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Abstract 

We show that for a maximal alternating set P of a hexagonal system H, H-P is 

empty or has a unique perfect matching.  

 

1. Introduction 

 Let C be a cycle on the hexagonal lattice. Then the vertices and the edges of the 

hexagonal lattice which lie on C and in the interior of C form a hexagonal system [1]. 

The vertices of a hexagonal system H are divided into external and 
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internal. A vertex of H lying on the boundary of the exterior face of H is called an 

external vertex, otherwise, it is called an internal vertex. A hexagon of H such that 

none of its vertices is external is called an internal hexagon, otherwise, it is an 

external hexagon. If a hexagonal system has no internal vertices, it said to be 

catacondensed, otherwise, it is pericondensed. A pericondensed hexagonal system 

is fat if it has an internal hexagon, otherwise, it is thin. A hexagonal system is to be 

placed on the plane so that a pair of edges of each hexagon lies in parallel with the 

vertical axis. A perfect matching of a hexagon is called a sextet [2]. It is proper if the 

right vertical edge of the hexagon is in the perfect matching; otherwise, it is improper. 

Let P be a non-empty set of hexagons of a hexagonal system H. We call P a set 

of mutually alternating hexagons of H (or simply an alternating set or a framed set) if 

there exists a perfect matching of H that contains a sextet of each hexagon in P [3]. 

An alternating set is maximal if it is not contained in a larger alternating set. An 

alternating set is maximum if its cardinality is the largest among all alternating sets. 

As Fig.1 shows, a maximal alternating set is not necessarily maximum. The 

cardinality of a maximum alternating set is of significance in the chemistry of 

benzenoid hydrocarbons [4]. It is called the Fries number [5].   

Let H be a hexagonal system and P a non-empty set of hexagons. H-P denotes 

the subgraph of H obtained by deleting from H the vertices of the hexagons in P 

(together with their incident edges). 

 

- 160 -



A maximal alternating set A maximum alternating set
FIGURE 1-a: Coronene, a fat pericondensed hexagonal system.  

 

A maximal alternating set A maximum alternating set
FIGURE 1-b: benzo[a]pyrene, a thin pericondensed hexagonal system.  

 

A maximal alternating set A maximum alternating set

FIGURE 1-c: A catacondensed hexagonal system.  
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Let P be a non-empty set of hexagons of a hexagonal system H. We call P a 

resonant set of H if the hexagons in P are pair-wise disjoint and there exists a perfect 

matching of H that contains a sextet of each hexagon in P [3] or equivalently [6] if the 

hexagons in P are pair-wise disjoint and H-P has a perfect matching or is empty. A 

resonant set is maximal if it is not contained in a larger resonant set. A resonant set 

is maximum if its cardinality is the largest among all resonant sets. As Fig. 2 shows, a 

maximal resonant set is not necessarily maximum. The cardinality of a maximum 

resonant set is of significance in the chemistry of benzenoid hydrocarbons [7]. It is 

called the Clar number [8].  

 

A maximal resonant set A maximum resonant set

FIGURE 2-a: Coronene, a fat pericondensed hexagonal system. 

 

A maximal resonant set A maximum resonant set
FIGURE 2-b: benzo[a]pyrene, a thin pericondensed hexagonal system. 
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A maximal resonant set
A maximum resonant set

FIGURE 2-c: A catacondensed hexagonal system.  

 

If H is a catacondensed hexagonal system and P is a maximal resonant set then 

H-P is empty or has a unique perfect matching [6]. Counterexamples [6] show that 

the statement cannot be extended to pericondensed hexagonal systems. If H is a 

pericondensed hexagonal system and P is a maximum resonant set then H-P is 

empty or has a unique perfect matching [9]. This statement was conjectured by 

Gutman [10].  

If H is a catacondensed hexagonal system and P is a maximal alternating set 

then H-P is empty or has a unique perfect matching [11]. The aim of this paper is to 

prove this result for any hexagonal system (Theorem 5). Those interested in only 

catacondensed hexagonal systems are referred to [11] since the proof given there is 

simpler than that given here. A basic related result is that if H is a hexagonal system 

and P is an alternating set then H-P is empty or has a perfect matching. This basic 

result was mentioned in [11] without proof and here we include it as Lemma 1 and a 

proof is given. 

If G is a subgraph of H, we use H-G to denote the subgraph of H obtained by 

deleting from H all the vertices of G (together with the incident edges). 
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2. Results 

Lemma 1. Let P be an alternating set of a hexagonal system H. Then H-P is empty 

or has a perfect matching.  

