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We propose an algorithm for the search of an optimal set of descriptors from a pool of such 

regression variables. Our approach requires a smaller number of linear regressions than the full 

search and produces almost identical results. As an illustrative example, we model the 

meltingpoints of 30 quinoxalines derivatives by means of several subsets of 14 descriptors each, 

generated by the Dragon 5 evaluation version. 
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   I. Introduction 

 

During the last decades there has been great interest in the development of Quantitative 

Structure-Property/Activity Relationships QSPR/QSAR for the reliable prediction of 

physicochemical, biological and pharmacological properties of chemical compounds, solely from 

the knowledge of their molecular structure. Such relationships are most welcome when the 

experimental values have not been determined in the laboratory due to economical or time 

consuming reasons, or technical difficulties1-4. In this kind of studies one looks for a relationship 

of the form ( )P f= d , where P  is the property being studied and d  is a set of mathematical or 

empirical molecular descriptors quantifying the molecular structure and carrying information 

about it, represented by simple numerical quantities. The simplest descriptors are, for instance, 

the numbers and types of chosen atoms or bonds in the structure of the molecule. More 

elaborated descriptors can be derived from various different theories, such as the Chemical Graph 

Theory, Quantum Mechanics, Information Theory, etc.5-7. The function ( )f d  is commonly 

unknown and depends on the property P , the set of descriptors d , and the number and type of 

compounds under study. Typically, this function is chosen so that it generates the best predictions 

for the property being modeled.  

Nowadays there are thousands of descriptors available in the literature7-9, and one is faced with 

the problem of selecting the best set of d  descriptors out of a much larger set of D  ones, 

according to some criterion such as the smallest total standard deviation S 10-13. A full search 

(FS) of such optimal set requires !/[( )! !]D D d d−  linear regressions; a number that increases so 

rapidly with D  that soon becomes impracticable. Moreover, if D  is smaller than the number of 

molecules M , then one may look for the global optimal set of descriptors and the necessary 

comparison of the best sets of 1, 2, ,d D= …  descriptors requires a total of 2 1D −  linear 

regressions.  

There are several methods available that replace the time consuming full search14-17; a famous 

one that has long been used in QSAR-QSPR applications is the Stepwise Regression Method18. 

We also mention the Genetics and Evolutionary Algorithms19-21, and the Elimination Method 

(EM) which, in spite of its remarkable simplicity, yields results in close agreement with the FS 

ones22,23.  
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In this paper we propose an alternative method that focuses mostly on the relative errors of the 

coefficients of the linear regressions because one expects the total standard deviation S  to be a 

function of those errors. This guiding idea emerges from the fact that the best model given by the 

FS always exhibits comparatively small relative errors in its regression coefficients. We are not 

aware of other technique available in the literature for the search of optimal variables based 

solely on the errors of the coefficients. The reason may be that numerical experiments conducted 

some time ago suggested that the regression coefficients and their associated errors had a random 

behaviour, because of the instability of the regression equations24,25.  

In Section II we present the method, in Section III we treat an illustrative example detail, and 

in Section IV we discuss our results, and suggest possible improvements of the method. 

 

II. The Algorithm 

 

The EM provides a close solution to the optimal set of descriptors with just D  linear 

regressions. First, we do a linear regression with all D M<  descriptors, calculate the relative 

error j jc c∆  of  each coefficient jc  in the model, and remove the descriptor with the greatest 

error. Second we repeat that calculation for 1, 2, 1D D− − …  descriptors and look for the best 

model according to the criterion chosen (smallest S , for example). The whole process requires 

just D  linear regressions, a number much smaller than the FS one. Two disadvantages of the EM 

are that it applies only when D M< , and that the resulting models commonly have more 

descriptors than one would desire. The former reason makes the EM unsuitable for the selection 

of an optimal set of descriptors out of the thousands that are usually available. 

Here we propose an alternative method that leads to a set of d  descriptors close to the optimal 

one with a number of linear regressions that is much smaller than the one required by the FS. 

Instead of removing variables, this new procedure consists of replacing a chosen variable of the 

set by another one that minimizes S . For this reason we call it Replacement Method (RM) from 

now on. To this end, choose d  descriptors { }1 2, , dX X X…  at random and do a linear regression. 

