**MATCH** Communications in Mathematical and in Computer Chemistry

ISSN 0340 - 6253

## A Maximal Alternating Set of a Hexagonal System

# Khaled Salem\* and Hernán Abeledo

Department of Engineering Management and Systems Engineering

1776 G Street, N.W., Suite 110

The George Washington University

Washington, D.C. 20052, USA

(Received December 13, 2004)

## Abstract

We show that for a maximal alternating set P of a hexagonal system H, H-P is empty or has a unique perfect matching.

## 1. Introduction

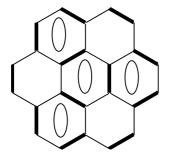
Let C be a cycle on the hexagonal lattice. Then the vertices and the edges of the hexagonal lattice which lie on C and in the interior of C form a hexagonal system [1]. The vertices of a hexagonal system H are divided into external and

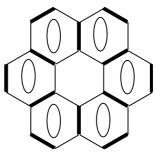
<sup>\*</sup> Corresponding author. E-mail address: khaled@gwu.edu (K. Salem).

internal. A vertex of H lying on the boundary of the exterior face of H is called an external vertex, otherwise, it is called an internal vertex. A hexagon of H such that none of its vertices is external is called an internal hexagon, otherwise, it is an external hexagon. If a hexagonal system has no internal vertices, it said to be catacondensed, otherwise, it is pericondensed. A pericondensed hexagonal system is fat if it has an internal hexagon, otherwise, it is thin. A hexagonal system is to be placed on the plane so that a pair of edges of each hexagon lies in parallel with the vertical axis. A perfect matching of a hexagon is called a sextet [2]. It is proper if the right vertical edge of the hexagon is in the perfect matching; otherwise, it is improper.

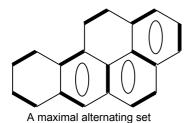
Let P be a non-empty set of hexagons of a hexagonal system H. We call P a set of mutually alternating hexagons of H (or simply an alternating set or a framed set) if there exists a perfect matching of H that contains a sextet of each hexagon in P [3]. An alternating set is maximal if it is not contained in a larger alternating set. An alternating set is maximum if its cardinality is the largest among all alternating sets. As Fig.1 shows, a maximal alternating set is not necessarily maximum. The cardinality of a maximum alternating set is of significance in the chemistry of benzenoid hydrocarbons [4]. It is called the Fries number [5].

Let H be a hexagonal system and P a non-empty set of hexagons. H-P denotes the subgraph of H obtained by deleting from H the vertices of the hexagons in P (together with their incident edges).





A maximal alternating set A maximum alternating set FIGURE 1-a: Coronene, a fat pericondensed hexagonal system.



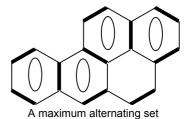


FIGURE 1-b: benzo[a]pyrene, a thin pericondensed hexagonal system.

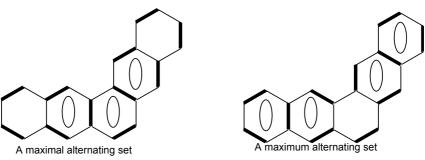
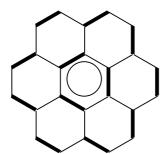


FIGURE 1-c: A catacondensed hexagonal system.

Let P be a non-empty set of hexagons of a hexagonal system H. We call P a resonant set of H if the hexagons in P are pair-wise disjoint and there exists a perfect matching of H that contains a sextet of each hexagon in P [3] or equivalently [6] if the hexagons in P are pair-wise disjoint and H-P has a perfect matching or is empty. A resonant set is maximal if it is not contained in a larger resonant set. A resonant set is maximum if its cardinality is the largest among all resonant sets. As Fig. 2 shows, a maximal resonant set is not necessarily maximum. The cardinality of a maximum resonant set is of significance in the chemistry of benzenoid hydrocarbons [7]. It is called the Clar number [8].





A maximal resonant set A maximum resonant set FIGURE 2-a: Coronene, a fat pericondensed hexagonal system.

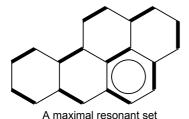
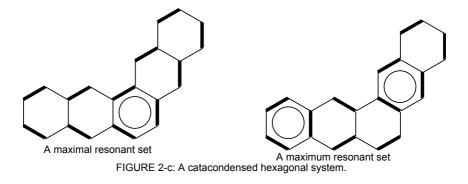


FIGURE 2-b: benzo[a]pyrene, a thin pericondensed hexagonal system.