 

Proof. We can assume that H-P is non-empty. Let M be a perfect matching of H 

that contains a sextet of each hexagon in P. let M*={e ∈ M: e is not contained in a 

hexagon in P}. It is clear that M* is a perfect matching of H-P. Q.E.D. 

 

Lemma 2. Let P be an alternating set of a hexagonal system H such that H-P is not 

empty. Then a perfect matching of H-P can be extended to a perfect matching of H 

that contains a sextet of each hexagon in P.  

 

Proof.  Let M1 be a perfect matching of H-P. Let M be a perfect matching of H that 

contains a sextet of each hexagon in P. Let M2={e ∈ M: e is contained in a hexagon 

in P}. It can be seen that M1 ∪ M2 is a perfect matching of H that contains a sextet of 

each hexagon in P. Q.E.D. 

 

Lemma 3. Let H be a hexagonal system, P be an alternating set of H consisting of 

internal hexagons and ∂H be the cycle of the boundary of the exterior face of H. If (H-

P)-∂H is empty or has a perfect matching then P is not a maximal alternating set.  

 

Proof. The proof of this Lemma is that of a related result by Zheng and Chen [9] with 

modifications. 
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If (H-P)-∂H is empty, let M be the empty set, otherwise, let M be a perfect 

matching of (H-P)-∂H. The edges of ∂H can be decomposed into two perfect 

matchings N1 and N2 of ∂H since ∂H is an even cycle. It is clear that M ∪ N1 and M ∪ 

N2 are two perfect matchings of H-P. 

We assume that P is a maximal alternating set and then derive a contradiction. 

 

 

 

A

B

N1

e(1,1)
e(1,2)

e(1,3)
e(1,4)

e(1,5)
e(1,6)

e(2,1)
e(2,2)

e(2,3)
e(2,4)

e(3,1)
e(3,2)

e(4,1)
e(4,2)

e(4,3)
e(4,4)

e(4,5)
e(4,6)

f(1,1)f(1,2)f(1,3)

f(2,1)f(2,2)

f(3,1)

f(4,1)f(4,2)f(4,3)

T(1,1)T(1,2)T(1,3)

T(2,1)T(2,2)

T(3,1)

T(4,1)T(4,2)T(4,3)

S(1,1)S(1,2)S(1,3)

S(2,1)S(2,2)

S(3,1)

S(4,1)S(4,2)S(4,3)
N2

FIGURE 3: Hexagons S(i,j) and T(i,j) and edges f(i,j) and e(i,k) with
m=4, n(1)=3, n(2)=2, n(3)=1 and n(4)=3

S(i,j)

T(i,j)

S(i,j)

f(i,j)

e(i,2j-1)e(i,2j)

 

 

Let {S(i,j): 1 ≤ i ≤ m, 1 ≤ j ≤ n(i)} be the series of hexagons of the hexagonal 

system H which lies on the boundary of the exterior face of H and satisfies that 
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neither hexagon A nor hexagon B is a hexagon of H as shown in Fig. 3. The series of 

hexagons of the hexagonal lattice {T(i,j): 1 ≤ i ≤ m, 1 ≤ j ≤ n(i)} are as shown in Fig. 3. 

T(i,j) may be a hexagon of the hexagonal system H. The vertical edges f(i,j), 1 ≤ i ≤ 

m, 1 ≤ j ≤ n(i) and the diagonal edges e(i,k), 1 ≤ i ≤ m, 1 ≤ k ≤ 2n(i) are as shown in 

Fig. 3.  

We first show that the following three statements hold by induction on i. 

(a) m ≥ 2 and n(i) = 1 or n(i) = 2 for all i, 1 ≤ i ≤ m. 

(b) if n(i) =1 then f(i,1) ∈ M. 

(c) if n(i) =2 then T(i,2) ∈ P. 

Initial Step: We prove that the above statements hold for i=1. 

(a) Assume that n(1) ≥ 3. 

Case: T(1,1)∉ H and T(1,2)∉H. By Lemma 2, P ∪ {S(1,1)} is an alternating set of 

H, a contradiction. 

Case: T(1,1) ∉ H and T(1,2) ∈ H. T(1,2) ∉ P since T(1,1) ∉ H. Hence e(1,3) ∈ M.  

Consequently, e(1, 2n(1)-1) ∈ M. By Lemma 2, P ∪ {S(1,n(1))} is an alternating set, a 

contradiction. 

