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Abstract

The permanent of the adjacency matrix of a fullerene Cn is related to structural parameters

involving the presence of contiguous pentagons p, q and r, so that the permanent of the adjacency

matrix can be predicted through those structural parameters. This is more meaningful for n large,

since the computation of permanent is proved to be a #P -complete problem in counting. However

structural parameters p, q and r become all zero for isolated-pentagon isomers when n is large (say

n ≥ 60). New structural parameters u, v and w are introduced in this paper, which count two or three

contiguous hexagons. The stepwise regression model is used to predict the permanents of adjacency

matrices of fullerenes. Computational results show that our new models are simple, reliable and

efficient.

1 Introduction

A fullerene Cn is a polyhedral carbon cage with n atoms arranged in 12 pentagonal and (n− 20)/2

hexagonal rings. It is well known that the stability of the fullerene Cn is related to the adjoining

of pentagons and hexagons[1, 2, 3, 4]. For example, a structure in which a pentagon is completely

surrounded by hexagons is believed to be more stable[1, 5, 6].

The adjacency matrix A = (ai,j) for a graph with n vertexes is an n × n (0-1)-matrix. The value

of each ai,j is taken to be 1, if there exists an edge between the vertexes i and j; and 0 otherwise.

The permanent of the adjacency matrix and Kekulé structure count are both important and widely
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used metrics for fullerenes[7, 8]. They are strongly associated with their stability. Efficient algorithms

are developed for computing the Kekulé structure count[3, 9, 10]. The Kekulé structure counts for all

1812 distinct fullerene isomers of C60 have been reported[2]. However, computing the permanent of the

adjacency matrix is a hard task[11, 12, 13, 14].

The permanent of an n× n matrix A = [aij ] is defined as

per(A) =
∑

σ∈Λn

n∏

i=1

aiσ(i),

where Λn denotes the set of all possible permutations of {1, 2, ..., n}. The definition of per(A) looks

similar to the determinant of matrix det(A). We all know that det(A) can be calculated in O(n3) time.

However, there is no efficient algorithm on per(A) for general matrices. The computation of permanent is

proved to be a #P -complete problem in counting [15], which is no easier than an NP-complete problem

in combinatorial optimization. Therefore it is interesting to find the correlation between permanent and

quantitative structure-property relationship(QSPR) through representative smaller fullerenes. Cash and

Torrens give individual models that fit pentagonal parameters[13, 16, 17]. However, their results are

restricted only to smaller fullerenes (n < 60), because all pentagonal parameters p, q and r vanish for

isolated-pentagon isomers. In order to predicting large fullerenes (n > 60), hexagonal parameters should

be taken into account.

In the next section, structural parameters are discussed and some new parameters are introduced.

Computational methods used in this paper, are presented in section 3. Calculation results with new

structural parameters are given in section 4, and some discussions are also made.

2 Structural Parameters

The structural features involving adjacent pentagons are encoded by the parameters p, q and r. Figure

2.1 shows the local structures that contribute to the values of p, q and r respectively.

p q r

Figure2.1: Substructures that contribute to the p, q and r counts

The parameters p and q enumerate the number of edges common to two pentagons and the number

of vertices common to three pentagons respectively[18]. The parameter r counts the number of pairs of

nonadjacent pentagon edges shared with two other pentagons [13].
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Cash uses a group of 27 fullerenes to correlate ln[per(A)] with structural parameters p, q and r [13].

After removing the outliers, a linear model is given by (1).

ln[per(A)] = 18.8884− (0.5183± 0.1572)p + (0.3482± 0.1039)q − (0.0482± 0.0361)r, (1)

with R = 0.909, s = 0.748, where R is correlation coefficient, and s is the standard error of the estimation.

Torrens uses a group of 29 fullerenes to correlate ln[per(A)] with the structural parameters p, q, r

[16, 17]. A linear model is obtained as (2).

ln[per(A)] = 20.2− 0.660p + 0.383q, (2)

with R = 0.949, s = 0.757, F = 118.5 and MAPE = 4.05%, AEV = 0.0988. Here MAPE is the mean

absolute percentage error and AEV is the approximation error variance. By viewing the values of R and

s, one can see that (2) is a better model, comparing with (1).

By considering interactive effects of structural parameters p, q and r [16, 17], a nonlinear model is

given by Torrens as (3).

ln[per(A)] = 20.0− 0.666p + 0.616q − 0.00850pq, (3)

with MAPE = 3.90%; AEV = 0.0871.

The results of Torrens improve that of Cash. However such an improvement is still limited, since the

structural parameters p, q and r all vanish for isolated-pentagon isomers.