Choose one of the descriptors of this set, say iX , and replace it by each of the D  descriptors of 

the pool (except itself) keeping the best resulting set. Since one can start replacing any of the d  
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descriptors in the initial model, then a regression equation with d  variables has d  possible paths 

to achieve the final result; for example, the choice above will develop into path i . Next, choose 

the variable with greatest relative error in its coefficient (except the one replaced in the previous 

step) and replace it with all the D  descriptors (except itself) keeping again the best set. Replace 

all the remaining variables in the same way bypassing those replaced in previous steps. When 

finishing, start again with the variable having greatest relative error in the coefficient and repeat 

the whole process. Repeat this process as many times as necessary until the set of descriptors 

remains unchanged. At the end, we have the best model for the path i . Proceed in exactly the 

same way for all possible paths 1, 2,i d= … , compare the resulting models, and keep the best one. 

Our numerical experiments show that in this way one obtains a model almost as good as the best 

one with much less than !/[( )! !]D D d d−  linear regressions when this combinatorial number is 

large. 

 

III. Illustrative Example 

 

Table I shows a data set of 30 melting points of quinoxalines derivatives reported in 

references26,27. In the case of a temperature interval we chose the mean value. The structures of 

the compounds were preoptimized by means of the Molecular Mechanics Force Field (MM+) 

included in Hyperchem version 6.03. Since several molecules contained sulfur atoms, final 

refined molecular structures were obtained using the semiempirical method PM3 (Parametric 

Method-3). We chose a gradient norm limit of 0.01 kcal/Å for geometry optimization. 

We derived several types of molecular descriptors, such as constitutional, topological, 

geometrical, charge, Randic Profiles, Atom Centered Groups, etc., by means of the software 

Dragon version 5 evaluation software available in the web28. For simplicity, we decided to 

restrict our search to sets of no more than 14 descriptors of each family. 
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Table I. Data set of melting points of quinoxalines derivatives used in the present analysis.  

No Compound Name MP (ºC) 

1 3H-Pyrazolo[3,4-b]quinoxalin-3-one, 1,2-dihydro 1-phenyl-  235.5  [235-236] 

2 4H-1,2-Thiazino[5,6-b]quinoxaline-3-acetonitrile, 4-oxo- 242 

3 4H-1,2-Thiazino[5,6-b]quinoxaline-3-acetamide, 4-oxo- 255.5  [255-256] 

4 4H-1,2-Thiazino[5,6-b]quinoxaline-3-acetic acid, 4-oxo-, ethyl ester 195 

5 Benzo[g]pteridine-2,4(1H,3H)-dione, 2-hydrazone 285 

6 Benzo[g]pteridin-4(1H)-one, 2-(methylthio)- 168 

7 Benzo[g]pteridin-4(1H)-one, 2-(ethylthio)- 156 

8 5H-Benzo[g]thiazolo[2,3-b]pteridin-5-one, 3-phenyl- 274 

9 5H-Benzo[g]thiazolo[2,3-b]pteridin-5-one, 3-(4-chlorophenyl)- 248 

10 5H-Benzo[g]thiazolo[2,3-b]pteridine-2-carbonitrile, 3-amino-5-oxo- 234 

11 Benzo[g]-1,2,4-triazolo[3,4-b]pteridin-5(1H)-one, 3-phenyl- 284 

12 Benzo[g]-1,2,4-triazolo[3,4-b]pteridin-5(1H)-one, 3-(4-nitrophenyl)- 311  [310-312] 

13 Benzo[g]-1,2,4-triazolo[3,4-b]pteridin-5(1H)-one, 2,3-dihydro-3-thioxo- 293 

14 Benzo[g]-1,2,4-triazolo[3,4-b]pteridin-5(1H)-one, 3-(ethylthio)- 196.5  [196-197] 

15 Benzo[g]-1,2,4-triazolo[3,4-b]pteridin-5(1H)-one, 3-methyl- 296  [295-297] 

16 3-Ethoxycarbonyl-quinoxalin-2(1H)thione 187  

17 1,2H-(Pyrazolo[4,5-b]quinoxaline)-3-one 220.5  [220-221] 