Case: T(1,1) ∈ H and T(1,2) ∉ H. e(1,2) ∈ N2, say. By Lemma 2, P ∪ {S(1,1)} is 

an alternating set, a contradiction. 

Case: T(1,1) ∈ H and T(1,2) ∈ H. Subcase: e(1,2) ∈  M. By Lemma 2, P ∪ 

{S(1,1)} is an alternating set, a contradiction. Subcase: e(1,3) ∈  M. Then e(1, 2n(1)-

1) ∈ M. By Lemma 2, P ∪ {S(1,n(1))} is an alternating set, a contradiction. Subcase: 

e(1,2) ∉ M and e(1,3) ∉ M. T(1,2) ∈ P. Hence T(1,3) ∈ H. If T(1,3) ∈ P, then in the 

extended perfect matching mentioned in Lemma 2, T(1,2) is an improper sextet, thus, 

e(1,2) is matched and P ∪ {S(1,1)} is an alternating set, a contradiction. If T(1,3) ∉ P, 
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then e(1,2n(1)-1) ∈ M and by Lemma 2, P ∪ {S(1, n(1))} is an alternating set, a 

contradiction. 

Consequently, we have n(1) ≤ 2. 

 

N1

N2

T(1,1)

FIGURE 4: Proof of Lemma 3.

S(1,1)

C

 

 

(b) n(1) = 1. See Fig. 4. Assume that T(1,1) ∉ H. Then, by Lemma 2, P ∪ {S(1,1)} 

is an alternating set, a contradiction. Hence, T(1,1) ∈ H. T(1,1) ∉ P. Assume that C ∉ 

H. Then e(1,2) ∈ N2, say, and by Lemma 2, P ∪ {S(1,1)} is an alternating set, a 

contradiction. Hence C ∈ H and can be denoted by S(2, 1) (from which m ≥ 2). Thus, 

f(1,1) ∈ M. 

 

N1
 N2

S(1,1)S(1,2)

T(1,1)T(1,2)

FIGURE 5: Proof of Lemma 3.

C
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(c) n(1) = 2. See Fig. 5. Assume that T(1,2) ∉ H. Then e(1,2) ∈ N2, say. By 

Lemma 2, P ∪ {S(1,1)} is an alternating set, a contradiction. Hence T(1,2) ∈ H. 

Assume that T(1,2) ∉ P. Case: e(1,2) ∈ M. By Lemma 2, P ∪ {S(1,1)} is an 

alternating set, a contradiction. Case: e(1,3) ∈ M. By Lemma 2, P ∪ {S(1,2)} is an 

alternating set, a contradiction. Hence, T(1,2) ∈ P. It follows that C ∈ H and can be 

denoted by S(2,1). Thus, m ≥ 2. 

Consequently, m ≥ 2 and the statements hold for i=1. 

Inductive Step: We assume that the statements hold for i=r-1 and prove that they 

hold for i=r, where 2 ≤ r ≤ m. 

Case: n(r-1) = 1. We have f(r-1, 1) ∈ M. 

(a) Assume that n(r) ≥ 3. See Fig. 6. 

 

S(r-1,1)

S(r,1)...S(r,n(r)) T(r-1,1)

T(r,1)...T(r,n(r))

  N1

N2

FIGURE 6: Proof of Lemma 3.  

 

Case: T(r, n(r)) ∈ H and T(r, n(r)) ∈P. T(r, n(r)-1) ∈ H. Subcase: T(r, n(r)-1) ∈ P. 

Then an extended perfect matching of Lemma 2 contains a proper sextet of T(r, n(r)) 

and P ∪ {S(r, n(r))} is an alternating set, a contradiction. Subcase: T(r, n(r)-1) ∉ P. 

Then e(r, 2) ∈ M and by Lemma 2, P ∪ {S(r, 1)} is an alternating set, a contradiction. 
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Case: T(r, n(r)) ∈ H and T(r, n(r)) ∉P. Subcase: e(r, 2n(r)-1) ∈ M. Then by 

Lemma 2, P ∪ {S(r, n(r))} is an alternating set, a contradiction. Subcase: e(r, 2n(r)-2) 

∈ M. Then e(r, 2) ∈ M and by Lemma 2, P ∪ {S(r, 1)} is an alternating set, a 

contradiction. 

Case: T(r, n(r)) ∉ H. e(r, 2n(r)-1) ∈ N1, say. By Lemma 2, P ∪ {S(r, n(r))} is an 

alternating set, a contradiction. 

Hence, n(r) ≤ 2. 

 

S(r-1,1)

S(r, 1) T(r-1,1)

T(r,1)

N1

N2

FIGURE 7: n(r-1)= 1, n(r)= 1.

