}{2} = n_x - 1 \ \text{and so} \ ^m\!W_\lambda(T') = ^m\!W_\lambda(T) \ . \end{split}$$

Iterating the transformations from T to T' in Cases 1 and 2 yields the tree T^* as required. $\hfill \Box$

Lemma 7. Let $T = D_{n,p,r}$ with $r < \lfloor \frac{p}{2} \rfloor$. Then ${}^{m}W_{\lambda}(S_{n,p}) > {}^{m}W_{\lambda}(T)$ if $\lambda > 0$ and ${}^{m}W_{\lambda}(S_{n,p}) < {}^{m}W_{\lambda}(T)$ if $\lambda < 0$.

Proof. Since $r < \lfloor \frac{p}{2} \rfloor$, it is easy to see that

$${}^{m}W_{\lambda}(D_{n,p,r+1}) - {}^{m}W_{\lambda}(D_{n,p,r}) = \left[(n-p+r)(p-r)\right]^{\lambda} - \left[(r+1)(n-r-1)\right]^{\lambda}.$$

Since $r + 1 < \min\{n - p + r, p - r\} \le \frac{n}{2}$, we have ${}^{m}W_{\lambda}(D_{n,p,r+1}) > {}^{m}W_{\lambda}(D_{n,p,r})$ if $\lambda > 0$ and ${}^{m}W_{\lambda}(D_{n,p,r+1}) < {}^{m}W_{\lambda}(D_{n,p,r})$ if $\lambda < 0$. Iterating the procedure, we prove the lemma. \Box

Theorem 8. Let $T \in \mathcal{T}_{n,p}$ and $T \neq S_{n,p}$, where $3 \leq p \leq n-2$. Then

$$\begin{split} & {}^{m}\!W_{\lambda}(T) < {}^{m}\!W_{\lambda}(S_{n,p}) \quad if \quad \lambda > 0 \\ & {}^{m}\!W_{\lambda}(T) > {}^{m}\!W_{\lambda}(S_{n,p}) \quad if \quad \lambda < 0 \,. \end{split}$$

Proof. If $|V_1(T)| = 1$ and $T \neq D_{n,p,1}$, then from the proof of Lemma 2 we have ${}^{m}W_{\lambda}(D_{n,p,1}) > {}^{m}W_{\lambda}(T)$ for $\lambda > 0$ and ${}^{m}W_{\lambda}(D_{n,p,1}) < {}^{m}W_{\lambda}(T)$ for $\lambda < 0$.

If $|V_1(T)| \geq 3$, then by Lemma 4, there is a tree $T^* \in \mathcal{T}_{n,p}$ with $|V_1(T^*)| = 2$ such that ${}^m\!W_\lambda(T^*) > {}^m\!W_\lambda(T)$ for $\lambda > 0$ and ${}^m\!W_\lambda(T^*) < {}^m\!W_\lambda(T)$ for $\lambda < 0$. So suppose that $|V_1(T)| = 2$. Let $V_1(T) = \{x, y\}$ and $P = P_T(x, y)$, $n_x = n_x(P, T)$ and $n_y = n_y(P, T)$.

Suppose that T is not a generalized double star. There are two cases.

Case 1. $n_x, n_y \leq \frac{n}{2}$. By Lemma 5, there is a generalized double star $D \in \mathcal{T}_{n,p}$ satisfying ${}^mW_{\lambda}(D) > {}^mW_{\lambda}(T)$ if $\lambda > 0$ and ${}^mW_{\lambda}(D) < {}^mW_{\lambda}(T)$ if $\lambda < 0$.

Case 2. $\max\{n_x, n_y\} > \frac{n}{2}$, say, $n_x > \frac{n}{2}$. Then $n_y < \frac{n}{2}$. If $C_y(P,T)$ is not a star, we have by Lemma 5 that there is a tree $T' \in \mathcal{T}_{n,p}$ with V(T') = V(T), $|V_1(T')| = \{x, y'\}$ and $P' = P_{T'}(x, y')$ such that $n_x(P', T') = n_x$, $C_{y'}(P', T')$ is a star, ${}^mW_\lambda(T') > {}^mW_\lambda(T)$ if $\lambda > 0$ and ${}^mW_\lambda(T') < {}^mW_\lambda(T)$ if $\lambda < 0$. If $C_x(P', T')$ is not a star, we have by Lemma 6 that either there is a tree $T'' \in \mathcal{T}_{n,p}$ with V(T'') = V(T'), $V_1(T'') = V_1(T')$, $P_{T''}(x, y') = P'$ such that $n_x(P', T'') \leq \frac{n}{2}$, $C_x(P', T'')$ has exactly one branch with at least two vertices and $C_{y'}(P', T'')$ is a star, or T'' is the generalized double star $D_{n,p,1}$, satisfying ${}^mW_\lambda(T'') \geq {}^mW_\lambda(T')$ if $\lambda > 0$ and ${}^mW_\lambda(T'') \leq {}^mW_\lambda(T')$

if $\lambda < 0$ in either case. Now using Lemma 5 again if $T'' \neq D_{n,p,1}$, there is a generalized double star $D' \in \mathcal{T}_{n,p}$ satisfying ${}^{m}W_{\lambda}(D') > {}^{m}W_{\lambda}(T'') > {}^{m}W_{\lambda}(T)$ if $\lambda > 0$ and ${}^{m}W_{\lambda}(D') < {}^{m}W_{\lambda}(T'') < {}^{m}W_{\lambda}(T)$ if $\lambda < 0$. Thus for D = D' or $D_{n,p,1}$, we have ${}^{m}W_{\lambda}(D) > {}^{m}W_{\lambda}(T)$ if $\lambda > 0$ and ${}^{m}W_{\lambda}(D) < {}^{m}W_{\lambda}(T)$ if $\lambda < 0$.