If H is a catacondensed hexagonal system and P is a maximal resonant set then H-P is empty or has a unique perfect matching [6]. Counterexamples [6] show that the statement cannot be extended to pericondensed hexagonal systems. If H is a pericondensed hexagonal system and P is a maximum resonant set then H-P is empty or has a unique perfect matching [9]. This statement was conjectured by Gutman [10].

If H is a catacondensed hexagonal system and P is a maximal alternating set then H-P is empty or has a unique perfect matching [11]. The aim of this paper is to prove this result for any hexagonal system (Theorem 5). Those interested in only catacondensed hexagonal systems are referred to [11] since the proof given there is simpler than that given here. A basic related result is that if H is a hexagonal system and P is an alternating set then H-P is empty or has a perfect matching. This basic result was mentioned in [11] without proof and here we include it as Lemma 1 and a proof is given.

If G is a subgraph of H, we use H-G to denote the subgraph of H obtained by deleting from H all the vertices of G (together with the incident edges).

#### 2. Results

**Lemma 1**. Let P be an alternating set of a hexagonal system H. Then H-P is empty or has a perfect matching.

**Proof.** We can assume that H-P is non-empty. Let M be a perfect matching of H that contains a sextet of each hexagon in P. let  $M^*=\{e \in M: e \text{ is not contained in a hexagon in P}\}$ . It is clear that  $M^*$  is a perfect matching of H-P. **Q.E.D.** 

**Lemma 2.** Let P be an alternating set of a hexagonal system H such that H-P is not empty. Then a perfect matching of H-P can be extended to a perfect matching of H that contains a sextet of each hexagon in P.

**Proof.** Let  $M_1$  be a perfect matching of H-P. Let M be a perfect matching of H that contains a sextet of each hexagon in P. Let  $M_2=\{e \in M: e \text{ is contained in a hexagon in P}\}$ . It can be seen that  $M_1 \cup M_2$  is a perfect matching of H that contains a sextet of each hexagon in P. **Q.E.D.** 

**Lemma 3.** Let H be a hexagonal system, P be an alternating set of H consisting of internal hexagons and  $\partial$ H be the cycle of the boundary of the exterior face of H. If (H-P)- $\partial$ H is empty or has a perfect matching then P is not a maximal alternating set.

**Proof.** The proof of this Lemma is that of a related result by Zheng and Chen [9] with modifications.

If (H-P)- $\partial$ H is empty, let M be the empty set, otherwise, let M be a perfect matching of (H-P)- $\partial$ H. The edges of  $\partial$ H can be decomposed into two perfect matchings N<sub>1</sub> and N<sub>2</sub> of  $\partial$ H since  $\partial$ H is an even cycle. It is clear that M  $\cup$  N<sub>1</sub> and M  $\cup$  N<sub>2</sub> are two perfect matchings of H-P.

We assume that P is a maximal alternating set and then derive a contradiction.

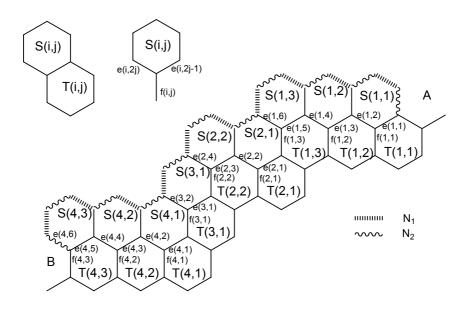


FIGURE 3: Hexagons S(i,j) and T(i,j) and edges f(i,j) and e(i,k) with m=4, n(1)=3, n(2)=2, n(3)=1 and n(4)=3

Let {S(i,j):  $1 \le i \le m$ ,  $1 \le j \le n(i)$ } be the series of hexagons of the hexagonal system H which lies on the boundary of the exterior face of H and satisfies that

neither hexagon A nor hexagon B is a hexagon of H as shown in Fig. 3. The series of hexagons of the hexagonal lattice {T(i,j):  $1 \le i \le m$ ,  $1 \le j \le n(i)$ } are as shown in Fig. 3. T(i,j) may be a hexagon of the hexagonal system H. The vertical edges f(i,j),  $1 \le i \le m$ ,  $1 \le j \le n(i)$  and the diagonal edges e(i,k),  $1 \le i \le m$ ,  $1 \le k \le 2n(i)$  are as shown in Fig. 3.

We first show that the following three statements hold by induction on i.