18 1,2,3,4 Tetrahydro-4-oxo-Pyrimido[4,5-b]quinoxalin-2-thione 275 

19 3-(3’-Mercapto-1’,2’,4’-oxadiazol-5’-yl)quinoxalin-2(1H)-one 290 

20 2(1H)-Quinoxalinone, 3-[5-(methylthio)-1,3,4-oxadiazol-2-yl]- 175 

21 2(1H)-Quinoxalinone, 3-[5-[(2-oxo-2-phenylethyl)thio]-1,3,4-oxadiazol-2yl]-  164 

22 Oxazolo[4,5-b]quinoxalin-2(3H)-one 335 

23 N,N’[bis(quinoxalin-2(1H)-one-3-yl)] urea 340 

24 3-Piperidinocarbonylamino-quinoxalin-2(1H)-one 265 

25 2-Chloro-3-piperidinocarbonylaminoquinoxaline 140 

26 3-Piperidinocarbonylaminoquinoxalin-2(1H)-thione 225 
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27 2-Hydrazino-3-piperidinocarbonylaminoquinoxaline 285 

28 3-Methoxycarbonylamino-quinoxalin-2(1H)-one 218 

29 2(1H)-Quinoxalinone, 3-[[5-(methylthio)-1H-1,2,4-triazol-3-yl]amino]- 210 

30 
2(1H)-Quinoxalinone,3-[[5-[(2-oxo-2-phenylethyl)thio]-1H-1,2,4-triazol-3-
yl]amino]- 228 

Intervals of temperatures are given within brackets. 

Before discussing our results, we outline the application of our method to a sample case of 

6d =  topological descriptors out of the 14 ones given in Table II labeled as 2 15X X− . We 

arbitrarily choose the initial model to be 2 7{ }X X−  that gives (0) 54.20ºS C= . The resulting 

model is 

 
2 3

4 5 6

7

 287.09( 268.70) + 4.41( 113.61) 19.08( 93.90)  
+382.97( 141.29) + 1.01( 1072.63) 0.75( 77.79)

1.00( 673.31)  

P X X
X X X

X

= − ± ± − ±
± ± + ±

− ±
 (1) 

were the relative errors of the regression coefficients are given between parentheses. 

 

Table II. Labels of the descriptors used in the illustrative example. 

descriptor label Description 

2X  ISIZ information index on molecular size 

3X  IAC total information index of atomic composition 

4X  AAC mean information index on atomic composition 

5X  ZM1 first Zagreb index M1 

6X  ZM1V first Zagreb index by valence vertex degrees 

7X  ZM2 second Zagreb index M2 

8X  ZM2V second Zagreb index by valence vertex degrees 

9X  Qindex Quadratic index 
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10X  SNar Narumi simple topological index (log) 

11X  HNar Narumi harmonic topological index 

12X  GNar Narumi geometric topological index 

13X  Xt Total structure connectivity index 

14X  Dz Pogliani index 

15X  Ram ramification index 

 
As path 1 we start replacing 2X , and from now on we indicate a substitution by ( ),old newX X . 

Of all the 14 variables, the substitution that minimizes S  is ( )2 15,X X  yielding (1) 048.97S C= , 

and the following equation: 

 
15 3

4 5 6

7

  598.86( 35.93)  82.31( 40.41) 5.99( 56.76)  
- 203.03( 57.76)   21.77( 56.58)   0.20( 263.80)  
- 20.62( 46.56)

P X X
X X X

X

= ± + ± − ±
± + ± + ±
±

 (2) 

We now replace the variable with the greatest relative error 6X  with all the 14 descriptors and 

find that the substitution ( )6 11,X X  yields the smallest standard deviation (2) 046.36S C=  and the 

linear combination 

 
15 3

4 5 11

7

 287.39( 190.42) 151.71( 32.39) 4.30( 64.55)  
209.77( 49.43)   34.15( 27.68) 449.20( 59.45)
34.98( 48.79)

P X X
X X X

X

= − ± + ± − ±
− ± + ± + ±
− ±

 (3) 

Of all the variables not yet replaced, 3X  is the one with the largest relative error. After its 

replacement by all the 14 descriptors, we obtain that the substitution with smallest deviation is 

