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Abstract

Let G be a finite hexagonal system with boundary embedded in the 3-
dimensional space. We consider the dependence of the spectral moments Mk(G)
and the total π-electron energy Eπ(G) on the molecular structure of G. Our
formulas involve the classical structural invariants of G and the rank of the
fundamental group π1(G), which is a (non-abelian) free group. Our results
generalize the benzenoid formulas (where π1(G) = 0).

A hexagonal system is a finite connected graph, in the 3-dimensional space, with
all edges lying on regular hexagons. Hexagonal systems have been extensevely studied
as natural representations of benzenoid hydrocarbons, in case the system is planar,
(see for example [6, 5]); the recent development of nanotechnology requires the con-
sideration of tubes, cones and other spacial structures (see [11]), and more interesting
from the mathematical point of view, the synthesis of new hydrocarbons including
knotted rings and linked rings (catananes), Möbius strips and other topologicaly rel-
evant structures is a booming field [4, 14, 15].

In the Hückel theory the total π-electron energy of a bipartite graph G is defined as

the sum Eπ(G) =
n
∑

i=1

|λi| of the absolute values of the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn

of the adjacency matrix A(G) of G. This energy is in good correlation with the
observed heats of formation of the corresponding conjugated hydrocarbons and it is
related with other chemical invariants [6, 5].

The k-th spectral moment of G is defined as Mk(G) =
n
∑

i=1

λk
i , for k even. Since the

pioneering work of Hall [9], spectral moments found multiple applications in quantum
chemistry, solid state physical chemistry, the calculation of π-electron energy (see for
example [5, 7, 16, 17, 8]). A problem considered in detail is the dependence of Mk(G)



and Eπ(G) on the molecular structure of G. This dependence was resolved for k ≤ 12
in any benzenoid system. Not much seems to be known for other types of hexagonal
systems.

Let G be a hexagonal system with boundary in the 3-dimensional space. Recently,
we introduced the consideration of the fundamental group π1(G) of G which is a free
(non-abelian) group of rank rk (G), [2, 3]. If rk (G) = 0, the system G is planar
and hence G represents a benzenoid hydrocarbon. For rk (G) > 0, we shall provide
expressions for Mk(G), k = 2, 4, 6, 8, depending on the structure of G. In particular,
showing that

rk (G) =
1

12
(M4(G) − 3M2(G)) − h(G) + 1,

where h(G) denotes the number of hexagons in the system G. Our formulas generalize
the equations obtained in [16, 17, 18].

We shall consider the problem of evaluation of Eπ(G) for hexagonal systems G
with rk (G) > 0. Among other things, we prove that the bounds

(

16

27

)1/2
√

2n(G)m(G) ≤ 2
√

2m(G)

√

m(G)

M4(G)
≤ Eπ(G) ≤

√

2n(G)m(G)

given by McClelland [12] and the authors [1] in the benzenoid case, still hold for our
more general setting, where n(G) (resp. m(G)) denotes the number of vertices (resp.
of edges) of G.

Moreover, we consider the approximation of Eπ(G) by the truncated expansions

Eπ(L) =
L
∑

q=0

α2qM2q(G) − α0σ(L), where σ(L) is the number of zero eigenvalues

of A(G), as calculated in [17]. We shall give explicit expressions for Eπ(L), L =
0, 1, 2, 3, 4, for (regular) hexagonal systems, generalizing known formulas (3.2).

According to Hückel theory Eπ(G) measures the energy in the local bonds between
neighbouring carbons, but examples show (section 3) that spectral moments and
energy may be ‘blind’ with respect to the global structure of G. In forthcoming work
we shall propose the introduction of the interlacing energy which depends on the knot
structure of the valued graph (∆G, vG) associated to G according to [3].

1. Spacial hexagonal systems: structure and invariants.

1.1. A hexagonal system G = (G0, G1,H(G)) is given by a set of vertices G0, a set
of edges G1 ⊂ G2

0 and a set H(G) ⊂ G6
1 of hexagons, satisfying:

(H1) each edge e = {x, y} ∈ G2
0, satisfies x 6= y and belongs to a hexagon (that is,

there is e′ ∈ G5
1 with (e, e′) ∈ H(G));
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(H2) each vertex x ∈ G0, belongs to at most 3 edges in G (that is, the degree d(x) ≤
3);

(H3) each hexagon {e1, e2, . . . , e6} is formed by pairwise different edges with ei ∩ ei+1

a single vertex, for i = 1, . . . , 6 and e7 = e1. Moreover, two hexagons have at
most one edge in common.