(a)  $m \ge 2$  and n(i) = 1 or n(i) = 2 for all  $i, 1 \le i \le m$ .

(b) if n(i) = 1 then  $f(i,1) \in M$ .

(c) if n(i) = 2 then  $T(i,2) \in P$ .

Initial Step: We prove that the above statements hold for i=1.

(a) Assume that  $n(1) \ge 3$ .

Case:  $T(1,1) \notin H$  and  $T(1,2) \notin H$ . By Lemma 2,  $P \cup \{S(1,1)\}$  is an alternating set of H, a contradiction.

Case:  $T(1,1) \notin H$  and  $T(1,2) \in H$ .  $T(1,2) \notin P$  since  $T(1,1) \notin H$ . Hence  $e(1,3) \in M$ . Consequently,  $e(1, 2n(1)-1) \in M$ . By Lemma 2,  $P \cup {S(1,n(1))}$  is an alternating set, a contradiction.

Case: T(1,1)  $\in$  H and T(1,2)  $\notin$  H. e(1,2)  $\in$  N<sub>2</sub>, say. By Lemma 2, P  $\cup$  {S(1,1)} is an alternating set, a contradiction.

*Case:*  $T(1,1) \in H$  and  $T(1,2) \in H$ . *Subcase:*  $e(1,2) \in M$ . By Lemma 2,  $P \cup \{S(1,1)\}$  is an alternating set, a contradiction. *Subcase:*  $e(1,3) \in M$ . Then  $e(1, 2n(1)-1) \in M$ . By Lemma 2,  $P \cup \{S(1,n(1))\}$  is an alternating set, a contradiction. *Subcase:*  $e(1,2) \notin M$  and  $e(1,3) \notin M$ .  $T(1,2) \in P$ . Hence  $T(1,3) \in H$ . If  $T(1,3) \in P$ , then in the extended perfect matching mentioned in Lemma 2, T(1,2) is an improper sextet, thus, e(1,2) is matched and  $P \cup \{S(1,1)\}$  is an alternating set, a contradiction. If  $T(1,3) \notin P$ ,

then e(1,2n(1)-1)  $\in$  M and by Lemma 2, P  $\cup$  {S(1, n(1))} is an alternating set, a contradiction.

Consequently, we have  $n(1) \leq 2$ .

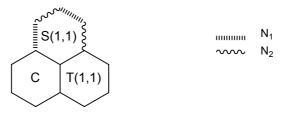


FIGURE 4: Proof of Lemma 3.

(b) n(1) = 1. See Fig. 4. Assume that T(1,1)  $\notin$  H. Then, by Lemma 2, P  $\cup$  {S(1,1)} is an alternating set, a contradiction. Hence, T(1,1)  $\in$  H. T(1,1)  $\notin$  P. Assume that C  $\notin$  H. Then e(1,2)  $\in$  N<sub>2</sub>, say, and by Lemma 2, P  $\cup$  {S(1,1)} is an alternating set, a contradiction. Hence C  $\in$  H and can be denoted by S(2, 1) (from which m  $\ge$  2). Thus, f(1,1)  $\in$  M.

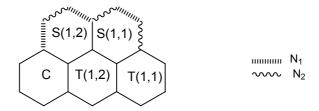


FIGURE 5: Proof of Lemma 3.

(c) n(1) = 2. See Fig. 5. Assume that T(1,2)  $\notin$  H. Then e(1,2)  $\in$  N<sub>2</sub>, say. By Lemma 2, P  $\cup$  {S(1,1)} is an alternating set, a contradiction. Hence T(1,2)  $\in$  H.

Assume that  $T(1,2) \notin P$ . *Case:*  $e(1,2) \in M$ . By Lemma 2,  $P \cup \{S(1,1)\}$  is an alternating set, a contradiction. *Case:*  $e(1,3) \in M$ . By Lemma 2,  $P \cup \{S(1,2)\}$  is an alternating set, a contradiction. Hence,  $T(1,2) \in P$ . It follows that  $C \in H$  and can be denoted by S(2,1). Thus,  $m \ge 2$ .

Consequently,  $m \ge 2$  and the statements hold for i=1.

Inductive Step: We assume that the statements hold for i=r-1 and prove that they hold for i=r, where  $2 \le r \le m$ .

Case: n(r-1) = 1. We have  $f(r-1, 1) \in M$ .

(a) Assume that  $n(r) \ge 3$ . See Fig. 6.