C

 

 

(b) n(r) = 1. See Fig. 7. T(r, 1) ∈ H and T(r, 1) ∉ P since f(r-1, 1) ∈ M. Assume 

that C ∉ H. Then by Lemma 2, P ∪ {S(r, 1)} is an alternating set, a contradiction. 

Hence, C ∈ H and can be denoted by S(r+1, 1). Thus, f(r, 1) ∈ M. 
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S(r-1,1)

S(r,1)S(r,2) T(r-1,1)

T(r,1)T(r,2)

N1

N2

FIGURE 8: n(r-1)=1, n(r)=2.  

 

(c) n(r)= 2. See Fig. 8. Assume that T(r, 2) ∉ H. Then e(r, 2) ∈ N2, say, and by 

Lemma 2, P ∪ {S(r, 1)} is an alternating set, a contradiction. Hence, T(r, 2) ∈ H. 

Assume that T(r, 2) ∉ P. Case: e(r, 2) ∈ M. By Lemma 2, P ∪ {S(r, 1)} is an 

alternating set, a contradiction. Case: e(r, 3) ∈ M. By Lemma 2, P ∪ {S(r, 2)} is an 

alternating set, a contradiction. Hence, T(r, 2) ∈ P. 

Case: n(r-1) = 2. We have T(r-1, 2) ∈ P. 

 

S(r-1,1)S(r-1,2)

S(r,1)...S(r,n(r)) T(r-1,1)

T(r,1)...T(r,n(r))

T(r-1,2)

C

N1
N2

FIGURE 9: Proof of Lemma 3.  
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(a) Assume that n(r) ≥ 3. See Fig. 9. 

Case: T(r, n(r)) ∈ H and T(r, n(r)) ∈ P. T(r, n(r)-1) ∈ H. Subcase: T(r, n(r)-1) ∈ P. 

Then an extended perfect matching of Lemma 2 contains a proper sextet of T(r, n(r)) 

and P ∪ {S(r, n(r))} is an alternating set, a contradiction. Subcase: T(r, n(r)-1) ∉ P. 

Then e(r, 2) ∈ M. If T(r-1, 1) ∈ P then an extended perfect matching of Lemma 2 

contains a proper sextet of T(r-1, 2) and P ∪ {S(r-1, 2)} is an alternating set, a 

contradiction. If T(r-1, 1) ∉ P, note that T(r, 1) ∉ P since e(r,2) ∈ M, thus, none of the 

hexagons that are adjacent to T(r-1, 2) belongs to P except possibly hexagon C. 

Hence, an extended perfect matching of Lemma 2 contains an improper sextet of T(r-

1, 2) and P ∪ {S(r, 1)} is an alternating set, a contradiction. 

Case: T(r, n(r)) ∈ H and T(r, n(r)) ∉ P. Subcase: e(r, 2n(r)-1) ∈ M. By Lemma 2, 

P ∪ {S(r, n(r))} is an alternating set, a contradiction. Subcase: e(r, 2n(r)-2) ∈ M. Then 

e(r, 2) ∈ M. If T(r-1, 1) ∈ P, then an extended perfect matching of Lemma 2 contains 

a proper sextet of T(r-1, 2) and P ∪ {S(r-1, 2)} is an alternating set, a contradiction. If 

T(r-1, 1) ∉ P, note that T(r, 1) ∉ P since e(r,2) ∈ M, thus, none of the hexagons that 

are adjacent to T(r-1, 2) belongs to P except possibly hexagon C. Hence, an 

extended perfect matching of Lemma 2 contains an improper sextet of T(r-1, 2) and 

P ∪ {S(r, 1)} is an alternating set, a contradiction. 

Case: T(r, n(r)) ∉ H. e(r, 2n(r)-1) ∈ N1, say. By Lemma 2, P ∪ {S(r, n(r))} is an 

alternating set, a contradiction. 

Hence, n(r) ≤ 2. 
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S(r-1,1)S(r-1,2)

S(r,1) T(r-1,2) T(r-1,1)

T(r,1) C

N1
N2

FIGURE 10: n(r-1)=2, n(r)=1.

D

 

 

(b) n(r) = 1. See Fig. 10. Assume that either T(r, 1) or T(r-1, 1) belongs to P.  

Then, an extended perfect matching of Lemma 2 contains a proper sextet of T(r-1, 2) 

and P ∪ {S(r-1, 2)} is an alternating set, a contradiction. Hence, neither T(r, 1) nor 

T(r-1, 1) belongs to P. 