For a sextuple ei = {xi, xi+1} ∈ G2
0, 1 ≤ i ≤ 6 and x1 = x7, in case h =

{e1, e2, . . . , e6} ∈ H(G) we draw the picture:

e

e

e e

ee

1

2

3

4

5

6

h

We denote by n(G) (resp. m(G), h(G)) the number of vertices (resp. edges,
hexagons) of the system G.

1.2. Let G = (G0, G1,H(G)) be as above. Fix (s, t) an orientation of the edges of
G, that is, e = {x, y} = {s(e), t(e)} and write an arrow s(t)

e−→ t(e) and its inverse
t(e)

e−1

−→ s(e).
Recall from [2] the definition of the fundamental group π1(G):
Fix a vertex x0 ∈ G0. Consider the group W (G, x0) of all closed walks in G

starting and ending at x0 (the trivial walk τx0
is the identity). Define a homotopy

relation ∼ in W (G, x0) induced by:

(a) If e = {x, y} ∈ G1, then ee−1 ∼ τt(e) and e−1e ∼ τt(e);

(b) If {e1, . . . , e6} ∈ H(G), choose εi ∈ {1,−1} such that eε1

1 . . . eε6

6 is an oriented
path, then

eεi

i e
εi+1

i+1 . . . eε6

6 eε1

1 . . . e
εi−1

i−1 ∼ τxi
with xi ∈ {s(ei), t(ei)};

(c) If u ∼ v, then wuw′ ∼ wvw′, whenever the products make sense.

We set π1(G, x0) = W (G, x0)/ ∼ which inherits the group structure of W (G, x0)
and does not depend on the choice of x0. Hence π1(G) = π1(G, x0).
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Theorem [2, 3] Let G be a hexagonal system with boundary. The following holds:

a) there is a graph ∆G ↪→ R
3 such that π1(G) = π1(∆G) and π1(G) is therefore a

free (non-abelian) group with rank rk (G) = m(G) − h(G) − n(G) + 1;

b) the graph ∆G is 3-regular with 2(rk (G) − 1) vertices;

c) there are knot configurations G1, . . . , Gs (with s = rk (G)) induced by full sub-
graphs of G, such that, choosing ci a closed walk in the boundary of Gi (1 ≤ i ≤
s) we get a system of generators of π1(G);

d) the valuation vG(ci) = mi counts the number of half-twists of Gi.

1.3. Examples:

(1) The following hexagonal systems:

G =
1

n(     , v ) =∆

   

.   .   .

n− half  twists

.   .   .

n− half  twists

3

2

1
1

2

3

G =
2

are called n-conic configurations. If the twists are in the opposite direction, we called
them (−n)-conic configurations. The associated graph with valuation is (∆, v) in
both cases.
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(2)

   

0

−1 −1

0

(       ,v     ) =∆G G

The graph ∆G ↪→ R
3 can be transformed in the second graph via Reidemeister

moves [19]. We say that ∆G is a knotted graph.
(3) Given any knot K and a number n ∈ Z, we consider the link K(n) formed as

in the following example for the trifoil knot and n = 2:

.  .  .
in   K     K in   K(n)

(n > 0)

K = K(2) =

That is, in the link formed by two copies of K, an interval [0, 1]
∐

[0, 1], as the
enclosed in the dotted square, is substituted by the link with n half-twists. The
crossings are the opposites if n < 0. The CW -complex associated to K(n), denoted
by cw(K(n)), is defined in the obvious way.
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Any hexagonal system G whose associated CW -complex cw(G) is homeomorphic
to cw(K(n)) for a link K(n) is called a knot configuration (of type n). Examples (2)
and (3) are particular instances of knot configurations.