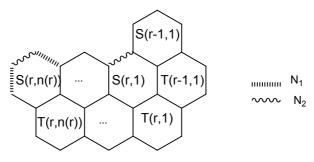


FIGURE 6: Proof of Lemma 3.

*Case:*  $T(r, n(r)) \in H$  and  $T(r, n(r)) \in P$ .  $T(r, n(r)-1) \in H$ . *Subcase:*  $T(r, n(r)-1) \in P$ . Then an extended perfect matching of Lemma 2 contains a proper sextet of T(r, n(r))and  $P \cup {S(r, n(r))}$  is an alternating set, a contradiction. *Subcase:*  $T(r, n(r)-1) \notin P$ . Then  $e(r, 2) \in M$  and by Lemma 2,  $P \cup {S(r, 1)}$  is an alternating set, a contradiction. *Case:* T(r, n(r))  $\in$  H and T(r, n(r))  $\notin$ P. *Subcase:* e(r, 2n(r)-1)  $\in$  M. Then by Lemma 2, P  $\cup$  {S(r, n(r))} is an alternating set, a contradiction. *Subcase:* e(r, 2n(r)-2)  $\in$  M. Then e(r, 2)  $\in$  M and by Lemma 2, P  $\cup$  {S(r, 1)} is an alternating set, a contradiction.

 $\label{eq:case: T(r, n(r)) \notin H. e(r, 2n(r)-1) \in N_1, \mbox{ say. By Lemma 2, } P \cup \{S(r, n(r))\} \mbox{ is an alternating set, a contradiction.}$ 

Hence,  $n(r) \leq 2$ .

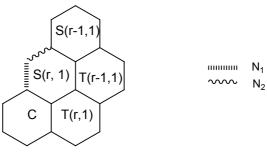
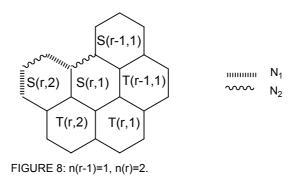


FIGURE 7: n(r-1)= 1, n(r)= 1.

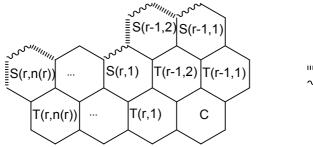
(b) n(r) = 1. See Fig. 7.  $T(r, 1) \in H$  and  $T(r, 1) \notin P$  since  $f(r-1, 1) \in M$ . Assume that  $C \notin H$ . Then by Lemma 2,  $P \cup \{S(r, 1)\}$  is an alternating set, a contradiction. Hence,  $C \in H$  and can be denoted by S(r+1, 1). Thus,  $f(r, 1) \in M$ .



(c) n(r)= 2. See Fig. 8. Assume that T(r, 2)  $\notin$  H. Then e(r, 2)  $\in$  N<sub>2</sub>, say, and by Lemma 2, P  $\cup$  {S(r, 1)} is an alternating set, a contradiction. Hence, T(r, 2)  $\in$  H.

Assume that T(r, 2)  $\notin$  P. *Case:* e(r, 2)  $\in$  M. By Lemma 2, P  $\cup$  {S(r, 1)} is an alternating set, a contradiction. *Case:* e(r, 3)  $\in$  M. By Lemma 2, P  $\cup$  {S(r, 2)} is an alternating set, a contradiction. Hence, T(r, 2)  $\in$  P.

Case: n(r-1) = 2. We have  $T(r-1, 2) \in P$ .



 $\sim N_2$ 

FIGURE 9: Proof of Lemma 3.

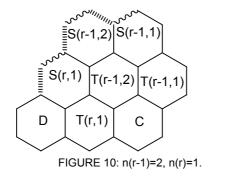
(a) Assume that  $n(r) \ge 3$ . See Fig. 9.

*Case:*  $T(r, n(r)) \in H$  and  $T(r, n(r)) \in P$ .  $T(r, n(r)-1) \in H$ . *Subcase:*  $T(r, n(r)-1) \in P$ . Then an extended perfect matching of Lemma 2 contains a proper sextet of T(r, n(r))and  $P \cup {S(r, n(r))}$  is an alternating set, a contradiction. *Subcase:*  $T(r, n(r)-1) \notin P$ . Then  $e(r, 2) \in M$ . If  $T(r-1, 1) \in P$  then an extended perfect matching of Lemma 2 contains a proper sextet of T(r-1, 2) and  $P \cup {S(r-1, 2)}$  is an alternating set, a contradiction. If  $T(r-1, 1) \notin P$ , note that  $T(r, 1) \notin P$  since  $e(r,2) \in M$ , thus, none of the hexagons that are adjacent to T(r-1, 2) belongs to P except possibly hexagon C. Hence, an extended perfect matching of Lemma 2 contains an improper sextet of T(r-1, 2) and  $P \cup {S(r, 1)}$  is an alternating set, a contradiction.

