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Abstract

It is shown that some of the well-known relations of the Hosoya-Wiener polyno-
mial to the Wiener number and the hyper-Wiener index generalize naturally to
weighted graphs.

Weighted graphs can be used in chemical graph theory to model molecules
with heteroatoms. While vertex weighted graphs have been considered fre-
quently [5, 2, 14, 11, 9], the edge weighted case seems to be less studied [16].
A weighted graph G = (V,E,w, λ) is a combinatorial object consisting of an
arbitrary set V = V (G) of vertices, a set E = E(G) of unordered pairs {x, y} =
xy of distinct vertices of G called edges, and two weighting functions, w and
λ. w : V (G) 7→ IR+ assigns positive real numbers (weights) to vertices and
λ : E(G) 7→ IR+ assigns positive real numbers (lengths) to edges. A simple path
from u to v is a finite sequence of distinct vertices P = x0, x1, . . . , x` such that
each pair xi−1, xi is connected by an edge and x0 = u and x` = v. The length of
the path is the sum of the lengths of its edges, l(P ) =

∑`
i=1 λ(xi−1xi). For any

pair of vertices u, v we define the distance d(u, v) to be the minimum of lengths
over all paths between u and v. If there is no such path, we write d(u, v) = ∞.

The Hosoya-Wiener polynomial of a graph G is defined as

H(λ; x) = H(G, λ; x) =
∑

u,v∈V (G)

xd(u,v).



This definition, which is used for example in [6], slightly differs from the defini-
tion used by Hosoya [7] (see also [13]):

Ĥ(λ; x) = Ĥ(G,λ; x) =
∑

u,v∈V (G);u 6=v

xd(u,v). (1)

Obviously, H(λ; x) = Ĥ(λ;x) + |V (G)|. We explicitly write λ to stress that the
distances d(u, v) depend on the edge weights. Clearly, by taking λ = 1 for all
edges, we are at unweighted case.

Remark. In the paper [7] Hosoya used the name Wiener polynomial while
some authors later use the name Hosoya polynomial [3, 15]. Let us mention that
also the referees gave different suggestions. We decided to use a compromise
name here, namely the Hosoya-Wiener polynomial.

It is well-known that the first derivative of the Hosoya-Wiener polynomial
evaluated at x = 1 equals the Wiener number (see, for example [13]). Higher
derivatives of the Hosoya-Wiener polynomial have also been used as descriptors
[4, 10].

We generalize the Hosoya-Wiener polynomial as follows. Let G be a (vertex
and edge) weighted graph. H(G,λ;x) is defined as

H(G,λ, w; x) =
∑

u,v∈V (G)

w(u)w(v)xd(u,v). (2)

Clearly, this definition is equivalent to the original definition if all vertex
weights are equal to 1. However, note that H(G,λ, w; x) may not be a polyno-
mial if the edge weights are allowed to be arbitrary real numbers. Obviously,
if natural numbers are used for edge weights, the function H(G,λ, w; x) is a
polynomial. Hence, with appropriate scaling factor, one can always consider
H(G,λ, w;x) to be a polynomial, for any model using rational edge weights.

Recently, [9] generalized the Hosoya-Wiener polynomial to vertex weighted
graphs in two ways which slightly differ from the one given here.

Remark. Similarly, one could define, in spirit of (1)

Ĥ(λ,w;x) = Ĥ(G,λ, w; x) =
∑

u,v∈V (G);u 6=v

w(u)w(v)xd(u,v),

and again it holds H(λ,w; x) = Ĥ(λ,w; x) +
∑

v∈V (G) w2(v). Hence the two
functions differ in the costant term only.

The weighted Wiener number [16] of a weighted graph G is

W (G,λ, w) =
∑

u,v∈V (G);u 6=v

w(u)w(v)d(u, v). (3)

The definition used here is clearly a generalization of the usual definition for
(unweighted) Wiener number. More precisely, if all weights of vertices are 1 and
all lengths of edges are 1, then W (G,λ, w) is the usual Wiener number W (G).

It seems that the weighted Wiener number has not been studied frequently
in the literature. In [16], a linear algorithm for computing the weighted Wiener
number is given. A definition, analogous to (3) was used in [5] and [2] for vertex
weighted graphs. A different definition in which the “weights” of atoms are
added to the sum of distances is used in [14].

For a later reference, we formaly state a generalization of perhaps the most
interesting property of the Hosoya-Wiener polynomial, namely

Lemma 1 W (G,λ,w) = H ′(G,λ,w; 1).
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Proof. Clearly,

H
′
(G,λ, w; x) =

∑

u,v∈V (G)

w(u)w(v)d(u, v)xd(u,v)−1. (4)

which is equal to W (G,λ, w) if evaluated at x = 1. ¤
The hyper-Wiener index was defined by Randić [12] and generalized to

acyclic structures in [8]. The definition of weighted hyper-Wiener index is

WW (G, λ,w) =
1
2

∑

u,v∈V (G)

w(u)w(v)d(u, v)2 +
1
2

∑

u,v∈V (G)

w(u)w(v)d(u, v). (5)

We use the same name and notation because it clearly generalizes the hyper-
Wiener index of unweighted graphs. (If all weights are equal 1, WW (G,λ, w)
is the standard hyper-Wiener index WW (G).)

The following theorem generalizes the main result of [1]

Theorem 2

WW (G, λ,w) = H
′
(G,w; 1) +

1
2
H
′′
(G,w; 1) (6)

Proof. First note that

d(u, v) + d(u, v)(d(u, v)− 1) = d(u, v) + d(u, v)2− d(u, v) = d(u, v)2.

Using this, we can write

d

dx
(xH

′
(G,λ, w;x)) = H

′
(G, λ,w;x) + xH

′′
(G, λ,w;x) =

= H
′
(G,λ, w; x) + x

∑

u,v∈V (G)

w(u)w(v)d(u, v)(d(u, v)− 1)xd(u,v)−2 =

=
∑

u,v∈V (G)

w(u)w(v)d(u, v)2xd(u,v)−1.

Hence
∑

u,v∈V (G)

w(u)w(v)d(u, v)2xd(u,v)−1 = H
′
(G, λ,w;x) + xH

′′
(G, λ,w;x). (7)

From (4) and (7) at x = 1 we get

2WW (G, λ,w) =
∑

u,v∈V (G)

w(u)w(v)d(u, v) +
∑

u,v∈V (G)

w(u)w(v)d(u, v)2 =

= H
′
(G,w; 1) +

[
H
′
(G, λ,w;x) + xH

′′
(G, λ,w;x)

]
x=1

=

= 2H
′
(G,w; 1) + H

′′
(G,w; 1)

as claimed. ¤
Finally, we wish to note that the generalization of the Hosoya-Wiener poly-

nomial to edge and vertex weighted graphs seems to allow generalization of (at
least some) algorithms. For example, W (G,λ,w; x) on weighted trees can be
computed efficiently, more precisely [17]:

Theorem 3 The Hosoya-Wiener polynomial on a weighted tree T can be com-
puted in O(D∆2n) time, where D is the diameter of T and ∆ is the maximal
degree of a vertex in T .

Furthermore, we believe that it is possible to generalize the approach out-
lined here to cacti, see [18]
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Conjecture 4 The Hosoya-Wiener polynomial on a weighted cactus G can be
computed in O(D∆2n) time, where D is the diameter of G and ∆ is the maximal
degree of a vertex in G.
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[18] B.Zmazek and J.Žerovnik, in preparation.
[19] H.Wiener, Structural determination of paraffin boiling points, J. Amer.

Chem. Soc. 69 (1947) 17-20.

- 362 -