( )3 6,X X  that yields (3) 046.17S C=  and the model: 

 
15 6

4 5 11

7

 450.34( 111.66)  15806( 29.95) + 0.600( 61.98)
273.67( 37.43) 24.33( 42.42) + 579.89( 39.63)
30.21( 35.32)

P X X
X X X

X

= − ± + ± ±
− ± + ± ±
− ±

 (4) 
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The replacement of any of the remaining variables { }4 5 7, ,X X X  as indicated above does not 

lead to a new model; therefore, we should start the process from the beginning. The variable with 

the largest relative error in equation (4) is 6X ; however, its replacement does not lead to a new 

model. Exactly the same situation occurs with the next one 5X , and also with 4X  and 7X . We 

are thus left with { }11 15,X X . The replacement of the one with the greatest relative error 11X  leads 

to the substitution ( )11 9,X X , the standard deviation (4) 045.76S C=  and the model: 

 
15 6

4 5 9

7

  617.83( 31.43) 70.00( 42.68) + 0.76( 46.83)
284.41( 35.68) 26.46( 40.36) 49.60( 38.05)
33.33( 34.02)

P X X
X X X

X

= ± + ± ±
− ± + ± + ±
− ±

 (5) 

The last substitution results to be ( )15 10,X X  with (5) 045.01S C=  and the function: 

 
10 6

4 5 9

7

  612.85( 30.41) -  75.19( 39.41) +0.96( 36.20)
287.11( 34.26) +36.92( 34.58) +57.68( 32.93)  
30.98( 34.05)

P X X
X X X

X

= ± ± ±
− ± ± ±
− ±

 (6) 

Restarting the process once again we get the trivial substitutions ( )6 6,X X , ( )4 4,X X  and 

( )5 5,X X , but ( )9 12,X X  leads to an improved model with (6) 044.70S C=  and: 

 
10 6

4 5 12

7

 1456.26( 48.84) 180.98( 27.32) +1.02( 33.85)  
283.41( 34.42) +49.87( 32.14) +1037.35( 32.14)  
23.07( 34.64)

P X X
X X X

X

= − ± − ± ±
− ± ± ±
− ±

 (7) 

If we start the process once again, we do not obtain any new model with smaller S ; 

consequently, the optimal model for path 1 is { }4 5 6 7 10 11, , , , ,X X X X X X , with 0(1) 44.70S C= . 

Proceeding exactly in the same way for the other possible paths we find that the best result is that 

for path 1 which is the one that appears in Table III that we will discuss in what follows. 
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Table III S  and number of linear regressions for the Full Search (FS) and the Replacement 

Method (RM).  

d  1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Constitutional Descriptors 