1.4. We shall consider a hexagonal system G = (G0, G1,H(G)) with boundary. We
say that x ∈ G0 is an interior vertex if there are edges ai = {x, yi} belonging to
hexagons hi, i = 1, 2, 3, as in the picture

h1
x

h
2

h
3

We denote by i(G) the number of interior vertices of G. We say that G is a cata-
condensed system if i(G) = 0. For rk (G) = 0 and i(G) = 0, we get a catacondensed
benzenoid G and the following well-known formulae hold:

n(G) = 4h(G) + 2, m(G) = 5h(G) + 1,

M2(G) = 10h(G) + 2, M4(G) = 42h(G) − 6, M6(G) = 214h(G) − 82 + 6b,

where the invariant b = B(G) + 2C(G) + 3F (G) counts (in a weighted form) the
number of bay regions of G: B (bays), C (coves) and F (fjords) defined as in the
picture where f is the number of fissures.

   

.  .  .

f
.
.
. B

.

.

. C

F

.  .  .

For benzenoid systems (that is rk (G) = 0), the following holds [5]:

M2(G)=2m(G), M4(G)=18m(G)− 12n(G), M6(G)=158m(G)− 144n(G) + 48 + 6b
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Observe that a fissure is determined by a sequence of vertices (x1, x2, x3) on the
boundary with degrees (2, 3, 2), similarly B(G) (resp C(G), F (G)) is the number of se-
quences of vertices on the boundary with degrees (2, 3, 3, 2) (resp (2, 3, 3, 3, 2), (2, 3, 3,
3, 3, 2)). For a general hexagonal system G we shall define Bs(G) the number of gener-
alized bay regions of type (2, 3, 3, . . . , 3, 3, 2) determined by sequences of s+2 vertices
on the boundary, s of those of degree 3. In particular B1(G) = f(G), B2(G) = B(G),

etc. We shall consider the invariant t(G) =
∑

s≥1

Bs(G).

Lemma. Let G be a hexagonal system with boundary and denote

mij(G) = |{e = {x, y} ∈ G1: d(x) = i and d(y) = j}|.

Then the following hods:

m22(G) = n(G) − 2h(G) + 2(1 − rk (G)) − t(G),

m23(G) = 2t(G),

m33(G) = 3h(G) − 3(1 − rk (G)) − t(G).

Proof: By definition of the bay regions, we have m23(G) = 2t(G).
By [3, (1.5)], n3(G) = 2[h(G)− (1− rk (G))]. Since 3n3(G) = m23(G) + 2m33(G),

we get the expression for m33. Finally, using that m22(G)+m23(G)+m33(G) = m(G)
and by (1.2.a), m(G) = h(G) + n(G)− (1− rk (G)), we get the equation for m22(G).
ut

Relations between mijk and structural properties of G can be found in [13].

1.5. Proposition. Let G be a hexagonal system with boundary. The following
holds:

n(G) + i(G) = 4h(G) + 2(1 − rk (G))(1)

m(G) + i(G) = 5h(G) + (1 − rk (G)).(2)

Proof: By induction on i(G). Assume i(G) = 0, then every hexagon h ∈ H(G) has
an edge on the boundary. We proceed by induction on rk (G). The case rk (G) = 0,
yields a catacondensed benzenoid system and the result follows from (1.4).

Suppose s := rk (G) > 0, then there exists a covering p: K → G determined by
the action of Z. We may choose a fundamental domain Gf in K as in [3, (2.1)], to
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1

2 X

.  .  .

G
f

3

4 h

X

.  .  .

G

3

4

1

2

3

4

p

get the situation depicted in the diagram. Completing Gf to a hexagonal system Ḡ
we have

n(Ḡ) = n(G) + 2, m(Ḡ) = m(G) + 1, h(Ḡ) = h(G) and rk (Ḡ) = rk (G) − 1.

Moreover, by induction hypothesis,

n(Ḡ) = 4h(Ḡ) + 2(1 − rk (Ḡ)) and m(Ḡ) = 5h(Ḡ) + (1 − rk (Ḡ)),

and a substitution yields the result in this case.

