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Abstract

The present series is devoted to a diagrammatical introduction to the USCI (unit-subdu-
ced-cycle-index) approach developed by Fujita (S. Fujita, “Symmetry and Combinatorial
Enumeration in Chemistry”, Springer-Verlag, 1991). In Part 2 of this series, intermolecular
stereochemistry (stereoisomerism) is discussed by the concept of assembles of transformu-
las. Transformulas that are generated from a skeleton of G-symmetry having |G| vertices
(i.e., a regular body representing the coset representation (CR) G(/C1)) are equivalent un-
der G so as to construct an orbit governed by the CR G(/C1). An assembly of H-symmetry
(H ⊂ G) is defined as a set of such transformulas as fixed by the action of H. The set of
equivalent H-assemblies constructs an orbit of H-assemblies, which is governed by the CR
G(/H). Each H-assembly corresponds to an H-molecule derived from the skeleton of G-
symmetry. Thus the CR G(/H) is concluded to control the intermolecular stereochemistry
(stereoisomerism). Thereby, subduction tables, USCI-CF tables (tables of unit-subduced-
cycle-index with chirality fittingness), USCI tables (tables of unit-subduced-cycle-index
without chirality fittingness), and mark tables for D2d (as an example of G) are obtained in



an alternative way to the method described in Part 1. The parallelism between Part 1 and
Part 2 is clearly demonstrated by defining a mandala as a hypothetical structure (a nested
regular body) in which the |G| transformulas generated as above from a regular body by the
action of G are placed on the vertices of a regular body. Assembled mandalas and reduced
mandalas are defined to integrate intermolecular and intramolecular stereochemistries.

1 Introduction
Stereochemistry has two fields, i.e., intramolecular stereochemistry and stereoisomerism (in-
termolecular stereochemistry), which should be studied in such an integrated manner as based
on a common theoretical framework. In Part 1 of the series for a diagrammatical introduction
of Fujita’s USCI (unit-subduced-cycle-index) approach [1], the concept of sphericity has been
shown to be a key concept for comprehending intramolecular stereochemistry. Before we show
that the concept of sphericity works well in stereoisomerism (intermolecular stereochemistry),
conventional approaches to stereoisomerism and to chemical combinatorics should be briefly
discussed in order to show that they are deficient in such a common theoretical framework as
the concept of sphericity.

1. Stereoisomerism (intermolecular stereochemistry) has been studied in terms of the per-
mutational approach [2, 3, 4], where permutations of ligands have been considered to
generate stereoisomers. These studies, however, have not taken the chirality/achirality of
the ligands into explicit consideration. In other words, they have not taken account of
inner structures in a molecule so that they commonly lack the concept of sphericity from
the viewpoints of the present series of articles. For example, the concept of “a chemical
identity group” proposed by Ugi et al. [4] is incapable of treating inner structures of a
molecule (i.e., intramolecular stereochemistry), even though it works well in systematic
discussions on stereoisomerism.1 By an intimate examination of “the chemical identity
group” and “the group of constitution preserving ligand permutation” in their treatment
of the stereoisomers of trihydroxyglutaric acids (pages 146 to 150 of Ref. [4]), one can
find that permutations of the same type are ascribed to enantiomeric relationships and
diastereomeric relationships. The discrimination between enantiomers and diastereomers
has been based on subsequent operations other than the permutations. The subsequent
operations, which have been implicitly presumed to be reflections, have been treated sub-
sidiarily as compared with the permutations.2

1This treatment is based on the presumption that substituents are selected from atoms (or achiral ligands). In
other words, chiral ligands are not taken into explicit consideration.

2In terms of the permutation approach, the enantiomeric relationship between tetrahedral molecules (R-Cabcd
and S-Cabcd) and the diastereomeric relationship between tetrahedral molecules (r-Cab�+�− and s-Cab�+�−) are
ascribed to the same permutation, where R-Cabcd (chiral), S-Cabcd (chiral), r-Cab�+�− (achiral), and s-Cab�+�−
(achiral) are regarded as being in an equal level of consideration. Note that the symbols (a, b, c, and d) represent
achiral ligands or atoms, while the symbols �+ and �− represent a pair of enantiomeric chiral ligands. The per-
mutation of converting R-Cabcd (chiral) into S-Cabcd (chiral) coincides with a reflection operation, whereas the
same permutation of converting r-Cab�+�− (achiral) into s-Cab�+�− (achiral) does not coincide with a reflection
operation. This difference in the three-dimensional conversions has not been treated properly by the permutation
approach. Obviously, the permutation approach has avoided such difficulties as described above by selecting only
atoms (or achiral ligands) as substituents, so that it has unconsciously or consciously disregarded the cases of chiral
ligands described above.

On the other hand, Fujita’s USCI approach takes a balanced treatment in which a pair of R-Cabcd/S-Cabcd
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2. Combinatorial enumeration of isomers depends on how (stereo)isomers are characterized
symmetrically. Thus, the permutation approach for characterizing (stereo)isomers has
been implicitly involved in Pólya’s theorem [5, 6], which has been widely used in chem-
ical combinatorics [7]. As found in his famous article [5, 6], the term configurations has
been used to refer to isomers generated by permutations. Such isomers as enumerated
by Pólya’s theorem have been found to be graphs, not three-dimensional (3D) chemi-
cal structures. This means that Pólya’s theorem also lacks the concept of sphericity, as
pointed out in recent articles [8, 9].

3. Because Pólya’s theorem is based on “conjugacy classes” (as equivalent classes with re-
spect to “conjugacy of elements”) but not on “orbits” (as equivalence classes with respect
to “conjugate subgroups”),3 the viewpoint to formulate “configurations” is limited within
the scope of “conjugacy classes”. It follows that Pólya’s theorem does enumerate graphs
without symmetry-itemization, as discussed in Chapter 13 of Fujita’s book [10]. On the
other hand, Fujita’s USCI approach has provided another viewpoint to formulate “config-
urations” on the basis of the concept of CRs (and sphericities), as discussed in Chapter
15 of Fujita’s book [10]. Thereby, Fujita’s USCI approach can enumerate stereoisomers
(3D chemical structures) with symmetry-itemization. Note that “stereoisomers” are more
informative than “graphs” and that “accomplishing symmetry-itemization” is more infor-
mative than “no symmetry-itemization”. Thus, Fujita’s USCI approach can derive Pólya’s
theorem [11] but the reverse is impossible without additional information. More detailed
aspects have been pointed out in a recent article [12].

In addition to the original mathematical treatment [10], Fujita’s USCI approach to stereoiso-
merism (intermolecular stereochemistry) has been visualized in terms of “graphical models”
[13, 14, 15]. This visualization, however, has not explicitly involved the concept of sphericity.
It follows that the visualization has not directly aimed at chemical combinatorics that is one of
the most important disciplines accomplished by Fujita’s USCI approach.

The present paper (Part 2) will demonstrate diagrammatically that the concept of sphericity
works also in stereoisomerism (intermolecular stereochemistry). This diagrammatical demon-
stration will be further reinforced by the concept of mandala, which will be proposed to give a
more sophisticated approach for characterizing sphericities in stereoisomerism. As a result, the
sphericity will be shown to control intra- and intermolecular stereochemistries concurrently, so
that it will provide prerequisites for chemical combinatorics (Part 3).

2 Stereoisomerism
Let us adopt the same topview (1) of the regular body as adopted in Part 1. The regular body
(1) belongs to the point group D2d , as shown in Fig. 1. In this section, the viewpoint of the

(totally achiral), r-Cab�+�− (achiral), and s-Cab�+�− (achiral) are considered to be in an equal level of consid-
eration. Furthermore, the pair of R-Cabcd/S-Cabcd (totally achiral) is characterized by the enantiosphericity in
stereoisomerism, while the achiral molecule r-Cab�+�− (or s-Cab�+�−) is characterized by the homosphericity in
stereoisomerism. These further points are the subjects of Part 2.

3This feature is analogous to a chemical feature that, although the concept of “atoms” is essential to chemistry,
an additional concept of “molecules” is necessary to comprehend chemical phenomena. In analogy, although
the concept of “conjugacy classes” is essential to group theory, an additional concept “conjugate subgroups” is
necessary to comprehend symmetrical phenomena.
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Figure 1: Regular body for D2d .

USCI approach is restated in order to show that the concept of sphericity works well to discuss
stereoisomerism as well as intramolecular stereochemistry.

2.1 Assemblies of Transformulas and Orbits of Assemblies
2.1.1 C1-Assembly as an Extreme Case

Let us select the regular body 1 as a reference transformula,4 the numbering of which is regarded
as a reference numbering.5 As shown in Part I, the action of the symmetry operations of D2d on
1 as a reference transformula gives other transformulas (e.g., 3). Thus, the eight transformulas
shown in Fig. 2 are obtained on the action of every symmetry operations so that they are con-
sidered to construct a set of transformulas: T = {1,3,4,5,6,7,8,9}. To relate intramolecular
stereochemistry (Part 1) to stereoisomerism,6 the ordered set is numbered as follows:

T α = { f1, f5, f4, f8, f2, f6, f7, f3}. (1)

The action of a symmetry operation C2(3) on the every transformulas listed in Fig. 2 gen-
erates another ordered set of the transformulas, i.e., T β = {3,1,5,4,7,6,9,8}, as shown in
Fig. 3. This corresponds to the ordered set: T β = { f5, f1, f8, f4, f6, f2, f7, f3}. The conversion
T α → T β generates the following permutation:

C2(3) ∼
(

f1 f5 f4 f8 f2 f6 f7 f3
f5 f1 f8 f4 f6 f2 f3 f7

)

∼
(

1 2 3 4 5 6 7 8
5 6 7 8 1 2 3 4

)
= (15)(2 6)(3 7)(4 8), (2)

where the first permutation is reordered sequentially with respect to the upper row and the
subscript of each transformula is adopted to generate the second permutation. Because the
group D2d has eight symmetry operations, such diagrammatical expressions as Figs. 2 and 3
can be obtained for every symmetry operations of D2d (e.g., Fig. 2 for I and Fig. 3 for C2(3)).