FS 
54.6 

14 

50.0 

91 

49.0 

364 

46.8 

1001 

44.6 

2002 

42.3 

3003 

42.5 

3432 

42.4 

3003 

43.2 

2002 

43.8 

1001 

44.7 

364 

45.8 

91 

47.2 

14 

48.8 

1 

RM 
54.6 

14 

51.1 

182 

50.2 

216 

48.1 

396 

44.7 

500 

42.3 

648 

42.6 

952 

42.4 

1064 

43.2 

1080 

43.8 

1000 

44.7 

968 

45.8 

864 

47.2 

676 

48.8 

1 

Topological Descriptors 

FS 55.8 52.2 51.6 49.5 47.2 44.5 42.6 42.2 42.3 41.7 42.6 43.7 45.0 46.4 

RM 
55.8 

14 

52.2 

104 

51.7 

216 

50.3 

352 

48.0 

550 

44.7 

864 

43.6 

952 

42.2 

896 

42.3 

1134 

41.7 

1000 

42.6 

968 

43.7 

864 

45.0 

676 

46.4 

1 

WHIM Descriptors 

FS 51.1 49.0 43.4 41.4 40.9 41.3 41.6 41.9 42.3 42.8 43.9 45.1 46.5 48.0 

RM 
51.1 

14 

49.0 

156 

43.4 

216 

41.4 

352 

40.9 

500 

41.3 

702 

41.6 

840 

41.9 

896 

42.3 

972 

42.8 

1000 

43.9 

968 

45.1 

864 

46.5 

676 

48.0 

1 

Galvez Topological Charge Indexes 

FS 55.7 56.0 55.8 55.6 54.1 53.6 53.9 53.5 53.4 54.6 55.8 57.4 59.0 61.0 

RM 
55.7 

14 

56.2 

52 

56.1 

216 

55.9 

440 

54.1 

650 

53.6 

756 

53.9 

952 

53.5 

896 

53.4 

972 

54.6 

1400 

55.8 

968 

57.4 

936 

59.0 

676 

61.0 

1 

Molecular Walk Counts 

FS 56.6 56.6 53.3 53.2 53.3 53.3 51.7 49.3 48.5 48.5 49.4 50.5 51.8 53.5 

RM 
56.6 

14 

57.0 

52 

53.3 

216 

54.1 

176 

53.3 

500 

53.3 

648 

51.7 

784 

49.3 

896 

48.5 

972 

48.5 

1000 

49.4 

968 

50.5 

864 

51.8 

676 

53.5 

1 

GETAWAY 

FS 51.9 50.8 46.8 42.8 41.1 38.3 36.3 34.8 35.4 36.0 36.7 37.6 38.8 40.0 

RM 
51.9 

14 

50.8 

104 

46.8 

216 

44.8 

352 

42.0 

700 

38.3 

756 

36.3 

896 

34.8 

896 

35.4 

972 

36.0 

1000 

36.7 

968 

37.6 

864 

38.8 

676 

40.0 

1 
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3D-MoRSE 

FS 52.9 49.6 49.7 49.2 48.5 48.6 48.7 48.6 48.9 49.1 50.2 51.3 52.7 54.4 

RM 
52.9 

14 

49.6 

130 

49.7 

252 

49.5 

396 

48.5 

600 

48.6 

810 

49.1 

784 

48.6 

896 

48.9 

972 

49.1 

1000 

50.2 

968 

51.3 

864 

52.7 

676 

54.4 

1 

Atom Centered Fragments 

FS 51.3 46.6 43.1 41.6 41.1 39.7 38.1 37.8 37.6 37.6 38.5 39.6 40.7 42.1 

RM 
51.3 

14 

46.6 

104 

43.1 

288 

42.5 

352 

41.1 

550 

39.7 

756 

38.1 

840 

38.1 

896 

37.6 

1026 

37.6 

1000 

38.5 

968 

39.6 

864 

40.7 

676 

42.1 

1 

BCUT 

FS 57.1 55.7 53.6 52.1 48.5 48.0 45.8 45.3 45.9 46.2 47.1 48.4 49.8 51.4 

RM 
57.1 

14 

55.7 

104 

53.6 

216 

52.1 

352 

48.5 

500 

48.0 

648 

45.8 

896 

45.3 

896 

45.9 

1404 

46.2 

1000 

47.1 

968 

48.4 

900 

49.8 

676 

51.4 

1 

Functional Groups 

FS 53.2 51.3 48.3 48.0 46.7 45.5 46.2 45.0 46.0 47.1 48.3 49.7 51.2 52.9 

RM 
53.2 

14 

51.3 

52 

48.3 

108 

48.0 

352 

48.2 

250 

45.5 

756 

46.2 

840 

45.0 

896 

46.0 

972 

47.1 

1000 

48.3 

968 

49.7 

864 

51.2 

676 

52.9 

1 

2D-Autocorrelations 

FS 57.5 55.5 55.3 53.2 53.9 54.1 53.8 54.4 55.3 56.3 57.8 59.4 61.2 63.2 

RM 
57.5 

14 

55.5 

130 

55.6 

216 

56.6 

484 

53.9 

1000 

54.1 

1296 

53.8 

1008 

54.4 

1624 

55.3 

972 

56.3 

1000 

57.8 

968 

59.4 

864 

61.2 

676 

63.2 

1 

Geometrical 

FS 54.7 51.8 45.6 44.1 41.8 39.5 35.3 31.4 31.9 29.3 28.7 29.4 30.3 31.2 

RM 
54.7 

14 

51.8 

104 

45.6 

288 

44.1 

352 

41.8 

550 

39.9 

648 

35.3 

952 

31.4 

1288 

31.9 

972 

29.3 

1000 

28.7 

968 

29.4 

864 

30.3 

676 

31.2 

1 

Randic Molecular Profiles 

FS 57.6 58.5 58.8 58.0 54.2 53.9 54.3 55.2 56.5 57.9 59.4 61.0 62.8 64.9 

RM 
57.6 

