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Abstract 
 
               An Euclidean graph associated with a molecule is defined by a weighted graph with 

adjacency matrix. Balasubramanian (1995) computed the Euclidean graphs and their 
automorphism groups for benzene, eclipsed and staggered forms of ethane and eclipsed and 
staggered forms of ferrocene. This paper describes a simple method, by means of which it 
is possible to calculate the automorphism group of weighted graphs. We apply this method 
to compute the symmetry of pyrene and triphenylmethane. 
 

 

INTRODUCTION 

By symmetry we mean the automorphism group symmetry of a graph. The symmetry of a 

graph does not need to be isomorphic to the molecular point group symmetry. However, it 

does represent the maximal symmetry which the geometrical realization of a given 

topological structure may posses.  

 Although the symmetry as perceived in graph theory by the automorphism group of 

the graph and the molecular symmetry group are quite different we would like to show in this 

paper these two symmetries are connected for pyrene and triphenylmethane. This connection 

is established by generalizing the automorphism group of an ordinary graph to the 

automorphism group of a weighted graph which represents the Euclidean geometric distances 

between the nuclear centers. The resulting automorphism group of the edge-weighted graph is 

shown to be the permutation-inversion group proposed by Longuet-Higgins [1], and so graph 

theoritical perception of molecular symmetry could provide novel computational algorithms 

for the machine perception of  molecular symmetry. 
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In our work, graph theory provides an elegant and natural representation of molecular 

symmetry and the resulting group expressed in terms of permutations is isomorphic to the 

permutation-inversion group of Longuet-Higgins [1]. 

The symmetry of a graph through the automorphism group of the graph has been 

studied in Refs. [2-5]. As shown by Randic a graph can be depicted in different ways such 

that its point group symmetry or three dimensional preception may differ, but the underlying 

connectivity symmetry is still the same as characterised by the automorphism group of the 

graph which by definition comprises permutations of the vertices of the graph that leave the 

adjacency matrix invariant [6]. However, the molecular symmetry depends on the coordinates 

of the various nuclei which relate directly to their three dimensional geometry.  

 The automorphisms have other advantages such as in generating nuclear spin species, 

NMR spectra, nuclear spin statistics in molecular spectroscopy, chirality and chemical 

isomerism. There is also another important applications of automorphism groups of weighted 

graphs to fullerenes. The reader is encouraged to consult papers by Balasubramanian for 

background material and computational techniques on this topic [7-15]. 

By definition, a weighted graph is a graph whose edges and vertices are weighted with 

different weights. The adjacency matrix of a weighted graph is defined as: Aij = wij, if i ≠ j 

and vertices i and j are connected by and edge with weight wij; Aij = vi, if i = j and weight of 

the vertex i is vi, and, Aij = 0, otherwise. Note that vi can be taken as zero if all the nuclei are 

equivalent. Otherwise, one may introduce different weights for nuclei in different equivalence 

classes and the same weight for the nuclei in the same equivalence classes.  

 Throughout this paper, all groups considered are assumed to be finite. Our notation is 

standard and taken mainly from Refs. [16-18]. 

 

RESULT AND DISCUSSION 
Symmetry operations on a graph are called graph automorphisms. They affect only the labels 

of vertices by permuting them so that the adjacency matrix of the graph remains unchanged. 

The graph symmetry is completely determined by all the automorphisms it has, i.e. by 

specifying all the permutations which leave the adjacency matrix intact. 

The automorphism group of a graph depends only on the connectivity of the graph and 

does not depend on how the graph is represented in three dimensions. That is, a graph, in 

general, can be represented in different ways in three dimensions such that two 

- 66 -



  

representations could yield different three-dimensional symmetries and yet their 

automorphism groups are the same since the latter depends only on which vertices are 

connected in the graph.  

Balasubramanian7 calculated the automorphism group of the Euclidean graph of 

benzene molecule. By his result, this is a group of order 12. We continue Balasubramanian's 

result to compute the automorphism group of the Euclidean graph of pyrene and 

triphenylmethane molecules. 
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   Figure 1: Euclidean graph of Pyrene         Figure 2: The Structure of Pyrene 

 

A permutation of the vertices of the Euclidean graph under consideration belongs to 

the permutation representation of an operation in the point group if and only if the 

corresponding permutation matrix  satisfies MtDM = D, where Mt is the transpose of 

permutation matrix M and D is the adjacency matrix of the graph.. All such permutations of 

the nuclei which preserve the connectivity of the Euclidean graph of the molecule form a 

group which we call the Euclidean distance group.  