4For the coinage of the term transformula, see Part 1. A reference transformula is defined as a numbered
skeleton substituted by objects (atoms, ligands, etc.), where the numbered skeleton belongs to the point group G.
The reference transformula is transformed into other transformulas on the action of G.

5There are 8! modes of numbering, among which the reference numbering adopted here generates only 8
modes of numbering because the D2d-symmetry is chosen. If another numbering is adopted as a reference, another
set of 8 modes of numbering can be generated. These two selections give equivalent results through conjugate
relationships within the symmetric group of degree 8.

6The alignment of T α is so selected as to give the same permutations as derived from R = {1,2,3,4,5,6,7,8}.
Although other modes of numbering give other permutations, these are equivalent to the present one without
considering the modes of numbering.
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Figure 2: Eight C1-assemblies, each of which contains either one of eight transformulas ( f1– f8).
The assembly represents a single molecule. The alignment shown in this diagram corresponds
to an ordered set, T α = { f1, f5, f4, f8, f2, f6, f7, f3}, which is an orbit governed by the regular
representation D2d(/C1).
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Thereby, eight permutations can be obtained in a similar procedure for obtaining eq. 2 as
follows:

I ∼
(

f1 f2 f3 f4 f5 f6 f7 f8
f1 f2 f3 f4 f5 f6 f7 f8

)
∼ (1)(2)(3)(4)(5)(6)(7)(8) (3)

C2(3) ∼
(

f1 f2 f3 f4 f5 f6 f7 f8
f5 f6 f7 f8 f1 f2 f3 f4

)
∼ (1 5)(2 6)(3 7)(4 8) (4)

C2(1) ∼
(

f1 f2 f3 f4 f5 f6 f7 f8
f4 f3 f2 f1 f8 f7 f6 f5

)
∼ (1 4)(2 3)(5 8)(6 7) (5)

C2(2) ∼
(

f1 f2 f3 f4 f5 f6 f7 f8
f8 f7 f6 f5 f4 f3 f2 f1

)
∼ (1 8)(2 7)(3 6)(4 5) (6)

σd(1) ∼
(

f1 f2 f3 f4 f5 f6 f7 f8
f2 f1 f8 f7 f6 f5 f4 f3

)
∼ (1 2)(3 8)(4 7)(5 6) (7)

σd(2) ∼
(

f1 f2 f3 f4 f5 f6 f7 f8
f6 f5 f4 f3 f2 f1 f8 f7

)
∼ (1 6)(2 5)(3 4)(7 8) (8)

S3
4 ∼

(
f1 f2 f3 f4 f5 f6 f7 f8
f3 f8 f5 f2 f7 f4 f1 f6

)
∼ (1 3 5 7)(2 8 6 4) (9)

S4 ∼
(

f1 f2 f3 f4 f5 f6 f7 f8
f7 f4 f1 f6 f3 f8 f5 f2

)
∼ (1 7 5 3)(2 4 6 8) (10)

where each overbar represents the mirror image of each object. They are equivalent to the
permutations shown in eqs. 14–21 of Part 1.7 These permutations construct a permutation
representation that is equalized to be a CR D2d(/C1).

The above-described procedure implies that, although the eight transformulas are regarded
as being different from one another by considering the modes of numbering, they are equivalent
on the action of D2d . Strictly speaking, each of the eight transformulas is considered to be a
C1-assembly (as a one-membered assembly), which is produced by the subduction D2d(/C1) ↓
C1 = 8C1(/C1).8 Note that the eight C1-assemblies (one-membered assemblies) shown in Fig.
2 construct an orbit, which is governed by D2d(/C1). This fact is emphasized by adding a box
surrounding each of the transformulas in Figs. 2 and 3. As a result, 1 is fixed only by C1 so as
to belong to C1, which appears as the local symmetry of the CR D2d(/C1).

2.1.2 Cs-Assemblies and Their Orbit

Let us consider transformulas generated from a regular body of G-symmetry. An assembly of
transformulas is defined as a set of transformulas that produces equivalent sets of transformulas
on the action of G, where any two of such sets can be so selected as to have no common
transformulas. The term assemblies of transformulas can be regarded as an analogy to the term
“segments of objects” in a regular body. If such assemblies have a chemical meaning, they are
called molecules on the analogy to the description that segments having chemical meanings are
called ligands (cf. Part 1). As an extreme case, this feature has been described above for the
case of C1-assemblies. The present subsection deals with more general cases of assemblies.

7Strictly speaking, this representation corresponds to left cosets g−1C1 (g ∈ D2d), while eqs. 14–21 of Part 1
corresponds to right cosets C1g.

8For a new-defined meaning of the word “assembly”, see Part 1. This is an extreme case of an assemblage
pattern described below.
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Let us consider an assembly represented by A∗
1 = { f1, f2} (i.e., {1,6}), as surrounded by

a box in Fig. 4. By applying symmetry operations of D2d onto A∗
1, other assemblies (A∗

2 =
{ f4, f7}, A∗

3 = { f5, f6}, and A∗
4 = { f8, f3}) are obtained diagrammatically. Then, they are

gathered to give a set of assemblies, which is considered to be an ordered set:

A∗ = {A∗
1,A∗

3,A∗
2,A∗

4}, (11)

where the concrete assemblies are depicted in Fig. 4. Obviously, the four assemblies involved in
the right-hand side of eq. 11 are equivalent on the action of D2d , constructing an orbit. Because
the assembly A∗

1 is fixed on the action of Cs (i.e., f1 and f2 are equivalent under Cs), the local
symmetry of A∗

1 is determined to be Cs. It follows that the orbit A∗ (eq. 11) is governed by the
CR D2d(/Cs).

The action of a symmetry operation C2(3) on every transformulas of Fig. 4 (corresponding
to the ordered set represented by eq. 11) gives transformulas shown in Fig. 5 (corresponding
to the ordered set, i.e., A∗

α = {A∗
1,A∗

2,A∗
3,A∗

4}). This process is expressed by the following
permutation: (

A∗
1 A∗

3 A∗
2 A∗

4
A∗

3 A∗
1 A∗

4 A∗
2

)
=

(
A∗

1 A∗
2 A∗

3 A∗
4

A∗
3 A∗

4 A∗
1 A∗

2

)

∼
(

1 2 3 4
3 4 1 2

)
= (1 3)(2 4). (12)

The permutation is essentially equal to that of eq. 22 of Part 1, when reordered as above with
respect to the top row. Similarly, we can obtain the following permutations (as products of
cycles) for the respective operations:

I ∼
(

A∗
1 A∗

2 A∗
3 A∗

4
A∗

1 A∗
2 A∗

3 A∗
4

)
∼ (1)(2)(3)(4) (13)

C2(3) ∼
(

A∗
1 A∗

2 A∗
3 A∗

4
A∗

3 A∗
4 A∗

1 A∗
2

)
∼ (1 3)(2 4) (14)

C2(1) ∼
(

A∗
1 A∗

2 A∗
3 A∗

4
A∗

2 A∗
1 A∗

4 A∗
3

)
∼ (1 2)(3 4) (15)

C2(2) ∼
(

A∗
1 A∗

2 A∗
3 A∗

4
A∗

4 A∗
3 A∗

2 A∗
1

)
∼ (1 4)(2 3) (16)

σd(1) ∼
(

A∗
1 A∗

2 A∗
3 A∗

4
A∗

1 A∗
4 A∗

3 A∗
2

)
∼ (1)(2 4)(3) (17)

σd(2) ∼
(

A∗
1 A∗

2 A∗
3 A∗

4
A∗

3 A∗
2 A∗

1 A∗
4

)
∼ (1 3)(2)(4) (18)

S3
4 ∼

(
A∗

1 A∗
2 A∗

3 A∗
4

A∗
4 A∗

1 A∗
2 A∗

3

)
∼ (1 4 3 2) (19)

S4 ∼
(

A∗
1 A∗

2 A∗
3 A∗

4
A∗

2 A∗
3 A∗

4 A∗
1

)
∼ (1 2 3 4) (20)

It follows that eqs. 13—20 represent a concrete form of the CR D2d(/Cs), which governs the
orbit of the assemblies, i.e., A∗ = {A∗

1,A∗
2,A∗

3,A∗
4}. The set of the permutations (eqs. 13—

20) is essentially the same as the set of the permutations (eqs. 23–30 of Part 1) for the set
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Figure 4: Assemblies for representing the CR D2d(/Cs). The four assemblies, A∗
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of segments A = {A1,A2,A3,A4}.9 This fact reflects the parallelism between intramolecular
stereochemistry and stereoisomerism.

Exercise 1. Derive eqs. 13–20 by drawing such figures as Fig. 4 (eq. 13 for I) and Fig. 5 (eq. 14
for C2(3)).