Assume i(G) > 0. We claim that there is a hexagon h with an edge e = {x, y}
and a vertex z such that e lies on the boundary and z is a interior vertex. In-
deed, for each interior vertex x, let `(x) be the length of a minimal walk x =
x0

a1 x1 · · · a` x` with a` an edge on the boundary. Let x0 be an
interior vertex with minimal `(x0) (=: `) and let x = x0

a1 x1 · · · a` x`

be such that a` is on the boundary.

x
0 a

1

1x
b

al
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Since `(x1) < `(x0), then x1 is not an interior vertex. Then b is an edge on the
boundary.

Define now the hexagonal system G′ formed by deleting those edges of h on the
boundary (with the corresponding vertices). Then

n(G′) = n(G) − j, m(G′) = m(G) − (j + 1), h(G′) = h(G) − 1 and rk (G′) = rk (G),

for some 1 ≤ j ≤ 3. Moreover, i(G′) = i(G) − (4 − j). The induction hypothesis
implies the result. ut

Corollary. [2, (2.3)] Let G be a hexagonal system with boundary. Then

rk (G) = m(G) − h(G) − n(G) + 1. ut

2. Moments.

2.1. Let A = (aij) be the (n × n) adjacency matrix of (G0, G1). Observe that

d(i) =
n
∑

j=1

aij is the degree of a vertex i and w(i) =
n
∑

j=1

aijd(j) is called the weight of

i.
Let Ak = (a

(k)
ij ) be the k-th power of A. Then

Mk(G) = tr (Ak) =
n
∑

i=1

a
(k)
ii

Proposition.

(a) M2(G) = 2m(G);

(b) M4(G) = 6n2(G) + 15n3(G), where nk(G) = |{i ∈ G0: d(i) = k}|;

(c) M4(G) = 18m(G) − 12n(G).

(d) M4(G) = 42h(G) + 6(rk (G) − 1) − 6i(G).

Proof: (a): M2(G) =
n
∑

i=1

a
(2)
ii =

n
∑

i=1

d(i) = 2m(G);

(b): a
(4)
ii = d(i)2 +

n
∑

j=1

aij(d(j) − 1) = d(i)2 + w(i) − d(i). Then

M4(G) =
n
∑

i=1

a
(4)
ii =

n
∑

i=1

(d(i)2 − d(i)) +
n
∑

i=1

w(i) =
n
∑

i=1

[2d(i)2 − d(i)].
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The last equality due to
n
∑

i=1

w(i) =
∑

i,j,k

aijajk =
∑

j

(

∑

i,k

ajiajk

)

=
∑

j

d(j)2.

Finally, M4(G) =
∑

d(i)=2

[2d(i)2 − d(i)] +
∑

d(i)=3

[2d(i)2 − d(i)] = 6n2(G) + 15n3(G).

(c): Observe that n(G) = n2(G) + n3(G) and 2m(G) = 2n2(G) + 3n3(G). The
claim follows from (b). (d) follows directly from (1.2.a) and (c). ut

2.2. Proposition. Let G be a hexagonal system with boundary such that every
hamiltonian cycle x0

a1 x1
a2 · · · a6 x7 = x0 in G (xi 6= xj for i, j =

1, 2, . . . , 7) defines a hexagon in H(G). Then the following holds:

M6(G) = 146m(G) − 126n(G) + 12(1 − rk (G)) − 6t(G).

Proof: We proceed as in [18], showing that

M6(G) = 2N{2} + 12N{3} + 6N{4} + 12N{3,1} + 12N{6̄},

where N∆ denotes the number of full subgraphs in G isomorphic to ∆ and

{ i  } = 
1

{3,1} = { 6  } =
_

2
.  .  .

i−1 i

In [18], it is also shown N{2} = m(G), N{3} = 4m(G) − 3n(G), N{3,1} = 2m(G) −
2n(G) and N{6̄} = h(G) by hypothesis.

To prove the equation, we shall estimate N{4}. Namely, a full embedding u of
1 2 α 3 4 in G is of one of the following types:

(i) d(u(2)) = d(u(3)) = 2, then u(α) is of type m22 and this happens exactly once
for every edge of type m22;

(ii) d(u(2)) = 2 and d(u(3)) = 3 (or symmetrically), then u(α) is of type m23 and
this happens in exactly 2 different ways for every edge of type m23;
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(iii) d(u(2)) = 3 = d(u(3)), then u(α) is of type m33. This happens in exactly 4
different ways for every edge of type m33. Suming up:

N{4} = m22(G) + 2m23(G) + 4m33(G) = n(G) + 10h(G)− 10(1− rk (G))− t(G)

Substituting this value of N{4} in the first identity for M6(G) and using (1.4),
we get our equation. ut

We shall say that a hexagonal system G with boundary such that every closed
walk of length 6 defines a hexagon in H(G) is a regular system.