Assume that D ∉ H. Then e(r, 2) ∈ N2, say. Note that none of the hexagons that 

are adjacent to T(r-1, 2) belongs to P except possibly hexagon C. Hence, an 

extended perfect matching of Lemma 2 contains an improper sextet of T(r-1, 2) and 

P ∪ {S(r, 1)} is an alternating set, a contradiction. Hence, D ∈ H and can be denoted 

by S(r+1, 1). Note that T(r, 1) ∈ H since T(r-1, 2) ∈ P. Recall that T(r, 1) ∉ P. Thus, 

f(r, 1) ∈ M. 
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S(r-1,1)S(r-1,2)

S(r,1)S(r,2) T(r-1,1)T(r-1,2)

T(r,1)T(r,2) C

N1

N2

FIGURE 11: n(r-1)=2, n(r) =2.  

 

(c) n(r) = 2. See Fig. 11. Assume that T(r, 2) ∉ H. Then e(r, 3) ∈ N1, say, and by 

Lemma 2, P ∪ {S(r, 2)} is an alternating set, a contradiction. Hence, T(r, 2) ∈ H. 

Assume that T(r, 2) ∉ P. Case: e(r, 2) ∈ M. T(r, 1) ∉ P. Subcase: T(r-1, 1) ∈ P. 

Then an extended perfect matching of Lemma 2 contains a proper sextet of T(r-1, 2) 

and P ∪ {S(r-1, 2)} is an alternating set, a contradiction. Subcase: T(r-1, 1) ∉ P. Then 

none of the hexagons that are adjacent to T(r-1, 2) belongs to P except possibly 

hexagon C.  Hence, an extended perfect matching of Lemma 2 contains an improper 

sextet of T(r-1, 2) and P ∪ {S(r, 1)} is an alternating set, a contradiction. Case: e(r, 3) 

∈ M. By Lemma 2, P ∪ {S(r, 2)} is an alternating set, a contradiction. Hence, T(r, 2) ∈ 

P. 

By induction, the three statements hold. The statements for i=m imply that 

hexagon B is a hexagon of H, a contradiction. Q.E.D. 

 

Lemma 4 [10]. Every perfect matching of a hexagonal system contains a sextet of a 

hexagon. 
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Theorem 5. Let H be a hexagonal system and P a maximal alternating set of H. 

Then H-P is empty or has a unique perfect matching. 

 

Proof. The proof of this theorem is that of a related result by Zheng and Chen [9] 

with modifications. 

We can assume that H-P is not empty. That H-P has a perfect matching follows 

from Lemma 1. Assume that H-P has more than one perfect matching. Let M and M’ 

be two perfect matchings of H-P. Then the symmetric difference M ⊕ M' = (M ∪ M') – 

(M ∩ M') contains an (M, M')-alternating cycle C, say. The vertices and the edges of 

the hexagonal lattice which lie on C and in the interior of C form a hexagonal system 

H*, say. Since C is a cycle of H, H* is a subgraph of H. Let N be the set of hexagons 

of H* and P*= P ∩ N. M is a perfect matching of H-P and so, by Lemma 2, it can be 

extended to a perfect matching Mext of H that contains a sextet of each hexagon in P. 

Mext ∩ E(H*) is a perfect matching of H* that contains a sextet of each hexagon in 

P* and ∂H*=C is alternating in it. Thus, if P*≠Ø, it is an alternating set of H* consisting 

of internal hexagons (since C is in H-P) and (H*-P*)-∂H* is empty or has a perfect 

matching. Let P*ext be an alternating set of H* that contains P* as a proper subset. 

The existence of P*ext follows from Lemma 3 if P*≠Ø and from Lemma 4 if P*= Ø. Let 

M* be a perfect matching of H* that contains a sextet of each hexagon in P*ext. 

M* ∪ (Mext - E(H*)) is a perfect matching of H and it contains a sextet of each 

hexagon in P*ext ∪ (P - P*) since C is a cycle of H-P. Thus, P*ext ∪ (P - P*) is an 

alternating set of H that contains P as a proper subset, a contradiction. Q.E.D. 
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Remark. If H is a hexagonal system, P an alternating set of H and H-P is empty or 

has a unique perfect matching, then P is not necessarily a maximal alternating set. 

For a counterexample, see Fig. 12. 

 

1 2

3 4 5

1 2

3 4 5

{5} is an alternating set and
H-{5} has a unique perfect matching {5} is not a maximal alternating set

FIGURE 12: A counterexample.  
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