It is worthwhile to add some commentaries to the procedure above from the viewpoint of
group theory. The symmetry operations listed in Fig. 4 are categorized into cosets derived from
the coset decomposition of D2d by the subgroup Cs as follows:

D2d = ICs +C2(3)Cs +C2(1)Cs +C2(2)Cs (21)

= {I,σd(1)}︸ ︷︷ ︸
A∗

1

+{C2(3),σd(2)}︸ ︷︷ ︸
A∗

3

+{C2(1),S
3
4}︸ ︷︷ ︸

A∗
2

+{C2(2),S4}︸ ︷︷ ︸
A∗

4

(22)

These cosets are related to the set of assemblies (A∗) in one-to-one fashion so that they corre-
spond to A∗

α of Fig. 4 when regarded as an ordered set. On the action of C2(3), the cosets are per-
muted to give C2(3)ICs = C2(3)Cs (↔ A∗

3), C2(3)C2(3)Cs = ICs (↔ A∗
1), C2(3)C2(1)Cs = C2(2)Cs

(↔ A∗
4), and C2(3)C2(2)Cs = C2(1)Cs (↔ A∗

2). The set of these cosets as an ordered set corre-
spond to A∗

β of Fig. 5. Thus, the same permutations as those listed in eqs. 13–20 are obtained
by permuting the set of cosets as an ordered set. This is the mathematical way of obtaining
CRs. Hence, the permutation representations obtained diagrammatically in the different ways
(the present way and the way described in Part 1) can be equalized to CRs.

2.1.3 Assemblies of Other Symmetries

By analogy to the procedure for selecting the orbit of Cs-assemblies described above, respective
orbits of assemblies of other symmetries can be constructed, as shown in Table 1. In general, a
G j-assembly represents a G j-molecule, where G j is a subgroup of G. On the action of G, the
G j-assembly is transformed into equivalent G j-assemblies, which construct an orbit governed
by G(/G j).

As an example of chiral subgroups, an orbit of C′
2-assemblies is obtained as follows:

B∗ = {B∗
1,B

∗
2,B

∗
3,B

∗
4}. (23)

The set B∗ as an ordered set gives a permutation representation, which is equalized to the CR
D2d(/C′

2). The C′
2-assemblies are chiral, while the Cs-assemblies described in the preceding

subsection are achiral. Because the symmetries (C′
2 and Cs) appear as the local symmetries in

the CRs (D2d(/C′
2) and D2d(/Cs)), the sphericities of the orbits governed by the CRs can be

understandable as “sphericities in intermolecular stereochemistry (stereoisomerism)”, as dis-
cussed in the next subsection.

Exercise 2. Apply the procedure exemplified by the orbit of Cs-assemblies (cf. 2.1.2) to the
cases listed in Table 1. Compare the results for A∗, B∗, C ∗, D∗, E∗, F ∗, and G∗ with those for
A , B , C , D , E , F , and G which have been described in Part 1.

9Strictly speaking, this representation corresponds to left cosets g−1Cs while eqs. 23–30 of Part 1 corresponds
to right cosets Csg, where g is a representative selected from D2d .
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Table 1: Orbits of Assemblies

Symmetry Orbit governed G j-Assemblies
G j by the CR D2d(/G j) of Transformulas
Cs A∗ = {A∗

1,A∗
2,A∗

3,A∗
4} A∗

1 = { f1, f2}, A∗
2 = { f7, f4},

A∗
3 = { f5, f6}, A∗

4 = { f3, f8}
C′

2 B∗ = {B∗
1,B

∗
2,B

∗
3,B

∗
4} B∗

1 = { f2, f7} B∗
2 = { f4, f5},

B∗
3 = { f6, f3}, B∗

4 = { f1, f8}
C2 C ∗ = {C ∗

1,C ∗
2,C ∗

3,C ∗
4} C ∗

1 = { f1, f5} C ∗
2 = { f2, f6},

C ∗
3 = { f3, f7}, C ∗

4 = { f4, f8}
C2v D∗ = {D∗

1,D
∗
2} D∗

1 = { f1, f2, f5, f6}, D∗
2 = { f3, f4, f7, f8}

D2 E∗ = {E∗
1,E∗

2} E∗
1 = { f1, f4, f5, f8}, E∗

2 = { f2, f3, f6, f7}
S4 F ∗ = {F ∗

1,F ∗
2} F ∗

1 = { f1, f3, f5, f7}, F ∗
2 = { f2, f4, f6, f8}

D2d G∗ = {G∗
1} G∗

1 = { f1, f2, f3, f4, f5, f6, f7, f8},

2.2 Molecules Represented by Assemblies
2.2.1 C1-Molecules as Special Assemblies

The selection of the C1-assembly (1) is accompanied by the subduction D2d(/C1) ↓ C1 =
8C1(/C1) with respect to intramolecular stereochemistry described in Part 1. This means that
the eight vertices of the C1-assembly (1) are nonequivalent to each other with considering the
numbering of the vertices. A C1-assembly (e.g., 1) derived from a regular body corresponds
to a C1-molecule. This conclusion can be confirmed by constructing a concrete C1-molecule,
where either one of the vertices is replaced by an object of another kind ( �), producing 10 as a
C1-molecule.

The resulting C1-assembly of a transformula, which corresponds to a single C1-molecule
(i.e., 10), is transformed into the other C1-assemblies (11–17). Because these C1-assemblies
(11–17) are equivalent to 10 under the action of D2d , the totally eight C1-assemblies (10–17)
construct a D2d(/C1)-orbit. The local symmetry C1 denotes the symmetry of the original trans-
formula (i.e., 10), which can be regarded as a representative of the C1-molecule at issue.

2.2.2 Cs-Molecules as Special Assemblies

The Cs-assembly (e.g., A∗
1 = {1,6} in Fig. 4) corresponds to a Cs-molecule, because it is se-

lected as a fixed object, as represented by a surrounding box.10 Because the selection of the
Cs-assembly is accompanied by the subduction D2d(/C1) ↓ Cs = 4Cs(/C1) with respect to
intramolecular stereochemistry described in Part 1, the vertices of the regular body are non-
equivalent. It follows that two vertices can be selected to be replaced by objects of another kind
( �), producing a Cs-assembly (e.g., A†

1 = {18,22} = { f †
1 , f †

2 }) shown in Fig. 7. The resulting
Cs-assembly A†

1, which corresponds to a single Cs-molecule (18 as a representative), is trans-

10Mathematically speaking, the group Cs is selected as a stabilizer. The term “fixed” means that the two trans-
formulas surrounded by a box are considered to be identical with each other so as to represent a single molecule.
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Figure 6: C1-Molecules corresponding to eight C1-assemblies ( f ∗1 – f ∗8 ), which are equivalent
on the action of D2d . Each of the C1-assemblies consists of one transformula. The alignment
shown in this diagram corresponds to an ordered set, T ∗

α = { f ∗1 , f ∗5 , f ∗4 , f ∗8 , f ∗2 , f ∗6 , f ∗7 , f ∗3 }, which
is an orbit governed by the regular representation D2d(/C1).

formed into the other Cs-assemblies (A†
3 = {19,23 = { f †

5 , f †
6 }, A†

2 = {20,24} = { f †
7 , f †

4 }, and
A†

4 = {21,25} = { f †
3 , f †

8 }), as shown in Fig. 7. Because these four Cs-assemblies (A†
1, A†

3, A†
2,

and A†
4) are equivalent to one another under the action of D2d , the four Cs-assemblies construct

a D2d(/Cs)-orbit. The local symmetry Cs denotes the symmetry of the original transformula
(i.e., 18), which can be regarded as a representative of the Cs-molecule at issue.

2.2.3 Molecules of Other Symmetries as Special Assemblies

The procedure described above for obtaining the CR D2d(/Cs) can be extended to a general
procedure so that the set of assemblies for representing the CR (Fig. 4, 5, and the other six
figures) is replaced by the set of assemblies corresponding to another subgroup. This task is
open to the challenge of readers as an exercise:

Exercise 3. Select an assembly of transformulas corresponding to each subgroup Gi of D2d ,
where Gi = Cs,C′

2,C2,C2v, D2, S4, and D2d . Repeat the procedure described for the CR
D2d(/Cs) in order to obtain other CRs, i.e., D2d(/Gi). Let these orbits (governed by D2d(/Cs),
D2d(/C′

2), D2d(/C2), D2d(/C2v), D2d(/D2), D2d(/S4), and D2d(/D2d)) be represented by the
symbols, A†, B†, C †, D†, E†, F †, and G†. Then compare these orbits with the ones obtained
in Exercise 2, i.e., A∗, B∗, C ∗, D∗, E∗, F ∗, and G∗ (cf. Table 1).

2.2.4 Sphericities in Intermolecular Stereochemistry

The concept of sphericities is also effective to describe intermolecular stereochemistry (stereoiso-
merism). Because the CR D2d(/Cs) is homospheric, the assembles of A∗ = {A∗

1,A∗
2,A∗

3,A∗
4}

(Table 1) construct a homospheric orbit. The homospheric orbit A∗ corresponds to the ho-
mospheric orbit A† (cf. 2.2.2 and Exercise 3) as shown in Fig. 7, so that the orbit represents
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Figure 7: Cs-Molecules corresponding to four Cs-assemblies, i.e., A†
1 = { f †

1 , f †
2 }, A†

2 =
{ f †

4 , f †
7 }, A†

3 = { f †
5 , f †

6 }, and A†
4 = { f †

8 , f †
3 }, which are equivalent on the action of D2d . Each

of the Cs-assemblies consists of two transformulas. The alignment shown in this diagram cor-
responds to an ordered set, A†

α = {A†
1,A

†
3,A

†
2,A

†
4}, which is an orbit governed by the CR

D2d(/Cs).

an achiral Cs-molecule. The same situation is true for the CRs D2d(/C2v), D2d(/S4), and
D2d(/D2d).

On the other hand, the C′
2-assemblies B∗

1 and B∗
3 selected from B∗ = {B∗

1,B
∗
2,B

∗
3,B

∗
4}

are the mirror images of B∗
2 and B∗

4 (Table 1). This corresponds to the fact that the four C′
2-

assemblies construct a four-membered D2d(/C′
2)-orbit that is enantiospheric, where the orbit

(i.e., B† obtained in Exercise 3) represents an enantiomeric pair of chiral C′
2-molecules. The

same situation is true for the CRs D2d(/C2) and D2d(/D2).
The hemisphericity appears when a chiral skeleton is taken into consideration. Such a chi-

ral skeleton is accompanied by the chiral skeleton of opposite chirality (i.e., the enantiomeric
skeleton). If the enantiomeric skeletons are pairwise considered, they can be discussed in terms
of enantiosphericity, even though careful examinations are necessary.