Consider the Pyrene molecule to illustrate the Euclidean graph and its automorphism 

group. It suffices to measure the Euclidean distances and then construct the Euclidean 

distance matrix C. It should be mentioned that one does not have to work with exact 

Euclidean distances in that a mapping of weights into a set of integers would suffices as long 

as different weights are identified with different integers. In fact the automorphism group of 

the integer-weighted graph, Figure 2, is identical to the automorphism group of the original 
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Euclidean graph. The resulting distance matrix is shown below. It is far from true that all 16! 

permutations of the vertices do not belong to the automorphism group of the weighted graph 

since the weights of all the edges are not the same. For example, the permutation (1,2,3,4,5,6) 

does not belong to the automorphism group since the resulting graph shown in Fig. 1 does not 

preserve connectivity. 
 

 = C













0 1 1 2 2 3 3 2 2 1 4 5 5 2 3 2
1 0 2 1 3 2 4 5 5 2 6 7 4 3 2 1
1 2 0 3 1 2 2 1 3 2 6 4 7 5 4 5
2 1 3 0 2 1 6 4 7 5 8 9 10 4 5 2
2 3 1 2 0 1 5 2 4 5 8 10 9 7 6 4
3 2 2 1 1 0 7 5 6 4 11 8 8 6 7 5
3 4 2 6 5 7 0 1 1 2 5 2 4 5 7 6
2 5 1 4 2 5 1 0 2 3 7 5 6 4 6 7
2 5 3 7 4 6 1 2 0 1 2 1 3 2 5 4
1 2 2 5 5 4 2 3 1 0 3 2 2 1 2 3
4 6 6 8 8 11 5 7 2 3 0 1 1 2 5 7
5 7 4 9 10 8 2 5 1 2 1 0 2 3 4 6
5 4 7 10 9 8 4 6 3 2 1 2 0 1 2 5
2 3 5 4 7 6 5 4 2 1 2 3 1 0 1 2
3 2 4 5 6 7 7 6 5 2 5 4 2 1 0 1
2 1 5 2 4 5 6 7 4 3 7 6 5 2 1 0

 

 

Suppose G is the set of all permutations which preserves the Euclidean connectivity. It 

is useful to mention that our calculations were done by a GAP program. Using such a 

program, we can recalculate all the examples of Balasubramanian7. For the sake of 

completeness we write below our GAP-program for computing the automorphism group of 

the Euclidean graph of the mentioned molecule. 

 
A GAP Program for Computing the Symmetries of Pyrene 

 

gap> a:=[[0,1,1,2,2,3,3,2,2,1,4,5,5,2,3,2], [1,0,2,1,3,2,4,5,5,2,6,7,4,3,2,1],              
[1,2,0,3,1,2,2,1,3,2,6,4,7,5,4,5],[2,1,3,0,2,1,6,4,7,5,8,9,10,4,5,2], 

[2,3,1,2,0,1,5,2,4,5,8,10,9,7,6,4],[3,2,2,1,1,0,7,5,6,4,11,8,8,6,7,5], 
[3,4,2,6,5,7,0,1,1,2,5,2,4,5,7,6],[2,5,1,4,2,5,1,0,2,3,7,5,6,4,6,7], 
[2,5,3,7,4,6,1,2,0,1,2,1,3,2,5,4],[1,2,2,5,5,4,2,3,1,0,3,2,2,1,2,3], 
[4,6,6,8,8,11,5,7,2,3,0,1,1,2,5,7],[5,7,4,9,10,8,2,5,1,2,1,0,2,3,4,6], 
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[5,4,7,10,9,8,4,6,3,2,1,2,0,1,2,5],[2,3,5,4,7,6,5,4,2,1,2,3,1,0,1,2], 
[3,2,4,5,6,7,7,6,5,2,5,4,2,1,0,1],[2,1,5,2,4,5,6,7,4,3,7,6,5,2,1,0]]; 
gap> f:=[a[1],a[10]]; 
gap> b:=[a[2],a[3],a[9],a[14]]; 
gap> c:=[a[4],a[5],a[12],a[13]]; 
gap> d:=[a[6],a[11]]; 
gap> e:=[a[7],a[8],a[15],a[16]]; 
gap> S:=[f,b,c,d,e]; 
gap> G:=[];n:=16;Q:=[]; 
gap> for k in[1..Length(S)] do 
gap> for i in S[k] do   
gap> for j in S[k] do  
gap> AddSet(G,PermListList(i,j));od;od; 
gap> od; 
gap> Print("G:=",G,"\n"); 
gap> for i in G do  
gap> x1:=PermutationMat(i,n); 
gap> w:=i*(1,2); 
gap> z1:=PermutationMat(w,n); 
gap> x:=TransposedMat(x1); 
gap> z:=TransposedMat(z1); 
gap> y1:=x*a*x1; 
gap> y2:=x*a*z1; 
gap> if y1= a then AddSet(Q,i); 
gap> fi; 
gap> if y2= a then AddSet(Q,w); 
gap> fi; 
gap> od; 
gap> Print("Automorphism Group: ",Q,"\n"); 