Combining Cases 1 and 2 and using Lemma 7, the result follows. \Box

By Theorems 3 and 8, we obtain the main result of this paper:

Theorem 9. Let $T \in \mathcal{T}_{n,p}$ and $T \neq F_{n,p}, S_{n,p}$, where $3 \leq p \leq n-2$. Then

$${}^{m}\!W_{\lambda}(F_{n,p}) < {}^{m}\!W_{\lambda}(T) < {}^{m}\!W_{\lambda}(S_{n,p}) \quad if \quad \lambda > 0$$
$${}^{m}\!W_{\lambda}(S_{n,p}) < {}^{m}\!W_{\lambda}(T) < {}^{m}\!W_{\lambda}(F_{n,p}) \quad if \quad \lambda < 0 .$$

By Theorem 9, the trees in $\mathcal{T}_{n,p}$ with the smallest and the largest λ -modified Wiener indices are determined for any nonzero real λ . The λ -modified Wiener indices of the extremal trees are given by

$${}^{m}W_{\lambda}(F_{n,p}) = p \sum_{i=1}^{k} [i(n-i)]^{\lambda} + (n-1-pk) [(k+1)(n-k-1)]^{\lambda}$$
$${}^{m}W_{\lambda}(S_{n,p}) = p(n-1)^{\lambda} + \sum_{i=1}^{n-1-p} \left[\left(\left\lfloor \frac{p}{2} \right\rfloor + i \right) \left(n - \left\lfloor \frac{p}{2} \right\rfloor - i \right) \right]^{\lambda}$$

where $k = \lfloor \frac{n-1}{p} \rfloor$.

We point out that the notation in [10] can be used in proof of all our lemmas and theorems.

Vukičević and Žerovnik [13] initiated the study of the variable Wiener indices, defined as

$$_{\lambda}W(T) = \frac{1}{2} \sum_{e \in E(T)} \left[|V(T)|^{\lambda} - n_{T,1}(e)^{\lambda} - n_{T,2}(e)^{\lambda} \right].$$

Let $T \in \mathcal{T}_{n,p}$ and $T \neq F_{n,p}$, $S_{n,p}$, where $3 \leq p \leq n-2$. Using the fact that the function $g(t) = t^{\lambda} + (n-t)^{\lambda}$ is decreasing if $\lambda > 1$ and increasing if $\lambda < 1$ for $1 \leq t \leq \frac{n}{2}$ and similar arguments as above, we can obtain the following similar result for variable Wiener indices $_{\lambda}W$:

$$\begin{split} {}_{\lambda}\!W(F_{n,p}) &< {}_{\lambda}\!W(T) < {}_{\lambda}\!W(S_{n,p}) & \text{if} \quad \lambda > 1 \\ \\ {}_{\lambda}\!W(S_{n,p}) &< {}_{\lambda}\!W(T) < {}_{\lambda}\!W(F_{n,p}) & \text{if} \quad \lambda < 1 \,. \end{split}$$

Acknowledgement. This work was supported by the Guangdong Provincial Natural Science Foundation of China (No. 05005928). We are grateful to the referees for their valuable comments and suggestions.

References

- H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17–20.
- R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
- [3] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986.
- [4] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (2001) 211–249.
- [5] I. Gutman, D. Vukičević, J. Zerovnik, A class of modified Wiener indices, Croat. Chem. Acta 77 (2004) 103–109.
- [6] S. Nikolić, N. Trinajstić, M. Randić, Wiener index revisited, *Chem. Phys. Lett.* 333 (2001) 319–321.
- [7] I. Gutman, J. Zerovnik, Corroborating a modification of the Wiener index, Croat. Chem. Acta 75 (2002) 603–612.
- [8] D. Vukičević, Distinction between modifications of Wiener indices, MATCH Commun. Math. Comput. Chem. 47 (2003) 87–105.
- M. Gorše, J. Žerovnik, A remark on modified Wiener indices, MATCH Commun. Math. Comput. Chem. 50 (2004) 109–116.
- [10] D. Vukičević, I. Gutman, Note on a class of modified Wiener indices, MATCH Commun. Math. Comput. Chem. 47 (2003) 107–117.
- [11] I. Gutman, I. Vidović, B. Furtula, I. G. Zenkevich, Wiener-type indices and internal molecular energy, Serb. Chem. Soc. 68 (2003) 401–408.
- [12] B. Lučić, A. Miličević, S. Nikolić, N. Trinajstić, On variable Wiener index, Indian J. Chem. 42A (2003) 1279–1282.
- [13] D. Vukičević, J. Žerovnik, Variable Wiener indices, MATCH Commun. Math. Comput. Chem. 53 (2005) 385–402.
- [14] J. W. Moon, On the total distance between nodes in trees, Systems Sci. Math. Sci. 9 (1996) 93–96.