It should be noted that the comparison of the homospheric cases with the enantiospheric
cases reveals one of the essential features of Fujita’s USCI approach: A pair of enantiomeric
molecules (totally achiral) and an achiral molecule are considered to be in an equal level of
consideration. The pair of enantiomeric molecules is characterized by the enantiosphericity in
stereoisomerism, while the achiral molecule is characterized by the homosphericity in stereoiso-
merism.

2.3 Subductions of Orbits of Assemblies
The concept of subductions of CRs works well in discussions on orbits of assemblies. For
example, let us consider the subduction of the CR D2d(/Cs) ↓ Cs. This subduction is diagram-
matically explained by the selection of two permutations corresponding to Cs = {I,σd(1)} from

- 16 -



the eight permutations of the obit of assemblies A∗ (eq. 11). The selected permutations are
shown in Fig. 8, where the top row (containing four assemblies) is the original alignment (∼ I)
of A∗ and the second row (containing four assemblies) is the alignment after the σd(1) operation.

On the action of the σd(1) operation, the top row of A∗ = {A∗
1,A∗

3,A∗
2,A∗

4} is converted
into second row A∗ = {A∗

1,A∗
3,A∗

4,A∗
2}. The comparison of the two rows teaches us that A∗

1
(or A∗

3) is fixed on the action of Cs (i.e., A∗
1 → A∗

1 (= A∗
1) or A∗

3 → A∗
3 (= A∗

3)) and that A∗
2

and A∗
4 are exchanged (i.e., A∗

2 → A∗
4 (= A∗

4) and A∗
4 → A∗

2 (= A∗
2)). This means that A∗

is divided into two one-membered orbits (i.e., {A∗
1} and {A∗

3}) and one two-membered orbit
(i.e., {A∗

2,A∗
4}). Because the transformula of the resulting one-membered orbit {A∗

1} (or {A∗
3})

is fixed by Cs, it is concluded to be governed by Cs(/Cs). Because each transformula of the
other two-membered orbit {A∗

2,A∗
4}) is fixed by C1, it is concluded to be governed by Cs(/C1).

Hence, Fig. 8 represents the subduction of the CR D2d(/Cs) ↓ Cs = 2Cs(/Cs)+Cs(/C1). The
same result can be obtained by the selection of the permutations shown in eqs. 13 and 17.

Because the Cs(/Cs)-orbit is a one-membered homospheric orbit and the Cs(/C1)-orbit is
a two-membered enantiospheric orbit (cf. Table 5 of Part 1), the subduction is characterized by
the USCI-CF a2

1c2. The corresponding mark is equal to 2 because of the power of the sphericity
index a1.

The subduction procedure is repeated to cover all of the subgroups of D2d , giving the modes
of division for the original D2d(/Cs)-orbit:

Subduction Result USCI-CF USCI Mark
D2d(/Cs) ↓ D2d = D2d(/Cs) a4 s4 0 (24)
D2d(/Cs) ↓ D2 = D2(/C1) b4 s4 0 (25)

D2d(/Cs) ↓ C2v = C2v(/Cs)+C2v(/C′
s) a2

2 s2
2 0 (26)

D2d(/Cs) ↓ S4 = S4(/C1) c4 s4 0 (27)
D2d(/Cs) ↓ Cs = 2Cs(/Cs)+Cs(/C1) a2

1c2 s2
1s2 2 (28)

D2d(/Cs) ↓ C2 = 2C2(/C1) b2
2 s2

2 0 (29)
D2d(/Cs) ↓ C′

2 = 2C′
2(/C1) b2

2 s2
2 0 (30)

D2d(/Cs) ↓ C1 = 4C1(/C1) b4
1 s4

1 4 (31)

The results shown in eqs. 24–31 are equivalent to the ones shown in eqs. 60–67 of Part 1. It
should be noted that the D2d(/Cs)-orbit is characterized by the subductions (eqs. 24–31), by the
USCI-CFs ({b4

1,b
2
2,b

2
2,a

2
1c2,c4,a2

2,b4,a4}), by the USCIs ({s4
1,s

2
2,s

2
2,s

2
1s2,s4,s2

2,s4,s4}), and by
the marks ({4,0,0,2,0,0,0,0,0}), where these are aligned in an ascending order of the orders
of the subgroups (cf. Tables 8–11 of Part 1).

Exercise 4. Derive eqs. 24–31 diagrammatically by following the procedure given above. Com-
pare the derivation with the one described for obtaining eqs. 60–67 of Part 1.

The above-described procedure can be more clearly demonstrated by considering Fig. 7 for
A† in place of Fig. 4 for A∗. Among the eight permutation diagrams of the orbit of assemblies
A†, two permutation diagrams corresponding to Cs = {I,σd(1)} are selected, giving Figs. 7
(for I) and 9 (for σd(1)), which are gathered to give the counterpart of Fig. 8. By comparing
these diagrams, one can find that the {A†

1} and the {A†
3} are respectively immobile (fixed or

stabilized), while the A†
2 and the A†

4 are interchanged into each other. Thus, the symmetry
restriction from D2d to Cs divides the four-membered orbit (A†) into two one-membered orbits
({A†

1} and {A†
3}) and a two-membered orbit({A†

2,A
†
4}).
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Figure 8: Two permutations of the set of assemblies representing the subduction of the CR
D2d(/Cs) ↓ Cs = 2Cs(/Cs)+Cs(/C1). The top row of A∗ = {A∗

1,A∗
3,A∗

2,A∗
4} is converted into

second row A∗ = {A∗
1,A∗

3,A∗
4,A∗

2}, where A∗ is divided into two one-membered orbits (i.e.,
{A∗

1} and {A∗
3}) and one two-membered orbit (i.e., {A∗

2,A∗
4}).
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Figure 9: The action of σd(1) on the Cs-molecule (the four Cs-assemblies) listed in Fig. 7. The
alignment shown in this diagram corresponds to an ordered set, A†

α = {A†
1,A

†
3,A

†
4,A

†
2}.

Because the transformula of the resulting one-membered orbit {A†
1} (or {A†

3}) is fixed by
Cs, it is concluded to be governed by Cs(/Cs). Because each transformula of the other two-
membered orbit {A†

2,A
†
4}) is fixed by C1, it is concluded to be governed by Cs(/C1). This

represents the subduction of the CR D2d(/Cs) ↓ Cs = 2Cs(/Cs)+Cs(/C1). Moreover, the cor-
responding USCI-CF (or USCI) is calculated to be a2

1c2 (or s2
1s2) and the mark of this restriction

is obtained to be equal to 2 (two one-membered orbits). The diagrammatical procedure is re-
peated to cover all of the symmetry operations of D2d so that the same subduction table as Table
8 of Part 1, the same USCI-CF table as Table 9 of Part 1, the same USCI table as Table 10 of
Part 1, and the same mark table as Table 11 of Part 1 are obtained alternatively.

3 Mandalas as Nested Regular Bodies
The discussions described in Section 2 have essentially followed Chapters 13 and 15 of Fujita’s
book [10], although a more diagrammatical approach has been adopted by following partly the
treatment reported recently [16, 17]. Because the discussions have required eight diagrams of
permutations, each of which contains eight transformulas for D2d , a more simplified approach
should be developed to take a further discussion. This task can be accomplished by considering
nested regular bodies (named mandalas), where an assembly of transformulas, which has been
defined in Part 1, will be redefined in a more diagrammatical fashion. As a result, the relation-
ship between the intramolecular stereochemistry (Part 1) and the intermolecular stereochemistry
(Part 2) can be clearly demonstrated on the basis of the concept of mandalas.
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3.1 Intuitive Definition
A mandala11 is defined as a nested regular body in which a transformula derived from a regular
body (named a corona body) is placed on a vertex of another regular body (named a base body),
as shown in Fig. 10. The numbering of each vertex and the correspondence to each symmetry
operation (g ∈ D2d) in the corona body are adopted in the same way as Fig. 26 of Part 1, as
found in the eight transformulas (corona bodies) of Fig. 10. On the other hand, each vertex
of the base body is renumbered in accord with the correspondence to g−1. Thereby, Fig. 2
is converted into a mandala as a nested regular body (Fig. 10). Although the mandala is a
hypothetical structure, it diagrammatically integrates the two fields of stereochemistry. Thus,
the corona body represents the intramolecular stereochemistry (Part 1), while the base body
represents the intermolecular stereochemistry (Part 2).
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Figure 10: Mandala (a nested regular body) containing eight transformulas ( f1– f8) at its ver-
tices. The alignment shown in this diagram corresponds to the ordered set shown in Fig.
2, T α = { f1, f5, f4, f8, f2, f6, f7, f3}, which is now reordered in a clockwise manner to give
T ′

α = { f1, f2, f7, f4, f5, f6, f3, f8}. The full expression of the mandala is simplified into 26.

The mandala shown in Fig. 10 is simplified by replacing each corona body (transformula) by
its symbol ( f1– f8) so as to give 26 shown in the lower right part of Fig. 10. The action of C2(3)

11The word mandala is originally used to denote a circular picture that represents the universe in such eastern
religions as Buddhism. The word is here adopted to denote a nested regular body for describing the universe of
stereochemistry (the intramolecular and the intermolecular stereochemistry).
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4)

Figure 11: Permutation diagram containing eight mandalas generated by the symmetry oper-
ations of D2d . The first mandala (26) corresponds to Fig. 2 via Fig. 10. The second one (27)
corresponds to Fig. 3.

converts 26 (corresponding to Fig. 2 via Fig. 10) into 27, which is the mandala corresponding
to Fig. 3. Thus, all of the symmetry operations of D2d generate the eight mandalas listed in Fig.
11, which is a permutation diagram of the eight mandalas. Obviously, Fig. 11 represents the
same treatment as described in 2.2.1, where the eight sheets (Fig. 2, Fig. 3, and others) used
in 2.2.1 are summarized into one sheet (Fig. 11). As a result, the eight mandalas in Fig. 11
correspond to the permutations represented by eqs. 3–10.