2.3. For the consideration of the moment M8(G) we introduce the following notation:

mijk(G) = |{(e, e′) ∈ G2
1: e = {x, y}, e′ = {y, z} and d(x) = i, d(y) = j, d(z) = k}|.

According to the method presented in [18], the moment M8(G) can be calculated
counting the number of certain subgraphs in the following way:

M8(G) = 2N{2} + 28N{3} + 32N{4} + 72N{3,1} + 8N{5}

+16N{4,1} + 96N{6̄} + 16N{6̄,1} + 16N{8̄},

where the graphs {4, 1}, {6̄, 1} and {8̄} are as follows:

{4,1} =
{6, 1 }=

_

_
{ 8 } =

Observe that for rk (G) = 0, as noted in [18], N{8̄} = 0. In case rk (G) > 0, the
formula in [18] already takes into account all tree subgraphs of G and only the cyclic
subgraphs have to be additionally considered. It is interesting to note that a full
subgraph C of G of type {8̄} is a hamiltonian cycle which yields a non trivial element
1 6= [C] ∈ π1(G).

Proposition. Let G be a regular hexagonal system with boundary. Then the following
holds:

M8(G) = 1186m(G) − 1140n(G) + 192(1 − rk (G)) − 96t(G)
+8f(G) + 8m222(G) + 16N{8̄}(G).
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Proof: We estimate the different N∆ (omitting the reference to G):

• N{5} = m222 + 2m223 + 2m233 + m232 + 4m323 + 4m333.

Moreover m223 = 2(m22−m222); m233 = 4t−2f ; m232 = f ; 2m333 = 4m33−m233.

Also, 3m23 = 2(m323 +m232)+m223 +m233 and m323 = 2h−n− 2(1− rk (G))+
2t + m222.

This yields: N{5} = 24h − 24(1 − rk (G)) − 4t + f + m222.

• N{4,1} = m23 + 4m33 = 12h − 12(1 − rk (G)) − 2t.

• N{6̄,1} = 6h − m222 − m223 − m323 = 8h − n − 2(1 − rk (G)).

Suming up the above equatities and using (1.2) and (2.2), we get the value of
M8(G). ut

Remark: The expression for M6(G) and M8(G) generalize the previous results for
benzenoid hydrocarbons, [17, 18]. Our formulas use parameters slightly different
than [18], and therefore yield new formulas for benzenoid cases when rk (G) = 0.

3. Energy of a hexagonal system with boundary.

3.1. One of the applications of spectral moments has been the approximated calcu-
lation of the total π-energy Eπ(G) of a benzenoid hydrocarbon system G. In [1], we
introduced some simple arithmetic inequalities which yield lower bounds for Eπ(G).
These bounds hold ‘mutatis mutandis’ for general hexagonal systems.

Proposition. Let G be a hexagonal system, then the following hold:

a) If q, t, s are positive integers, q even and 4q = t + s + 2, then

M2
q (MtMs)

−1/2 ≤ Eπ(G)

b) In particular, for (2, 2, 4) and (4, 6, 8), we get:

2
√

2m

√

m

M4

≤ Eπ(G) and
M2

4√
M6M8

≤ Eπ(G)

c) (16/27)1/2
√

2nm ≤ Eπ(G). ut

The inequality (c) was first proved by McClelland [12] for benzenoid hydrocarbons.
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3.2. In [17], a method to linearly approximate Eπ(G) by spectral moments was given.
Truncated expansions Eπ(L) are defined, which converge to Eπ(G) as L → ∞, with
the form

Eπ(L) =
L
∑

q=0

α2qM2q(G) − α0σ(G),

where σ(G) is the number of zero eigenvalues of A(G) and

α0 =
1

π

6

2L + 1
, α2q = (−1)q+1 1

π

22q+1

32q−1

(L + q)!

