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Abstract 
 

The Padmakar–Ivan (PI) index of a graph G is defined as PI(G) = ∑[neu(e|G)+ nev(e|G)], 
where neu(e|G) is the number of edges of G lying closer to u than to v, nev(e|G) is the 
number of edges of G lying closer to v than to u and summation goes over all edges of G. 
The PI Index is a Szeged-like topological index developed very recently. In this paper an 
exact expression for PI index of the zig-zag polyhex nanotubes is given.  

 
 

1. Introduction 

Graph theory was successfully provided the chemist with a variety of very 

useful tools, namely, the topological index. A topological index is a numeric quantity 

from the structural graph of a molecule.  

The Wiener index (W) is the oldest topological indices. Numerous of its 

chemical applications were reported and its mathematical properties are well understood 

[1-5]. We encourage the reader to consult [6], for a good survey on the topic.  

In Refs. [7,8], the authors defined a new topological index and named it 

Padmakar-Ivan index. They abbreviated this new topological index as PI. This newly 

proposed topological index, PI, does not coincide with the Wiener index (W) for acyclic 
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(trees) molecules. The derived PI index is very simple to calculate and has a 

discriminating power similar to that of the W index, for details see [9-11]. 

We now recall some algebraic definitions that will be used in the paper. Let G be 

a simple molecular graph without directed and multiple edges and without loops, the 

vertex and edge-shapes of which are represented by V(G) and E(G), respectively. If e is 

an edge of G, connecting the vertices u and v then we write e=uv. The number of 

vertices of G is denoted by n. The distance between a pair of vertices u and w of G is 

denoted by dG(u,w). We define for e=uv two quantities neu(e|G) and nev(e|G). neu(e|G) is 

the number of edges lying closer to the vertex u than the vertex v, and nev(e|G) is the 

number of edges lying closer to the vertex v than the vertex u. Then the Padmakar–Ivan 

(PI) index of a graph G is defined as PI(G) = ∑[neu(e|G)+ nev(e|G)]. We notice that the 

edges equidistant from both ends of the edge uv are not counted in calculating the PI 

index of a graph. In fact, if Gu,e = {x | dG(u,x) < dG(v,x)}, Gv,e = { x | dG(u,x) > dG(v,x)} 

and Ge = {x | dG-{e}(u,x) - dG-{e}(v,x) = ±1} then neu(e|G) = |E(Gu,e)|, nev(e|G) = |E(Gv,e)| 

and N(e) = |E(Ge)|. Here for any subset U of the vertex set V = V(G), |E(U)| denotes the 

number of edges of G between the vertices of U. It is easy to see that |E(G)| = N(e) + 

neu(e|G) + nev(e|G). 

In a series of papers, Diudea and coauthors [12-18] computed the Wiener index 

of some nanotubes. In this paper an exact expression for PI index of zig-zag polyhex 

nanotubes is given. Our notation is standard and mainly taken from [12-14] and [19,20]. 

Throughout this paper T = TUHC6[2p,q] denotes an arbitrary zig-zag polyhex nanotube, 

in the terms of their circumference (2p) and their length (q).see Figure 1. 

 

2. PI Index of TUHC6[2p,q] 

In this section, the PI index of the graph T = TUHC6[2p,q] were computed. To 

do this, we assume that E = E(T) is the set of all edges of T and N(e) = |E| - (neu(e|G) + 

nev(e|G)). Then PI(T) = |E|2 - ∑e∈E N(e). But |E(T)| = p(3q-1) and so PI(T) = p2(3q-1)2 - 

∑e∈E N(e).  Therefore, for computing the PI index of T, it is enough to calculate N(e), 

for every e ∈ E. To calculate N(e), we consider two cases that e is horizontal or non-

horizontal.  
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Figure 1: Zig-zag TUHC6[20,q] ( The  
                 figure is taken from [17]) 

 

Figure 2: A Zig-Zag Polyhex Lattice  
                 with p=5 and q=7 
 

 
 
Lemma 1. If  e is an horizontal edge then N(e) = p. 

 
Proof.  Suppose e = UijUi(j+1) denotes an arbitrary horizontal edge of ith row of the zig- 

zag polyhex lattice of TUHC6[2p,q], Figure 2. It is obvious that for every k, 0 ≤ k ≤ p-1, 

U(i+2k)jU(i+2k)(j+1) is an horizontal edge parallel to e and dT(Uij,U(i+2k)j) = 

dT(Ui(j+1),U(i+2k)(j+1)) = 2k. Thus {Uij,U(i+2)j, …, U(i+2p-2)j,Ui(j+1),…,U(i+2p-2)(j+1)} ⊆ Te. We 

now prove the equality of two sets. To do this, we assume that UklU(k+1)l is an arbitrary 

non-horizontal edge of T. If l ≤ j then dT(Ukl,Uij) < dT(Ukl,U(i+1)j) and dT(U(k+1)l,Uij) < 

dT(U(k+1)l,U(i+1)j) and so Ukl ∉ Te. In other case U(k+1)l ∉ Te. A similar argument shows 

that every horizontal edge of Te must be parallel to e. Thus {Uij,U(i+2)j, …, U(i+2p-

2)j,Ui(j+1),…,U(i+2p-2)(j+1)} = Te. Therefore, N(e) = p, proving the lemma. � 

 
Lemma 2. If e is a non-horizontal edge in the kth column, 1≤ k ≤ p, of the zig-zag 

polyhex lattice of T = TUHC6[2p,q], then N(e) =




−+≤
−+≥−+

12
1)1(22

kpqq
kpqkp

. 