Exercise 5. Correlate each mandala of Fig. 11 to each of eqs. 3–10.

3.2 Assemblies in a Mandala
By means of the permutation diagram of mandalas shown in Fig. 11, such assemblies of trans-
formulas as discussed in Subsection 2.1 (Table 1) can be redefined diagrammatically.

3.2.1 Orbits of Assemblies Governed by the CR D2d(/Cs)

Let us remember the Cs-assemblies shown in Fig. 4. Each assembly contained in the orbit
A∗ = {A∗

1,A∗
2,A∗

3,A∗
4} (Fig. 4 and Table 1) is encircled with an oval to generate an assemblage

pattern (34) shown in Fig. 12. This is depicted as a reference 36 in Fig. 13. Similarly, the Cs-
assemblies shown in Fig. 5 generated by the C2(3)-operation are diagrammatically represented
by 37 in Fig. 13. The above procedure is repeated to cover all of the operations of D2d so that
Fig. 13 is obtained as a permutation diagram for the Cs-assemblies.

The total procedure (Fig. 13) can be diagrammatically considered to be the superposition
of the assemblage pattern (34) onto the mandalas shown in Fig. 11. Because the orbit A∗ =
{A∗

1,A∗
2,A∗

3,A∗
4} in Fig. 13 is the same as the one (eq. 11 and Table 1) described in 2.1.2, the

permutation diagram (Fig. 13) generates the same permutations as shown above (eqs. 13–20).

Exercise 6. Correlate each mandala of the permutation diagram (Fig. 13) to each of eqs. 13–20.
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Figure 12: Assemblage patterns to generate orbits of Cs-assemblies in the mandala (26). Each
assembly encircled by an oval is called a Cs-assembly because it is fixed (stabilized) on the
action of Cs (or its conjugate subgroup C′

s). The resulting set of the four Cs-assemblies is an
orbit governed by the CR D2d(/Cs).
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Figure 13: Permutation diagram containing eight mandalas generated by the symmetry opera-
tions of D2d . The first mandalas (26) corresponds to Fig. 2 via Fig. 10. The second one (27)
corresponds to Fig. 3. These eight mandalas represent the CR D2d(/Cs).

Another assemblage pattern (35) shown in Fig. 12 can be selected to construct a permutation
diagram, which gives an equivalent CR to the CR D2d(/Cs). It should be noted that Cs (=
{I,σd(1)} and C′

s (= {I,σd(2)} are conjugate within the group D2d .

Exercise 7. By following the procedure for constructing the permutation diagram (Fig. 13), con-
struct a permutation diagram corresponding to the assemblage pattern (35).

3.2.2 Orbits of Assemblies Governed by the CR D2d(/C′
2)

Let us next consider four two-membered sets of transformulas, B∗
1 = { f2, f7}, B∗

2 = { f4, f5},
B∗

3 = { f6, f3}, and B∗
4 = { f1, f8}, which are regarded as assemblies, as shown in 44 of Fig. 14
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(cf. Table 1). They are equivalent on the action of operations of D2d so as to construct an orbit,
i.e., B∗ = {B∗

1,B
∗
2,B

∗
3,B

∗
4}. Because the assembly B∗

1 is fixed (stabilized) on the action C′
2, the

local symmetry of the orbit B∗ is determined to be C′
2. Thereby, the orbit B∗ is concluded to

be governed by the CR D2d(/C′
2). Strictly speaking, the assemblies B∗

1 and B∗
3 are fixed on the

action C′
2 = {I,C2(1)}, while the assemblies B∗

2 and B∗
4 are fixed on the action C′′

2 = {I,C2(2)}.
Because C′

2 and C′′
2 are conjugate within D2d , they are regarded as being equivalent in this

treatment.
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Figure 14: Assemblage patterns to generate orbits of C′
2-assemblies in the mandala Each as-

sembly encircled by an oval is called a C′
2-assembly because it is fixed (stabilized) on the action

of C′
2 (or its conjugate subgroup C′′

2). The resulting set of the four C′
2-assemblies is an orbit

governed by the CR D2d(/C′
2).

The action of each operation of D2d causes a permutation of the four assemblies of B∗ (44).
The result can be summarized to give such a permutation diagram as shown in Fig. 15. The total
procedure (Fig. 15) can be diagrammatically considered to be the superposition of the assem-
blage pattern (44) onto the mandalas shown in Fig. 13. Because the orbit B∗ = {B∗

1,B
∗
2,B

∗
3,A∗

4}
in Fig. 15 is the same as the one (Table 1) described in 2.1.2, the permutation diagram (Fig. 15)
generates the same permutations, as shown below (eqs. 32–39).

I ∼
(

B∗
1 B∗

2 B∗
3 B∗

4
B∗

1 B∗
2 B∗

3 B∗
4

)
∼ (1)(2)(3)(4) (32)

C2(3) ∼
(

B∗
1 B∗

2 B∗
3 B∗

4
B∗

3 B∗
4 B∗

1 B∗
2

)
∼ (1 3)(2 4) (33)

C2(1) ∼
(

B∗
1 B∗

2 B∗
3 B∗

4
B∗

1 B∗
4 B∗

3 B∗
2

)
∼ (1)(2 4)(3) (34)

C2(2) ∼
(

B∗
1 B∗

2 B∗
3 B∗

4
B∗

3 B∗
2 B∗

1 B∗
4

)
∼ (1 3)(2)(4) (35)

σd(1) ∼
(

B∗
1 B∗

2 B∗
3 B∗

4
B∗

4 B∗
3 B∗

1 B∗
1

)
∼ (1 4)(2 3) (36)

σd(2) ∼
(

B∗
1 B∗

2 B∗
3 B∗

4
B∗

2 B∗
1 B∗

4 B∗
3

)
∼ (1 2)(3 4) (37)

S4 ∼
(

B∗
1 B∗

2 B∗
3 B∗

4
B∗

2 B∗
3 B∗

4 B∗
1

)
∼ (1 2 3 4) (38)

S3
4 ∼

(
B∗

1 B∗
2 B∗

3 B∗
4

B∗
4 B∗

1 B∗
2 B∗

3

)
∼ (1 4 3 2). (39)
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Figure 15: Permutation diagram containing eight mandalas generated by the symmetry opera-
tions of D2d . These eight mandalas represent the CR D2d(/C′

2).

The set of the permutations (eqs. 32—39) is a concrete form of the CR D2d(/C′
2), which is

equivalent to the corresponding CR which has been algebraically obtained by using a coset de-
composition of D2d by C′

2, as discussed generally in Chapter 7 of Fujita’s book [10]. Moreover,
they are equivalent to the corresponding CR (eqs. 31–38) described in Part 1. Because D2d is
achiral and C′

2 is chiral, a D2d(/C′
2)-orbit is enantiospheric. This CR corresponds to a sphericity

index c4 because of |D2d|/|C′
2| = 8/2 = 4.

The right assemblage pattern (45) of Fig. 14 shows another orbit of assemblies governed
by the CR D2d(/C′

2), i.e., B∗′ = {B∗′
1 ,B∗′

2 ,B∗′
3 ,B∗′

4 }, where we place B∗′
1 = {1,4}, and B∗′

2 =
{7,6}, B∗′

3 = {5,8}. B∗′
4 = {2,3}. The assemblies B∗′

1 and B∗′
3 are fixed on the action of C′

2,
while the assemblies B∗′

2 and B∗′
4 are fixed on the action of C′′

2, where C′
2 and C′′

2 are conjugate
within D2d .

Exercise 8. Construct a permutation diagram for the orbit B∗′ by using the assemblage pattern
45 (Fig. 14). Then, show permutations corresponding to the orbit B∗′. Compare these permuta-
tions with eqs. 32–39.

3.2.3 Orbits of Assemblies Governed by the CR D2d(/C2)

The four assemblies of transformulas in 54 of Fig. 16, i.e., C ∗
1 = { f1, f5}, C ∗

2 = { f2, f6},
C ∗

3 = { f3, f7}, and C ∗
4 = { f4, f8}, are equivalent on the action of operations of D2d so that

they construct an orbit, i.e., C ∗ = {C ∗
1,C ∗

2,C ∗
3,C ∗

4}. Because the assembly C ∗
1 is fixed (stabi-

lized) on the action C2, the local symmetry of the orbit C is determined to be C2. Thereby, the
orbit C ∗ is concluded to be governed by the CR D2d(/C2).

The action of each operation of D2d causes a permutation of the four assemblies of C (54)
so that the result is represented as such a permutation diagram as shown in Fig. 17. The total
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Figure 16: Assemblage pattern to generate an orbit of C2-assemblies in the mandala. Each as-
sembly encircled by an oval is called a C2-assembly because it is fixed (stabilized) on the action
of C2. The resulting set of the four C2-assemblies is an orbit governed by the CR D2d(/C2).
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59 (σd(1)) 60 (σd(2)) 61 (S4) 62 (S3
4)

Figure 17: Permutation diagram containing eight mandalas generated by the symmetry opera-
tions of D2d . These eight mandalas represent the CR D2d(/C2).

procedure (Fig. 17) can be diagrammatically considered to be the superposition of the assem-
blage pattern (54) onto the mandalas shown in Fig. 13. The orbit C ∗ = {C ∗

1,C ∗
2,C ∗

3,C ∗
4} in Fig.