 

The program does not miss any permutation since it checks the candidate permutations 

of the given automorphism group in lexiographical order. By this program, we have:  

Q = {(1),(2 3)(4 5)(7 15)(8  16)(9 14)(12 13), (1 10)(2 9)(3 14)(4 12)(5 13)(6 11)(7 16)(8 15), 

         (1 10)(2 14)(3 9)(4 13)(5 12)(6 11)(7 8)}. 
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We now consider the Triphenylmethane molecule to illustrate the Euclidean graph and its 

automorphism group, as shown in Figure 3. We can see again all 19! permutations of the 

vertices do not belong to the automorphism group of the weighted graph since the weights of 

all the edges are not the same. Suppose E is the integer matrix and H is the automorphism 

group of weighted graph depicted in Figure 3. Then we have: 

H={(1), (3,4)(5,6)(8,14)(9,16)(10,15)(11,18)(12,17)(13,19),       

        ( 2,14,8)(3,15,9)(4,16,10)(5,17,11)(6,18,12)(7,19,13),   

        ( 2,8)(3,10)(4,9)(5,12)(6,11)(7,13)(15,16)(17,18),    

        (2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)(7,13,19),   

        (2,14)(3,16)(4,15)(5,18)(6,17)(7,19)(9,10)(11,12)}. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 = E













, , , , , , , , , , , , , , , , , ,0 1 2 2 3 3 4 1 2 2 3 3 4 1 2 2 3 3 4
, , , , , , , , , , , , , , , , , ,1 0 5 5 6 6 7 8 10 9 11 12 13 8 9 10 12 11 13
, , , , , , , , , , , , , , , , , ,2 5 0 6 5 7 6 9 12 8 13 10 11 10 12 11 14 2 1
, , , , , , , , , , , , , , , , , ,2 5 6 0 7 5 6 10 11 12 2 14 1 9 8 12 10 13 11
, , , , , , , , , , , , , , , , , ,3 6 5 7 0 6 5 12 14 10 1 11 2 11 13 2 1 3 15
, , , , , , , , , , , , , , , , , ,3 6 7 5 6 0 5 11 2 13 3 1 15 12 10 14 11 1 2
, , , , , , , , , , , , , , , , , ,4 7 6 6 5 5 0 13 1 11 15 2 3 13 11 1 2 15 3
, , , , , , , , , , , , , , , , , ,1 8 9 10 12 11 13 0 5 5 6 6 7 8 10 9 11 12 13
, , , , , , , , , , , , , , , , , ,2 10 12 11 14 2 1 5 0 6 5 7 6 9 12 8 13 10 11
, , , , , , , , , , , , , , , , , ,2 9 8 12 10 13 11 5 6 0 7 5 6 10 11 12 2 14 1
, , , , , , , , , , , , , , , , , ,3 11 13 2 1 3 15 6 5 7 0 6 5 12 14 10 1 11 2
, , , , , , , , , , , , , , , , , ,3 12 10 14 11 1 2 6 7 5 6 0 5 11 2 13 3 1 15
, , , , , , , , , , , , , , , , , ,4 13 11 1 2 15 3 7 6 6 5 5 0 13 1 11 15 2 3
, , , , , , , , , , , , , , , , , ,1 8 10 9 11 12 13 8 9 10 12 11 13 0 5 5 6 6 7
, , , , , , , , , , , , , , , , , ,2 9 12 8 13 10 11 10 12 11 14 2 1 5 0 6 5 7 6
, , , , , , , , , , , , , , , , , ,2 10 11 12 2 14 1 9 8 12 10 13 11 5 6 0 7 5 6
, , , , , , , , , , , , , , , , , ,3 12 14 10 1 11 2 11 13 2 1 3 15 6 5 7 0 6 5
, , , , , , , , , , , , , , , , , ,3 11 2 13 3 1 15 12 10 14 11 1 2 6 7 5 6 0 5
, , , , , , , , , , , , , , , , , ,4 13 1 11 15 2 3 13 11 1 2 15 3 7 6 6 5 5 0
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Figure 3: The Euclidean graph and  Structure of Triphenylmethane 
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