*Case:* T(r, n(r)) ∈ H and T(r, n(r)) ∉ P. *Subcase:* e(r, 2n(r)-1) ∈ M. By Lemma 2, P ∪ {S(r, n(r))} is an alternating set, a contradiction. *Subcase:* e(r, 2n(r)-2) ∈ M. Then e(r, 2) ∈ M. If T(r-1, 1) ∈ P, then an extended perfect matching of Lemma 2 contains a proper sextet of T(r-1, 2) and P ∪ {S(r-1, 2)} is an alternating set, a contradiction. If T(r-1, 1) ∉ P, note that T(r, 1) ∉ P since e(r,2) ∈ M, thus, none of the hexagons that are adjacent to T(r-1, 2) belongs to P except possibly hexagon C. Hence, an extended perfect matching of Lemma 2 contains an improper sextet of T(r-1, 2) and P ∪ {S(r, 1)} is an alternating set, a contradiction.

 $\label{eq:case: T(r, n(r)) \notin H. e(r, 2n(r)-1) \in N_1, \mbox{ say. By Lemma 2, } P \cup \{S(r, n(r))\} \mbox{ is an alternating set, a contradiction.}$ 

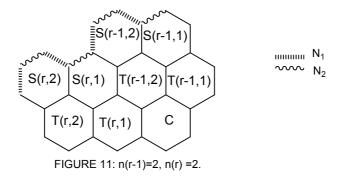
Hence,  $n(r) \leq 2$ .



 $\sim$  N<sub>1</sub> N<sub>2</sub>

(b) n(r) = 1. See Fig. 10. Assume that either T(r, 1) or T(r-1, 1) belongs to P. Then, an extended perfect matching of Lemma 2 contains a proper sextet of T(r-1, 2) and P  $\cup$  {S(r-1, 2)} is an alternating set, a contradiction. Hence, neither T(r, 1) nor T(r-1, 1) belongs to P.

Assume that  $D \notin H$ . Then  $e(r, 2) \in N_2$ , say. Note that none of the hexagons that are adjacent to T(r-1, 2) belongs to P except possibly hexagon C. Hence, an extended perfect matching of Lemma 2 contains an improper sextet of T(r-1, 2) and  $P \cup \{S(r, 1)\}$  is an alternating set, a contradiction. Hence,  $D \in H$  and can be denoted by S(r+1, 1). Note that  $T(r, 1) \in H$  since  $T(r-1, 2) \in P$ . Recall that  $T(r, 1) \notin P$ . Thus,  $f(r, 1) \in M$ .



(c) n(r) = 2. See Fig. 11. Assume that  $T(r, 2) \notin H$ . Then  $e(r, 3) \in N_1$ , say, and by Lemma 2,  $P \cup \{S(r, 2)\}$  is an alternating set, a contradiction. Hence,  $T(r, 2) \in H$ .

Assume that  $T(r, 2) \notin P$ . *Case:*  $e(r, 2) \in M$ .  $T(r, 1) \notin P$ . *Subcase:*  $T(r-1, 1) \in P$ . Then an extended perfect matching of Lemma 2 contains a proper sextet of T(r-1, 2) and  $P \cup \{S(r-1, 2)\}$  is an alternating set, a contradiction. *Subcase:*  $T(r-1, 1) \notin P$ . Then none of the hexagons that are adjacent to T(r-1, 2) belongs to P except possibly hexagon C. Hence, an extended perfect matching of Lemma 2 contains an improper sextet of T(r-1, 2) and  $P \cup \{S(r, 1)\}$  is an alternating set, a contradiction. *Case:*  $e(r, 3) \in M$ . By Lemma 2,  $P \cup \{S(r, 2)\}$  is an alternating set, a contradiction. Hence,  $T(r, 2) \in P$ .

By induction, the three statements hold. The statements for i=m imply that hexagon B is a hexagon of H, a contradiction. **Q.E.D.** 

**Lemma 4** [10]. Every perfect matching of a hexagonal system contains a sextet of a hexagon.

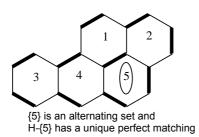
**Theorem 5.** Let H be a hexagonal system and P a maximal alternating set of H. Then H-P is empty or has a unique perfect matching.