17 is the same as the one (Table 1) described in 2.1.2.
The permutation diagram (Fig. 17) gives the following permutations (as products of cycles)

for the respective operations:

I,C2(3) ∼
(

C ∗
1 C ∗

2 C ∗
3 C ∗

4
C ∗

1 C ∗
2 C ∗

3 C ∗
4

)
∼ (1)(2)(3)(4) (40)

C2(1),C2(2) ∼
(

C ∗
1 C ∗

2 C ∗
3 C ∗

4
C ∗

4 C ∗
3 C ∗

2 C ∗
1

)
∼ (1 4)(2 3) (41)

σd(1),σd(2) ∼
(

C ∗
1 C ∗

2 C ∗
3 C ∗

4
C 2 C 1 C 4 C 3

)
= (1 2)(3 4) (42)
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S4,S3
4 ∼

(
C ∗

1 C ∗
2 C ∗

3 C ∗
4

C 3 C 4 C 1 C 2

)
∼ (1 3)(2 4) (43)

The set of the permutations (eqs. 40—43) is a concrete form of the CR D2d(/C2), which is
equivalent to the corresponding CR which has been algebraically obtained by using a coset de-
composition of D2d by C2, as discussed generally in Chapter 7 of Fujita’s book [10]. Moreover,
they are equivalent to the corresponding CR (eqs. 39–42) described in Part 1. Because D2d is
achiral and C2 is chiral, a D2d(/C2)-orbit is enantiospheric. This CR corresponds to a sphericity
index c4 because of |D2d|/|C2| = 8/2 = 4.

3.2.4 Orbits of Assemblies Governed by the CR D2d(/C2v)

The two four-membered sets of assemblies in 63 of Fig. 18, i.e., D∗
1 = { f1, f2, f5, f6} and D∗

2 =
{ f3, f4, f7, f8}, are equivalent on the action of operations of D2d so that they construct an orbit,
i.e., D∗ = {D∗

1,D
∗
2}. Because the assembly D∗

1 is fixed (stabilized) on the action C2v, the local
symmetry of the orbit D∗ is determined to be C2v. Thereby, the orbit D∗ is concluded to be
governed by the CR D2d(/C2v).

f7f8

f4f3

f2f1

f5f6

� �

	 


� �

	 


D∗
1

D∗
2

63

Figure 18: Assemblage pattern to generate an orbit of C2v-assemblies in the regular body for
illustrating the CR D2d(/C2v).

The action of each operation of D2d causes a permutation of the two assemblies of D∗ (63).
Hence, the total results are represented as such a permutation diagram as shown in Fig. 19.
The total procedure (Fig. 19) can be diagrammatically considered to be the superposition of the
assemblage pattern (63) onto the mandalas shown in Fig. 13. The orbit D∗ = {D∗

1,D
∗
2} in Fig.

19 is the same as the one (Table 1) described in 2.1.2.
By means of the permutation diagram shown in Fig. 19, we can obtain the following per-

mutations (as products of cycles) for the respective operations:

I,C2(3) ∼
(

D∗
1 D∗

2
D∗

1 D∗
2

)
∼ (1)(2) (44)

C2(1),C2(2) ∼
(

D∗
1 D∗

2
D∗

2 D∗
1

)
∼ (1 2) (45)

σd(1),σd(2) ∼
(

D∗
1 D∗

2
D∗

1 D∗
2

)
∼ (1)(2) (46)

S4,S3
4 ∼

(
D∗

1 D∗
2

D∗
2 D∗

1

)
∼ (1 2) (47)

The set of the permutations (eqs. 44—47) is a concrete form of the CR D2d(/C2v), which is
equivalent to the corresponding CR which has been algebraically obtained by using a coset de-
composition of D2d by C2v, as discussed generally in Chapter 7 of Fujita’s book [10]. Moreover,
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Figure 19: Permutation diagram containing eight mandalas generated by the symmetry opera-
tions of D2d . These eight mandalas represent the CR D2d(/C2v).

they are equivalent to the corresponding CR (eqs. 43–46) described in Part 1. Because both D2d
and C2v is achiral, a D2d(/C2v)-orbit is homospheric. This CR corresponds to a sphericity index
a2 because of |D2d |/|C2v| = 8/4 = 2.

3.2.5 Orbits of Assemblies Governed by the Other CRs

The other CRs corresponding to the remaining orbits of assemblies (Table 1) can be obtained
similarly. Their derivation is open to the challenge of readers as follows:

Exercise 9. Show an assemblage pattern for D2-assemblies. Construct the corresponding per-
mutation diagram. Show the concrete forms of the permutations contained in the CR D2d(/D2)
(cf. Table 1). Compare them with eqs. 47 and 48 of Part 1.

Exercise 10. Show an assemblage pattern for S4-assemblies. Construct the corresponding per-
mutation diagram. Show the concrete forms of the permutations contained in the CR D2d(/S4)
(cf. Table 1). Compare them with eqs. 49–52 of Part 1.

Exercise 11. Show an assemblage pattern for a D2d-assembly (a trivial case). Construct the
corresponding permutation diagram. Show the concrete forms of the permutations contained in
the CR D2d(/D2d) (cf. Table 1). Compare them with eqs. 53 and 54 of Part 1.

3.3 Subductions by Using Mandalas
3.3.1 Subductions of an Orbit of Assemblies in a Mandala

The subductions of orbits of assemblies have been discussed in Subsection 2.3. They can be
restated by using mandalas. For example, the subduction D2d(/Cs) ↓ Cs corresponds to the
selection of two mandalas (36 and 40 in accord with Cs = {I,σd(1)}) from the permutation
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diagram of mandalas (Fig. 13), which gives Fig. 20. It should be noted that Fig. 20 (36 for I and
40 for σd(1)) represents the same selection as depicted in Fig. 8 (the top row for I and the second
row for σd(1)). Obviously, the same results as shown in eq. 28 are obtained from the data of Fig.
20. In accord with the occurrence of two one-membered orbits ({A∗

1} and {A∗
3}) and one two-

membered orbit ({A∗
2,A∗

4}), we obtain the subduction D2d(/Cs) ↓ Cs = 2Cs(/Cs)+ Cs(/C1),
the USCI-CF a2

1c2, the USCI s2
1s2, and the mark 2.
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Figure 20: Subduction of a D2d(/Cs)-orbit into Cs, where 36 and 40 are selected from the
permutation diagram of mandalas (Fig. 13).

From the permutation diagram of mandalas (Fig. 13), the mandalas corresponding to a sub-
group H of D2d are selected so as to represent the subduction D2d(/Cs) ↓ H diagrammatically.
Because these processes are essentially the same as described in Subsection 2.3, the same results
as shown in eqs. 24–31 are obtained. This means that the D2d(/Cs)-orbit is characterized by
the subductions (eqs. 24–31), by the USCI-CFs ({b4

1,b
2
2,b

2
2,a

2
1c2,c4,a2

2,b4,a4}), by the USCIs
({s4

1,s
2
2,s

2
2,s

2
1s2,s4,s2

2,s4,s4}), and by the marks ({4,0,0,2,0,0,0,0,0}). These data are equal
to the D2d(/Cs)-row of the respective tables reported in Part 1 (Tables 8–11).

3.3.2 Tables of Fujita’s USCI approach

By following the procedure described above, tables for Fujita’s USCI approach (i.e., subduction
tables, USCI-CF tables, USCI tables, and mark tables [10]) can be obtained by starting from
a permutation diagram of mandalas (e.g., Fig. 13 for D2d(/Cs)). Thereby, the same tables as
Tables 8–11 of Part 1 can be obtained in an alternative way. The task of obtaining them is left
to readers as the following exercises:

Exercise 12. By using the permutation diagram for D2d(/C′
2) (Fig. 15), derive the subduction

D2d(/C′
2) ↓ H, where H runs to cover all the subgroups of D2d .

Exercise 13. By using the permutation diagram for D2d(/C2) (Fig. 17), derive the subduction
D2d(/C2) ↓ H, where H runs to cover all the subgroups of D2d .

Exercise 14. By using the permutation diagram for D2d(/C2v) (Fig. 19), derive the subduction
D2d(/C2v) ↓ H, where H runs to cover all the subgroups of D2d .

Exercise 15. Construct the subduction table, the USCI-CF table, the USCI table, and the mark
table for D2d .
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4 Intermolecular and Intramolecular Stereochemistry

4.1 Common Theoretical Framework
Part 1 shows that an orbit of segments in a regular body of G-symmetry corresponds to an orbit
of (pro)ligands (or atoms) through a CR G(/H), where each (pro)ligand (or atom) belongs to
H-symmetry from the intramolecular view of stereochemistry. On the other hand, Part 2 (the
present paper) shows that an orbit of assemblies in a mandala (a nested regular body) of G-
symmetry corresponds to an orbit of molecules12 through a CR G(/H), where each molecule
belongs to H-symmetry from the intermolecular view of stereochemistry (stereoisomerism). In
other words, the CR G(/H) as a common theoretical framework governs both the intramolecular
stereochemistry and the intermolecular stereochemistry. This feature is depicted in Fig. 21 with
respect to D2d as the first example of showing the common theoretical framework.

As found in Fig. 21, a stepwise procedure for generating a molecule of a given symmetry
can be shown as follows:

1. Select a mandala (e.g., 26 or equivalently Fig. 10). The mandala is accompanied with the
corresponding permutation diagram (Fig. 11).

2. Select assemblies of a given subsymmetry (Cs) by using an assemblage pattern (34),
which gives an assembled mandala (36). The assembled mandala is accompanied with
corresponding permutation diagram (Fig. 13), which shows the CR D2d(/Cs).