(2L + 1)(2q − 1)(2q)!(L − q)!

For a regular hexagonal system G and L = 2, 3, 4 the approximations are:

Eπ(2) = −0.02515041076M4 + 0.5092958178M2 + 0.3819718633M0

−0.38197186σ(G)

or

Eπ(2) = 0.56588424m + 0.68377679n − 0.38197186σ(G).

For L = 3

Eπ(3) = 0.0047905544M6 − 0.0898228956M4 + 0.7275654545M2

+0.2728370452M0 − 0.27283704σ(G)

or

Eπ(3) = 0.53773973m + 0.747101193n + 0.057486653(1− rk (G))

−0.028743326t− 0.27283704σ(G).

For L = 4

Eπ(4) = −0.0011828529M8 + 0.026081907M6 − 0.20958675M4

+0.94314040M2 + 0.21220659M0 − 0.21220659σ(G)

or

Eπ(4) = 0.5188140m + 0.7893796n + 0.08587512(1− rk (G)) − 0.04293756t

−0.0094628235(f + m222) − 0.018925646N{8̄} − 0.21220659σ(G).

Which generalize the corresponding expression for benzenoid hydrocarbons given
in [18]. In most instances, Eπ(4) is already a good approximation to Eπ(G) as the
following examples confirm.
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3.3. Examples: Consider the following regular hexagonal systems (obtained by
identifying the vertices marked with the same numbers). We indicate the corre-
sponding valued graph (∆G, vG).

   

1

2

c d

2

1 3 4

b

a

2

1

(V)  a=2,  b=1,  c=4,  d=3.

(IV)  a=1,  b=2,  c=4,  d=3.

(III)  a=1,  b=2,  c=3, d=4.

x

y

x=0,  y=0.

x=0, y=1.

x=1, y=1.

(I)

x

a

b

a=1, b=2, x=0.

(II) a=2, b=1, x=1.

b

a
(VI)  a=1,  b=2. x=0.

(VII)  a=2,  b=1. x=1.

x
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(I) (II) (III) (IV) (V) (VI) (VII)

m(G) 30 30 44 44 44 25 25

n(G) 24 24 34 34 34 20 20

σ(G) 0 0 0 0 0 0 0

rk (G) 1 1 2 2 2 1 1

t(G) 6 7 10 10 11 4 5

f(G) 0 2 4 4 5 0 1

m222(G) 0 0 0 0 0 2 2

N{8̄} 0 0 0 0 0 7 6

M4(G) 252 252 384 384 384 210 210

M6(G) 1320 1314 2068 2068 2062 1106 1100

M8(G) 7644 7564 12304 12304 12216 6594 6490
√

32nm
27

29.21 29.21 42.107 42.107 42.107 24.343 24.343

2m
√

2m
M4

29.27 29.27 42.126 42.126 42.126 24.398 24.398

Eπ(2) 33.387 33.387 48.147 48.147 48.147 27.823 27.823

Eπ(3) 33.890 33.861 48.717 48.717 48.688 28.271 28.242

Eπ(4) 34.252 34.190 49.114 49.114 49.061 28.435 28.401

Eπ(G) 34.435 34.405 49.349 49.289 49.255 28.599 28.646

We observe that the parameters involved in Mq(G), 0 ≤ q ≤ 8 for the hexagonal
systems (III) and (IV) are the same. In fact, Mq(GIII) = Mq(GIV) for 0 ≤ q ≤ 12
and only M14(GIII) 6= M14(GIV).

More problematic is to consider hexagonal systems Gn obtained from the same
underlying graph as (I) and (II) but with valued graph (∆G, vG) given by

n

n >  2

If n is even, then the adjacency matrix A(Gn) = A(G0) and all spectral moments
Mq(Gn) = Mq(G0) and energy Eπ(Gn) = Eπ(G0). Similarly, if n is odd, A(Gn) =
A(G1) and moments and energy coincide for Gn and G1. This means that the spectral
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theory of graphs is ‘blind’ with respect to the global knot structure of the graphs. In
a forthcoming paper we shall introduce the interlacing energy Ei(G) of the system
G, which takes into account the knot structure of the valued graph (∆G, vG).
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