We consider the structure of adjacent hexagons and introduce three new structural parameters u, v

and w accordingly. The u and v enumerate, respectively, the number of edges common to two hexagons

and the number of vertices common to three hexagons. The variable w counts the number of pairs of

nonadjacent hexagon edges shared with two other hexagons. Thus, v and w complement each other by

counting the two possible arrangements of three contiguous hexagons.

u v w

Figure2.2: Substructures that contribute to the u, v and w counts
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Table 2.1: Values of Parameters and Counts for Fullerenes

Fullerene K per(A) ln[per(A)]
ln(K) p q r u v w

C20(Ih) 36 1392 2.0199 30 20 30 0 0 0

C24(D6d) 54 4692 2.1192 24 12 36 0 0 0

C26(D3h) 63 8553 2.1853 21 8 30 0 0 0

C28(Td) 75 15705 2.2378 18 4 24 0 0 0

C28(D2) 90 16196 2.1540 20 8 24 2 0 0

C30(C2v)I 107 29621 2.2034 17 4 20 2 0 0

C30(C2v)II 117 30053 2.1651 18 6 20 3 0 1

C30(D5h) 151 31945 2.0672 20 10 20 5 0 5

C32(D3) 144 55140 2.1968 15 2 18 3 0 0

C32(C2)I 151 55705 2.1780 16 4 16 4 0 2

C32(C2)II 168 57092 2.1375 17 6 16 5 0 4

C32(D2) 184 58384 2.1045 18 8 15 6 0 6

C34(C3v) 195 103665 2.1902 15 3 15 6 1 3

C34(Cs) 196 104484 2.1896 15 3 16 6 1 2

C34(C2)I 204 103544 2.1714 14 2 14 5 0 3

C34(C2)II 212 107720 2.1632 17 6 16 8 2 5

C36(D6h) 272 192528 2.1706 12 0 12 6 0 6

C36(D2d) 288 192720 2.1489 12 0 12 6 0 4

C36(C2v) 312 197340 2.1231 13 2 10 7 0 6

C36(D3h) 364 207924 2.0764 15 6 6 9 0 12

C38(C2v) 360 366820 2.1768 14 2 14 11 4 6

C38(C3v) 378 363300 2.1572 12 1 9 9 1 6

C38(D3h) 456 411768 2.1116 18 8 18 15 6 12

C40(D5d)I 562 691092 2.1237 10 0 10 10 0 10

C40(Td) 576 704640 2.1185 12 4 0 12 0 18

C40(D5d)II 701 803177 2.0750 20 10 20 20 10 30

C44(T ) 864 2478744 2.1775 12 4 0 18 4 24

C44(D3h) 960 2436480 2.1416 9 2 0 15 0 24

C60(Ih) 12500 395974320 2.0986 0 0 0 30 0 60

C70(D5h) 52168 9193937544 2.1121 0 0 0 45 10

C80(Ih) 140625 189275868081 2.1906 0 0 0 60 20

C140(Ih) 2167239697 0 0 0 150 80

C180(Ih) 1389029765625 0 0 0 210 120

C240(Ih) 21587074966666816 0 0 0 300 180
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Values of p, q, r, u, v and w for some fullerenes are listed in Table 2.1. One can see clearly that p, q

and r are all zero, as n ≥ 60. The exact values of Kekulé structure count K and permanent per(A) are

also given, if possible, for later reference[19].

Note that chemists argue that the ratio

ln[per(A)]
ln(K)

should be bigger than, but not too far away from 2 for fullerenes and structurally similar systems[13, 14].

Hence those ratios are also included in Table 2.1.

3 Computational Method

Regression analysis is a statistical method for predicting values of one or more response (dependent)

variables from a collection of predictor (independent) variable values. It can also be used for assessing

the effects of the predictor variables on the responses.

The classical linear regression model: Let x1, x2, · · · , xr be r predictor variables thought to be

related to a response variable Y . The classical linear regression model states that Y is composed of

a mean, which depends in a continuous manner on the xi’s, and a random error ε, which acounts for

measurement error and the effects of other variables not explicitly considered in the model. The values

of the predictor variables recorded from the experiment or set by the investigator are treated as fixed.

The error (and hence the response) is viewed as a random variable whose behavior is characterized by a

set of distributional assumptions.

Specifically, the linear regression model with a single response takes the form

y = β0 + β1x1 + · · ·+ βrxr + ε

{[response] = [mean(depending on x1 · · · ] + [error]}

The term ’linear’ refers to the fact that the mean is a linear function of the unknown parameters

β0, β1 · · · , βr. The predictor variables may or may not enter the model as first-order terms.

Stepwise regression: Stepwise selection begins with no candidate effects in the model and then

systematically adds effects that are significantly associated with the target. However, after an effect

is added to the model, stepwise may remove any effect already in the model that is not significantly

associated with the target variable anymore.

In modeling it is essential to determine the complexity of the model to avoid overfitting. The predictive

capability of the resulting model depends on the quality of the data(the more and better the data

available, the more accurate prediction is possible) and on the number k of significant latent variables

necessary. In stepwise selection several practical and reliable criteria are used for testing this significance,
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such as Akaike’s Information Criterion(AIC)[20, 21], Bayesian information criterion(BIC)[22] and cross-

validation[23].