3. Select an assembly (1/6). Because the assembly belong to Cs, the vertices are divided
into four orbits: {1,2}, {3,8}, {4,7}, and {5,6}.

4. According to the division, place (pro)ligands or atoms ( � or �) on the vertices of the
assembly. Thereby, the assembly (1/6) corresponds to every molecules (18, 72–76).

5. The vertices of each of the molecules (18, 72, . . ., or 76) can be further segmented to give
a segmented Cs-molecule (77, . . ., or 82).

6. Replace each segment in the segmented Cs-molecule (77, . . ., or 82) by (pro)ligands (or
atoms). Thereby, the corresponding Cs-molecule (83, . . ., or 88) is generated on the basis
of an allene skeleton.

By the inspection of Fig. 21, one can find the following remarkable results:

1. The Cs-assembly A∗
1 (= { f1, f2}, i.e., 1/6) and equivalent assemblies (under D2d) con-

struct a four-membered orbit (A∗ = {A∗
1,A∗

2,A∗
3,A∗

4}) governed by D2d(/Cs). Each one
of the molecules (18, 72–76) exhibits the symmetrically same behavior as A∗

1. For ex-
ample, the molecule 18 and equivalent molecules (under D2d) construct a four-membered
orbit governed by D2d(/Cs).

2. Moreover, each one of the segmented Cs-molecules (77–82) exhibits the symmetrically
same behavior as A∗

1. For example, the segmented molecule 77 and equivalent molecules
(under D2d) construct a four-membered orbit governed by D2d(/Cs).

12Strictly speaking, an H-assembly of transformulas in a mandala corresponds to a H-molecule. Such assem-
blies as being equivalent to the H-assembly under G-symmetry constructs an orbit of the H-assemblies, which is
governed by the G(/H). Hence, H-molecules equivalent to the H-molecule under G-symmetry construct an orbit
of the H-molecules, which is governed by the G(/H).
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Intermolecular Stereochemistry (Stereoisomerism)

f7f8

f4f3

f2f1

f5f6

26
(Mandala)

=⇒
Cs-

Assemblage

f7f8

f4f3

f2f1

f5f6
�
�

�
�

�
�

�
��

�

�

�

�

�

�

�

A∗
1

A∗
2

A∗
3

A∗
4

36
(Cs-Assembled mandala)

=⇒
Picking-up of
an Assembly

��
��

��

��

21

3

4

56

8

7

1 ( f1)

��
��

��

��

12

8

7

65

3

4

6 ( f2)

(Cs-Assembly)

Assembly into a Molecule ⇓

��
��

��

��

��
��

��

��

��
��

��

��

��
��

��

��

��
��

��

��

��
��

��

��

18 72 73 74 75 76
(Cs-Molecules derived from a regular body)

Intramolecular Stereochemistry
⇓ Cs-Segmentation

��
��

��

���� �

�� ��

�



�

�

�



�

X

H

H

H
��
��

��

���� �

�� ��

�



�

�

�



�

H

p

H

p
��
��

��

���� �

�� ��

�



�

�

�



�

X

p

H

p
��
��

��

���� �

�� ��

�



�

�

�



�

X

p

H

p
��
��

��

���� �

�� ��

�



�

�

�



�

H

X

X

X
��
��

��

���� �

�� ��

�



�

�

�



�

X

p

X

p

77 78 79 80 81 82
(Cs-Molecules derived from a segmented regular body)

⇓ Segments into (Pro)lignds (or Atoms)

H
H

X
H

H

p
H

p

H

p
X

p

H

p
X

p

X
X

H
X

X

p
X

p

83 84 85 86 87 88
(Cs-Molecules derived from an allene skeleton)

Figure 21: Mandala for D2d , an assembled mandala with a D2d(/Cs)-orbit of Cs-assemblies, a
Cs-assembly selected, Cs-molecules derived from a regular body, Cs-molecules derived from a
segmented regular body and Cs-molecules derived from an allene skeleton.
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3. Further, each one of the Cs-molecules (83–88) exhibits the symmetrically same behavior
as A∗

1. For example, the molecule 83 and equivalent molecules (under D2d) construct a
four-membered orbit governed by D2d(/Cs).

As the second example of showing the common theoretical framework, Fig. 22 shows
the participation of a D2d(/C′

2)-orbit in the intermolecular stereochemistry (an orbit of C′
2-

assemblies) and that of a D2d(/Cs)-orbit in the intramolecular stereochemistry (an orbit of
Cs-segments)

The stepwise procedure for generating a molecule of a given symmetry (see above) can be
also applied to Fig. 22, where the same mandala (e.g., 26 or equivalently Fig. 10) is selected
to give the corresponding permutation diagram (Fig. 11). Then, the selection of assemblies
of a given subsymmetry (C′

2) by using an assemblage pattern (45) gives an assembled man-
dala, where 45, though the same expression is used, is now regarded as a reference assembled
mandala. The assembled mandala (45) is accompanied with corresponding permutation dia-
gram (cf. Fig. 15), which shows the equivalence of the four assemblies (B∗′

1 , B∗′
2 , B∗′

3 , B∗′
4 }).

This means that the assemblies in the assembled mandala (45) construct an orbit represented by
B∗′ = {B∗′

1 ,B∗′
2 ,B∗′

3 ,B∗′
4 }. Because the local symmetry of the assembly (B∗′

1 ) is C′
2, the orbit

(B∗′) is determined to be governed by the CR D2d(/C′
2).

Exercise 16. Discuss the stepwise procedure by using another assemblage pattern (44), where
Fig. 15 is taken into consideration as a permutation diagram.

From the viewpoint of the intermolecular stereochemistry, the selection of the assembly
B∗′

1 (∈ B∗′) in the assembled mandala (45) corresponds to the selection of 1/4 ( f1/ f4), which
pairs with its enantiomeric assembly, i.e., 6/9 ( f2/ f3). Thus, the orbit (B∗′) is subdivided into
two enantiomeric suborbits, i.e., {B∗′

1 , B∗′
3 } and {B∗′

2 , B∗′
4 } in agreement with the fact the CR

D2d(/C′
2) shows the enantiosphericity of the orbit (B∗′).

From the viewpoint of the intramolecular stereochemistry, on the other hand, the selection
of the assembly B∗′

1 means that the vertices of the assembly (1/4) are divided into four orbits:
{1,4}, {2,3}, {5,8}, and {6,7}. According to the division, an appropriate set of (pro)ligands
or atoms ( � or �) is placed on the vertices of the assembly (1/4) so as to generate molecules
(89–94). The vertices of each of the molecules 89–94) can be further segmented to give a
segmented C′

2-molecule (one of 95–100). Replace each segment in the segmented C′
2-molecule

(95–100) by (pro)ligands (or atoms). Thereby, the corresponding C′
2-molecule (one of 101–

106) is generated on the basis of an allene skeleton.
By the inspection of Figs. 21 and 22 and by the discussions described above, one can find

the parallelism between the assemblage in a mandala and the segmentation in a regular body.
Thereby, the intermolecular stereochemistry (stereoisomerism) and the intramolecular stereo-
chemistry are discussed in a common framework, as summarized in Table 2.

4.2 Conventional Terminology
In the conventional stereochemistry for describing the intramolecular stereochemistry, the terms
“enantiotopic”, “diastereotopic”, and “stereoheterotopic” have been used to specify the re-
lationships between two sites (or ligands or other objects). On the other hand, the terms
enantiospheric, homospheric, and hemispheric used in the USCI approach specify the nature of
an orbit of two or more sites (or ligands or other objects), where the sphericity is the attribute
of the orbit. The conventional term “enantiotopic” can be defined as having an extended mean-
ing by means of the USCI approach, as shown in Table 3 [18]. The other conventional terms
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Table 2: Terminology for the Parallelism between the Intramolecular Stereochemistry and the
Intermolecular Stereochemistry

Intramolecular Stereochemistry Intermolecular Stereochemistry
regular body (transformula) mandala (nested regular body)
segment in a regular body assembly in a mandala
orbit of segments orbit of assemblies
(pro)ligand, atom molecule

Table 3: Properties of an Orbit for the Intramolecular Stereochemistry [18]

orbit properties

homospheric A homospheric orbit can be present in an achiral molecule or an achiral
regular body. Each member (ligand or other object or segment) of the
orbit exhibits achirotopic nature, as shown by the symbol ( �).a) Each
pair of members selected from the orbit is in homotopic (more descrip-
tively, holotopic [20]) relationship. Each member should be achiral in
isolation according to chirality fittingness [21, 10].

enantiospheric An enantiospheric orbit can be present in an achiral molecule or an achi-
ral regular body. The size of the orbit is even. The members (ligands
or other objects or segments) of the orbit are divided into two halves
by operating rotations (proper rotations) only. The one half contains
ligands or other objects or segments (

�
� ) as members, each of which

exhibits chirotopic nature, while the other half contains ligands or other
objects or segments of the opposite chirotopic nature (

�
�). The two

halves are enantiotopic to each other, where any member of one half
is enantiotopic to any member of the other half. Any two members
in each half are homotopic (more descriptively, hemitopic [20]). Each
member may be achiral or chiral in isolation according to chirality fit-
tingness, where chiral ligands (or other objects or segments) exhibit a
compensated chiral packing [21, 10]. A molecule having at least one
enantiospheric orbit is prochiral.

hemispheric A hemispheric orbit is present in a chiral molecule or a chiral regular
body. Each member (ligand or other object or segment) of the orbit
exhibits chirotopic nature, as shown by the symbol (

�
� ). Each pair of

members selected from the orbit is in homotopic (more descriptively,
hemitopic [20]) relationship. Each member may be achiral or chiral in
isolation according to chirality fittingness [21, 10].

a)For the symbols ( �,
�
� , and

�
�), see Part 1.
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Table 4: Properties of an Orbit for the Intermolecular Stereochemistry

orbit properties

homospheric A homospheric orbit contains achiral transformulas (achiral molecules
or achiral assemblies) on the basis of an achiral skeleton. Each member
(transformula) of the orbit exhibits achiral nature. Each pair of mem-
bers selected from the orbit is in homomeric relationship.

enantiospheric An enantiospheric orbit contains chiral transformulas (chiral molecules
or achiral assemblies) on the basis of an achiral skeleton. The size of
the orbit is even. The members (transformulas) of the orbit are divided
into two halves by operating rotations (proper rotations) only. The one
half contains transformulas as members, each of which exhibits chiral
nature, while the other half contains transformulas of the opposite chi-
ral nature. The two halves are enantiomeric to each other, where any
member of one half is enantiomeric to any member of the other half.

hemispheric A hemispheric orbit contains chiral transformulas (chiral molecules or
achiral assemblies) on the basis of a chiral skeleton. Each member
(transformula) of the orbit exhibits chiral nature.