**Proof.** The proof of this theorem is that of a related result by Zheng and Chen [9] with modifications.

We can assume that H-P is not empty. That H-P has a perfect matching follows from Lemma 1. Assume that H-P has more than one perfect matching. Let M and M' be two perfect matchings of H-P. Then the symmetric difference  $M \oplus M' = (M \cup M') - (M \cap M')$  contains an (M, M')-alternating cycle C, say. The vertices and the edges of the hexagonal lattice which lie on C and in the interior of C form a hexagonal system H\*, say. Since C is a cycle of H, H\* is a subgraph of H. Let N be the set of hexagons of H\* and P\*= P  $\cap$  N. M is a perfect matching of H-P and so, by Lemma 2, it can be extended to a perfect matching M<sub>ext</sub> of H that contains a sextet of each hexagon in P.

 $M_{ext} \cap E(H^*)$  is a perfect matching of H\* that contains a sextet of each hexagon in P\* and  $\partial H^*=C$  is alternating in it. Thus, if P\*#Ø, it is an alternating set of H\* consisting of internal hexagons (since C is in H-P) and (H\*-P\*)- $\partial H^*$  is empty or has a perfect matching. Let P\*<sub>ext</sub> be an alternating set of H\* that contains P\* as a proper subset. The existence of P\*<sub>ext</sub> follows from Lemma 3 if P\*#Ø and from Lemma 4 if P\*=Ø. Let M\* be a perfect matching of H\* that contains a sextet of each hexagon in P\*<sub>ext</sub>.

 $M^* \cup (M_{ext} - E(H^*))$  is a perfect matching of H and it contains a sextet of each hexagon in  $P^*_{ext} \cup (P - P^*)$  since C is a cycle of H-P. Thus,  $P^*_{ext} \cup (P - P^*)$  is an alternating set of H that contains P as a proper subset, a contradiction. **Q.E.D.**  **Remark.** If H is a hexagonal system, P an alternating set of H and H-P is empty or has a unique perfect matching, then P is not necessarily a maximal alternating set. For a counterexample, see Fig. 12.



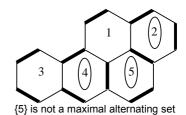


FIGURE 12: A counterexample.

#### References

 Gutman, I., Topological Properties of Benzenoid Molecules, Bull. Soc. Chim. Beograd 47 (1982) 453-471.

[2] Ohkami, N., Motoyama, A., Yamaguchi, T., Hosoya, H., Gutman, I.: Graph-Theoretical Analysis of the Clar's Aromatic Sextet, Tetrahedron 37 (1981) 1113-1122.
[3] Abeledo, H., Atkinson, G., The Clar and Fries Problems for Benzenoid Hydrocarbons are Linear Programs in: P. Hansen, P. Fowler, M. Zheng (Eds.), Discrete Mathematical Chemistry, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 51, Am. Math. Soc., Providence, RI, 2000, pp. 1-8.

[4] Fries, K.: Über Bicyclische Verbindungen und ihren Vergleich mit dem Naphtalin, Ann Chem 454 (1927) 121-324.

[5] Hansen, P., Zheng, M., Numerical Bounds for the Perfect Matching Vectors of a Polyhex, J. Chem. Inf. Comput. Sci. 34 (1994) 305-308. [6] Gutman, I., Topological Properties of Benzenoid Systems. XIX. Contributions to the Aromatic Sextet Theory, Wiss. Z. Thechn. Hochsch. Ilmenau 29 (1983) 57-65.

[7] Clar, E., The Aromatic Sextet, Wiley, London, 1972.

[8] Hansen, P., Zheng, M.L., Upper Bounds for the Clar Number of a Benzenoid Hydrocarbon, J. Chem. Soc. Faraday Trans. 88 (1992) 1621-1625.

[9] Zheng, M.L., Chen, R.S., A Maximal Cover of Hexagonal Systems, Graphs Combin. 1 (1985) 295-298.

[10] Gutman, I., Covering Hexagonal Systems with Hexagons, Proceedings of the Fourth Yugoslav Seminar on Graph Theory, Novi Sad: Institute of Mathematics, University of Novi Sad (1983) 151-160.

[11] Salem, K., Gutman, I., The Unfixed Subgraph of a Catacondensed Hexagonal System Obtained by Fixing an Alternating Set, J. Math. Chem., to be published.