Based on the observations of the preceding section an information criterion AIC of θ is defined by

AIC(θ̂) = (−2)log(maximun likelihood) + 2k

where k is the number of independently adjusted parameters to get θ̂.

An asymptotic approximation of the integrated likelihood, valid under regularity conditions, has been

proposed by Schwarz[22]

logf(x|m,K) ≈ log(x|m,K, θ̂)− vm,K

2
log(n)

where θ̂ = arg maxθ f(x|m,K, θ) is the ML estimate of θ, and vm,K is the number of free parameters in

the model m with K components. It leads to minimize the so-called BIC criterion

BIC = (−2)Lm,K + vm,K lnn

where Lm,K = log(x|m,K, θ̂) is the maximum log-likelihood for m and K.

4 Calculation Results

Using the stepwise regression, the best correlation of ln[per(A)] with parameters p, q, r, u, v and w is

obtained as (4).

ln[per(A)] = 13.27932− 0.20102p + 0.21662u, (4)

with n = 29, R = 1.0000, s = 0.0163778055 and F = 283000. The quantity R gives the proportion of

the total variation in the y’s ”explained” by, or attributable to, the predictor variables p, q, r, u, v and w.

Besides the great improvement in R, the standard error of the estimate(s) for (4) is much less than those

for (1)-(3). Furthermore that R is 1.0000 demonstrates that these two parameters (p and u) can almost

give full information of ln[per(A)], as shown by Figure 4.1.
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Figure4.1: The relations between ln per(A) and predicted ln per(A)
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Note that the same equation (4) is obtained by using the three different methods(AIC, BIC, Cross-

validation) for testing its significance. It gives AIC = −235.652814, BIC = −233.1934 and MAPE =

0.09%; AEV = 0.00025. Furthermore the standard errors of the estimations of the intercept, the param-

eter p and u are 0.01612, 0.00078453 and 0.00061269 respectively, which are all very small. From the

procedure of the stepwise regression, the contribution of u is the most important factor, and that of p is

the next.

Computational results of the estimated permanents, in particular for some large fullerenes, are given

in Table 4.1.

Table 4.1: Estimation values of permanent for fullerenes

ln per(A)
Fullerene

linear fit exact ref.13 ref.16

C32(D3d) 10.9607 10.9794

C44(C2) 14.8287 14.8065

C50(D3h) 16.8094 16.8969

C70(D5h) 23.0271 22.9418 18.8884 20.2000

C80(Ih) 26.2764 25.9665 18.8884 20.2000

C140(Ih) 45.7723

C180(Ih) 58.7695

C240(Ih) 78.2653

linear fit: computed with new parameters;

exact: the exact values that computed with the method in [19];

ref.13: estimations by Cash [13];

ref.16: estimations by Torrens [16].

Comparing results in Table 4.1, one can see that our model with new parameters is simple, reliable

and efficient at least for cases of n ≤ 80. When n becomes even larger, it is too hard to calculate the

exact values of permanents of adjacency matrices of fullerenes.

Table 4.2: Estimation values of the ratio for fullerenes

ln[per(A)]/ lnK
Fullerene

exact ref.13 ref.16 estimation

C70(D5h) 2.1121 1.6895 2.0868 2.1199

C80(Ih) 2.1906 1.6895 2.0868 2.2167

C140(Ih) 2.1293

C180(Ih) 2.1019

C240(Ih) 2.0809
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exact: computed by taking quotient of exact values of ln per(A)

from Table 4.1 and that of K from Table 2.1;

ref.13: estimations by Cash [13];

ref.16: estimations by Torrens [16];

estimation: computed by taking quotient of estimated values of

ln per(A) from Table 4.1 and exact values of K.

Results in Table 4.2 give the ratio of estimated values of ln[per(A)] and the exact values of ln(K).

Those give very strong evidences, which show that our model with new parameters are quite promising

for large fullerenes.

Considering the structure of adjacent hexagons, three new parameters u, v and w are introduced in

this paper. A simple linear correlation is proved to be a good model for the permanent of the adjacency

matrix of fullerene, and q,r,v,w are redundant information. Thus p and u contain the essential characters

of the permanent for fullerene structure. The method proposed in this paper allows rapid estimation of

per(A) for large enough fullerenes.
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counts versus stability. Chem. Phys. Lett. 1994, 228, 478-484.

[3] Schmalz, T. G.; Seitz, W. A.; Klein, D. J.; Hite, G. E. C60 carbon cages. Chem. Phys. Lett. 1986, 130,

203-207.

[4] Schmalz, T. G.; Seitz, W. A.; Klein, D. J.; Hite, G. E. Elemental carbon cages. J. Amer. Chem. Soc. 1988,

110, 1113-1127.

[5] Barth, W. E.; Lawton, R. G. Synthesis of corannulene. J. Amer. Chem. Soc. 1971, 93, 1730-1745.

[6] Manolopoulos, D. E. Comment on ”Favourable structures for higher fullerenes”. Chem. Phys. Lett. 1992,

192, 330.
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