“diastereotopic” and “stereoheterotopic” can be defined as specifying the relationships between
two orbits or more [19].

In the conventional stereochemistry for describing the intermolecular stereochemistry, the
terms “enantiomeric”, “diastereomeric”, and “stereoisomeric” have been used to specify the
relationships between two molecules. On the other hand, the term enantiospheric of the USCI
approach specifies an orbit of equivalent molecules as an attribute of the orbit, which can derive
the term “enantiomeric”, as shown in Table 4. The term homospheric shows that each molecule
of an orbit at issue is achiral. Thus, an enantiomeric pair of chiral molecules is contained in an
enantiospheric orbit, while an achiral molecule is contained in a homospheric orbit. In other
words, such an achiral molecule is regarded as a self-enantiomeric pair in the USCI approach.

The other conventional terms “diastereomeric”, and “stereoisomeric” require more extended
groups (RS-stereoisomeric groups and stereoisomeric groups) in order to be specified more
strictly, as discussed elsewhere [22].

5 Mandalas, Assembled Mandalas, and Reduced Mandalas
Because the procedures of assemblage and of converting assemblies into molecules (Fig. 21
and 22) are somewhat artificial and mathematics-oriented, an alternative explanation is useful,
where the procedures are reversely taken into consideration.

5.1 Spontaneous Assemblage
Consider that the eight transformulas contained in the mandala (26) of Fig. 21 are replaced
by 18–25 (Fig. 7). This procedure generates another mandala shown in Fig. 23. When the
numbering of the vertices is disregarded, 18 ( f1) and 22 ( f2) are regarded to be identical so that
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they represents a Cs-molecule. Each pair of 24 ( f7)/20 ( f4), 19 ( f5)/23 ( f6), and 25 ( f3)/21 ( f8)
represents a Cs-molecule. The resulting Cs-molecules are equivalent under D2d . As a result,
the Cs-assemblage is spontaneously accomplished. In other words, the four assemblies (A∗

1,
A∗

2, A∗
3, and A∗

4) of 36 (cf. Fig. 21) are spontaneously replaced by the four assemblies (A†
1, A†

2,
A†

3, and A†
4) of Fig. 7. It follows that Fig. 23 diagrammatically shows the CR D2d(/Cs) that

governs an orbit containing the Cs-molecule (18) via the orbit of the Cs-assemblies (A†
1, etc.).
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Figure 23: Mandala that is equalized to a Cs-assembled mandala (36), where a spontaneous Cs-
assemblage occurs. The two molecules of each pair (18 ( f1)/18 ( f2) 24 ( f7)/20 ( f4), 19 ( f5)/23
( f6), or 25 ( f3)/21 ( f8) are identical. The four pairs (assemblies) are equivalent under D2d so
that they construct an orbit governed by the CR D2d(/Cs).

Exercise 17. Following the procedure for constructing Fig. 23, show the corresponding dia-
grams for 72–76.

Exercise 18. Following the procedure for constructing Fig. 23, show the corresponding dia-
grams for 89–94.

The above discussions allow us to take the reverse direction of Fig. 21 or Fig. 22 (the step of
“an assembly into a molecule”). Thus, the initial usage of Fig. 23 in place of the Cs-assembled
mandala (36) is rather convenient for the application of Fujita’s USCI approach to chemical
combinatorics. This subject will be discussed in Part 3 of this series.
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5.2 Spontaneous Segmentation
Consider next that the eight transformulas contained in the mandala (26) of Fig. 21 are replaced
by 83 and its permuted transformulas. This procedure generates another type of mandala, the
vertices of which accommodate Cs-molecules derived from an allene skeleton, as shown in Fig.
24. This type of mandalas is called reduced mandalas, where the Cs-segmentation shown in the
lower part of Fig. 21 are already taken into account. This feature is regarded as a spontaneous
segmentation, which is mathematically equivalent to the spontaneous assemblage described
in the preceding subsection. Moreover, a spontaneous Cs-assemblage occurs so that 83 ( f1)
and 107 ( f2) are regarded as being equivalent to generate a Cs-molecule. Each pair of 108
( f7)/109 ( f4), 110 ( f5)/111 ( f6), and 112 ( f3)/113 ( f8) represents a Cs-molecule. The resulting
Cs-molecules are equivalent under D2d . In other words, the four assemblies (A∗

1, A∗
2, A∗

3, and
A∗

4) of 36 (cf. Fig. 21) are spontaneously replaced by the four equivalent molecules of the Cs-
molecule (83). Hence Fig. 24 diagrammatically shows the CR D2d(/Cs) that governs an orbit
containing the Cs-molecule (83) via the orbit of the Cs-assemblies (A∗

1, etc.).
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Figure 24: Reduced mandala in which a spontaneous segmentation and a spontaneous Cs-
assemblage occur. Two molecules of each pair (83 ( f1)/107 ( f2), 108 ( f7)/109 ( f4), 110 ( f5)/111
( f6), or 112 ( f3)/113 ( f8)) are identical. The four pairs (assemblies) are equivalent under D2d so
that they construct an orbit governed by the CR D2d(/Cs). The reduced mandala exhibits the
same symmetrical behavior as the Cs-assembled mandala (36).

Exercise 19. Following the procedure for constructing Fig. 24, show the corresponding dia-
grams for 84–88.
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Exercise 20. Following the procedure for constructing Fig. 24, show the corresponding dia-
grams for 101–106.

It should be noted that Fig. 23 can be considered as a special case of reduced mandalas,
where a C1-segmentation (i.e., no segmentation) is considered in the step of segmentation.

The above discussions allow us to take the reverse direction of Fig. 21 or Fig. 22 (the steps
of “an assembly into a molecule” “segmentation”, and “segments into proligands”). Thus, the
initial usage of the reduced mandala (Fig. 24) in place of the Cs-assembled mandala (36) is
straightforward for the application of Fujita’s USCI approach to chemical combinatorics. This
subject will be discussed in Part 3 of this series.

For the purpose of chemical combinatorics (Part 3), it is worthwhile to point out that an
H-molecule (e.g., a Cs-molecule 83) which is derived from a G-skeleton with a G(/H′)-orbit
of substitution positions is characterized by the CR G(/H). The CR G(/H′) (e.g., D2d(/Cs)
for Fig. 24) appears in an H′-segmented regular body described in Part 1, so that the CR is
characterized by each G(/H′)-row of the subduction table, the USCI-CF table, the USCI table,
and the mark table (e.g., Tables 8–11 of Part 1 for G = D2d). On the other hand, the CR
G(/H) (e.g., D2d(/Cs) for Fig. 24) appears in an H-assembled mandala (e.g., 36 in Fig. 24
for H = Cs) described in Part 2 (the present paper), so that the CR is characterized by each
G(/H)-row of the subdcution table, the USCI-CF table, the USCI table, and the mark table (cf.
3.3.2). It should be emphasized that the tables discussed diagrammatically for G(/H) in terms
of assembled mandalas (cf. 3.3.2) and those discussed diagrammatically for G(/H′) in terms of
segmented regular bodies (e.g., Tables 8–11 of Part 1 for G = D2d) are both equivalent to the
set of tables derived algebraically by coset decompositions of G by H or H′ (cf. Appendices
of Fujita’s book [10]). Thereby, the concept of sphericities based on the CRs works effectively
in both intramolecular (Part 1) and intermolecular stereochemistry (Part 2). That is a common
theoretical framework!

6 Conclusions
A regular body is defined as a skeleton of G-symmetry that has |G| vertices governed by the
coset representation (CR) G(/C1). The regular body generates |G| transformulas on the action
of G. The resulting transformulas are so equivalent as to construct an orbit governed by the CR
G(/C1). An assembly of H-symmetry (H⊂G) is defined as a set of such transformulas as fixed
by the action of H. The H-assembly causes the division of the transformulas to generate equiva-
lent H-assemblies, where the resulting set of H-assemblies constructs an orbit of H-assemblies.
The orbit of H-assemblies is governed by the CR G(/H). Each H-assembly corresponds to an
H-molecule derived from a skeleton of G-symmetry. Thus the CR G(/H) is concluded to con-
trol the intermolecular stereochemistry (stereoisomerism), where it provides us with alternative
method of obtaining subduction tables, USCI-CF tables (tables of unit-subduced-cycle-index
with chirality fittingness), USCI tables (tables of unit-subduced-cycle-index without chirality
fittingness), and mark tables, which have been described in Part 1.

A mandala is defined as a hypothetical structure (a nested regular body) in which the |G|
transformulas generated as above from a regular body by the action of G are placed on the
vertices of a regular body. By using the mandala, the selection of the H-assemblies described
above is demonstrated diagrammatically. Intermolecular and intramolecular stereochemistries
are integrated by defining assembled mandalas and reduced mandalas.
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