14 

58.5 

156 

59.4 

288 

59.4 

176 

54.5 

700 

53.9 

648 

56.1 

1176 

56.9 

896 

56.5 

1458 

57.9 

1500 

59.4 

1012 

61.0 

900 

62.8 

754 

64.9 

1 
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Charge 

FS 
53.7 

13 

53.0 

78 

44.0 

286 

42.0 

715 

42.6 

1287 

42.0 

1716 

42.9 

1716 

43.1 

1287 

43.2 

715 

43.9 

286 

44.2 

78 

45.4 

13 

46.8 

1 
- 

RM 
53.7 

13 

54.0 

88 

51.2 

198 

50.3 

360 

42.6 

585 

42.5 

672 

42.9 

1029 

43.1 

816 

43.2 

1170 

43.9 

800 

44.2 

759 

45.4 

576 

46.8 

1 
- 

Numbers in italics represent the number of required linear regressions. 

IV. Results and Discussion 

 

Table III shows the total standard deviation S  for each model obtained by FS and RM, 

corresponding to 1, 2, ,14d = …  descriptors, as well as the number of required linear regressions. 

In the case of the FS this number depends only on d  and is displayed only in the first row 

because it is exactly the same for the other ones. On the other hand, the number of regressions for 

the RM depends also on the type of descriptors in the model. It follows from Table III that in 

nearly all cases ( )S RM  is in close agreement with ( )S FS , especially for large numbers of 

descriptors. This result suggests that the more variables available for replacement the more 

chances to hit the exact FS result. We appreciate that the RM requires less linear regressions 

except for the limit cases of d  close to 1 and d  close to D  which are of much lesser importance 

from a practical point of view. In the cases of reasonable numbers of descriptors, and in 

particular, when S  is close to its minimum, the RM is considerably faster than the FS. We are 

presently investigating the possibility of selecting the paths that most probably will lead to the 

best model in order to improve the RM even further. However, it does not seem to be a simple 

task and we do not yet have a systematic criterion for that purpose. However, in its present form, 

the RM seems to be a most promising alternative to the much more time consuming FS in the 

case of a large number of possible descriptors (say, several thousands). 

Table IV shows that the best models for each family of descriptors obtained by means of the 

EM, the RM, and the FS are in quite close agreement. In those cases the EM is most preferable 

because it requires only 14D =  linear regressions. However, as said before, the EM does not 

apply when D M>  and is therefore unsuitable for the kind of search that many researchers want 

to do nowadays. 
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Table IV. Best models for the different families of descriptors labeled by ( )S d . 

FS RM EM 

Constitutional Descriptors 

42.34 (6) 42.34 (6) 42.41 (8) 

Topological Descriptors 

41.75 (10) 41.75 (10) 42.24 (10) 

WHIM Descriptors 

40.97 (5) 40.97 (5) 41.61 (6) 

Galvez Topological Charge Indexes 

53.48 (9) 53.48 (9) 53.48(9) 

Molecular Walk Counts 

48.58 (9) 48.58 (9) 48.58 (9) 

GETAWAY 

34.89 (8) 34.89 (8) 34.89 (8) 

3D-MoRSE 

48.59 (5) 48.59 (5) 48.93 (9) 

Atom Centered Fragments 

37.65 (9) 37.65 (9) 37.65 (9) 

BCUT 

45.35 (8) 45.35 (8) 45.81 (7) 

Charge 

42.07 (4) 42.50(6) 43.23 (9) 

Functional Groups 

45.07 (8) 45.07 (8) 45.07 (8) 

2D-Autocorrelations 
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53.27 (4) 53.80 (7) 53.87 (7) 

Geometrical 

28.72 (11) 28.72 (11) 28.72 (11) 

Randic Molecular Profiles 

53.94 (6) 53.94 (6) 54.28 (6) 
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