 
Proof. Let Eij denote the non-horizontal edge of T in the ith row and jth column. We first 

notice that for every j, 1≤ j ≤ q, N(E1j) = N(E2j) = ⋅⋅⋅ = N(E(2p)j). So it is enough to 

calculate  N(E11), N(E12), ⋅⋅⋅, N(E1q). Compute the value of N(E11). Suppose q ≥ p. We 
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consider the edges E(p+1)1, E(p+1)2, ⋅⋅⋅, E(p+1)p. If 1 ≤ t ≤ p then E(p+1)t = U(p+1)tU(p+2)t and 

we have dT(U(p+1)t,U21) = dT(U(p+2)t,U11) = p+t-2. So E(p+1)t ∈ E(
11ET ), 1 ≤ t ≤ p. 

Similarly, for 0 ≤ i ≤ p-2, E(2p-i)(i+2) ∈ E(
11ET ) and E(

11ET ) ⊆ {E(p+1)1, E(p+1)2, ⋅⋅⋅, E(p+1)p, 

E11, E(2p)2, ⋅⋅⋅, E(p+2)p}. To prove the equality, we assume that UklU(k+1)l is an arbitrary 

non-horizontal edge of T. If l ≥ p+1 then dT(Ukl,U21) < dT(Ukl,U11) and dT(U(k+1)l,U21) < 

dT(U(k+1)l,U11) and so UklU(k+1)l ∉ E(
11ET ). If l ≤ p then we have exactly two edges in 

every column belong to {E(p+1)1, E(p+1)2, ⋅⋅⋅, E(p+1)p, E11, E(2p)2, ⋅⋅⋅, E(p+2)p} and other edges 

of this column don't belong to E(
11ET ). Therefore E(

11ET ) = {E(p+1)1, E(p+1)2, ⋅⋅⋅, E(p+1)p, 

E11, E(2p)2, ⋅⋅⋅, E(p+2)p}. If q ≤ p by above calculations E(
11ET ) = {E(p+1)1, E(p+1)2, ⋅⋅⋅, E(p+1)q, 

E11, E(2p)2, ⋅⋅⋅, E(2p+2-q)q}. We continue our argument by considering the edge E12. To 

prove this case, we delete the first column of the zig-zag polyhex lattice and obtain a 

TUHC6[2p,q-1]. Since E12 is the (1,1) entry of this lattice, we have  

N(E12) = R + 




≤−−
≥−

pqq
pqp

122
12

, 

where R is the number of edges E(
12ET ) in the first column of TUHC6[2p,q]. On the 

other hand, E(p+1)1 and E(2p)1 are only edges of  TUHC6[2p,q] in the first column. 

Therefore, 

N(E12) = 




+≤
+≥+

12
122

pqq
pqp

. 

We can continue this method for computing N(E13), ⋅⋅⋅, N(E1p) to complete the proof. � 

 
Lemma 3. If q ≤ 2p then N(E11) = N(E1q), N(E12) = N(E1(q-1)), ⋅⋅⋅, N(E1s) = N(E1(s+1+b)), 

where s = [q/2],  the greatest integer less than or equal to q/2, and b = [(q+1)/2] – [q/2].  

 
Proof. Since the zig-zag polyhex lattice is symmetric, the proof is straightforward. �  
 

Lemma 4. If q > 2p then N(E11) = N(E1q), N(E12) = N(E1(q-1)), ⋅⋅⋅, N(E1p) = N(E1(q-p+1)), 

and N(E1(p+1)) = N(E1(p+2)) = ⋅⋅⋅ = N(E1(q-p)) = N(E1p). 

 
Proof. The first part of the lemma is a conclusion of this fact that the zig-zag polyhex 

lattice is symmetric. To prove the second part, we notice that for a fixed column j there 
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are exactly 2p-1 columns with two edges belongs to E(
1jET ). The other columns don't 

intersect  E(
1jET ). Thus N(E1(p+1)) = N(E1(p+2)) = ⋅⋅⋅ = N(E1(q-p)) = N(E1p). � 

 
 We now ready to state the main result of the paper. We have: 
 
Theorem. The PI index of the zig-zag polyhex nanotube is as follows: 

PI(TUHC6[2p,q]) = 








≥+−+−

≤−+−

pqifpq)pqq(p

pqifpq)qq(p

424159

4279

22

222

. 

Proof. Since PI(T) = |E|2 - ∑e∈E N(e), it is enough to compute  ∑e∈E N(e). Suppose X 

and Y are the set of all horizontal and non-horizontal edges of T. Then 

PI(T) = |E|2 – ∑e∈X N(e) – ∑e∈Y N(e) 

         = p2(9q2–7q+2)– 








≤

<<∑ +−
= +−−−+

≥∑ = −+

pqifEpqN

pqpifpq
i pqENqppiENp

pqifp
i pENpqpiENp

)11(2

21
1 ))1(1()22(2)1(4

21 )1()2(2)1(4

. 

 By Lemma 2, N(E1i) = N(E11) + 2(i-1) and so we have: 

PI(T) = p2(9q2–7q+2)– 








≤
<<−−+

≥−−+

pqif)E(pqN
pqpif)pq)(p(p)E(pqN

pqif)pq)(p(p)E(pqN

112
214112

214112
 

           = p2(9q2–7q+2)– 








≥+−−

≤

pqif)pqppq(p

pqifpq

2

2

24

4
, 

which completes the proof. � 
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