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Abstract

In this paper, we consider the catacondensed hexagonal systems (simply CHSs)

with h hexagons and large Wiener numbers. The length transformations and the

length transformation diagraphs of the hexagonal chains containing no nonzigzag

segment, or containing exactly one nonzigzag segment, or containing exactly two

nonzigzag segments, are introduced. In addition, some algorithms for ordering the

hexagonal chains by Wiener numbers are established. A similar length transforma-

tion digraph and algorithm for ordering the CHSs with only one branch hexagon

and with no kink is also given. Based on the length transformation digraphs and the

algorithms, the above several classes of CHSs with h hexagons can be completely

ordered for a given h. Furthermore, the catacondensed hexagonal systems with the

second up to the thirty-third largest Wiener numbers are determined.
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1 Introduction

The Wiener number W is a well-known distance-based topological index introduced

originally for molecular graphs of alkanes ( Wiener, 1947 [23] ). For a cycle-containing

graph G, the Wiener number is defined as the sum of distances between all unordered

pairs of its vertices ( Hosoya, 1971 [21]):

W (G) =
∑

{u,v}⊆V (G) d(u, v)

where d(u, v) is the number of edges in a shortest path connecting the vertices u and

v. The Wiener number has been found to have interesting applications in organic and

polymer chemistry, in studies of crystals, and in drug design. A number of publications,

reviews and books in the chemical and mathematical literature are devoted to the Wiener

number [15, 16, 17, 22]. In particular, the Wiener number was used in the analysis of

physico-chemical properties of benzenoid hydrocarbons.

Hexagonal systems are the natural graph representation of benzenoid hydrocarbons.

A hexagonal system without internal vertex is called catacondensed hexagonal system,

written as CHS for short. Let CHSh be the set of CHSs with h hexagons. For G ∈
CHSh, a hexagon s of G is called a kink of G, if s has exactly two consecutive vertices

with degree 2 in G, and s is called a branched hexagon if s has no vertex with degree

2. The set of all kinks of G is denoted by Kink(G). A CHS with no branched hexagon

is called a hexagonal chain, simply an HC. Let HCh ⊆ CHSh denote the set of all the

hexagonal chains with h hexagons. The linear chain Lh with h hexagons is the hexagonal

chain without kink. The subgraph S of a CHS G is called a segment of G if it is a

maximal linear chain in G, including the kinks and/or terminal hexagons at its ends. The

number of hexagons in a segment S is called its length and is denoted by l(S). A segment

including a terminal hexagon is called a terminal segment.

Consider a nonterminal segment S embeded into G ∈ HCh consisting of an ordered

sequence of segments, and draw a line through the centers of the hexagons of S (see

Fig. 1). If the subgraphs H1 and H2 lie on the same side of the line, then S is called a

nonzigzag segment. If H1 and H2 lie on the different sides of the line, then S is called a

zigzag segment. Assume for convenience that zigzag segments also include both terminal

segments. The number of hexagons in the subgraphs H1 and H2 of G will be denoted by

h1 = h1(S) and h2 = h2(S), respectively. The set of all nonzigzag segments (resp. zigzag
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Figure 1: Types of segments.

segments) of a hexagonal chain G is denoted by Ω(G) (resp. Ω̄(G)).

Let S1, S2, · · · , Sn be the ordered sequence of segments in a hexagonal chain G with

h hexagons, and let li = l(Si), i = 1, 2, · · · , n. G can be uniquely determined by a length

vector L(G) = (l1, l2, · · · , l̄i, · · · , ln), where the length of any nonzigzag segment Si is

denoted by l̄i. Especially, if G = Lh, L(G) = (h). If L(G) = (l1, l2), denote G by

Lh(l1, l2). If L(G) = (l1, l2, · · · , ln), denote G by Lh(l1, l2, · · · , ln). If G has exactly one

nonzigzag segment, say Si, we denote G by Lh(l1, · · · , l̄i, · · · , ln).

Let Lh(l1, l2, · · · , ln) = {Lh(l1, l2, · · · , ln) | h =
∑n

i=1 li − n + 1, li ≥ 2, 1 ≤ n ≤
h − 1}, and let Lh(l1, l2, · · ·) = ∪h−1

n=1Lh(l1, l2, · · · , ln). A hexagonal chain with no non-

zigzag segment is also called a zigzag hexagonal chain, simply a zigzag HC. Similarly, let

Lh(l1, · · · , l̄i, · · ·) be the set of the hexagonal chains each of which contains exactly one non-

zigzag segment and has h hexagons, and Lh(l1, · · · , l̄i, · · · , l̄j, · · ·) the set of the hexagonal

chains each of which contains exactly two nonzigzag segments and has h hexagons.

Let Sh(l1, l2, l3) denote a branched CHS consisting of three terminal segments S1, S2,

S3 only, where h = l1 + l2 + l3 − 2, l(Si) = li ≥ 2, i = 1, 2, 3. By symmetry, without

loss of generality, we assume l1 ≥ l2 ≥ l3 ≥ 2 , and let Sh(l1, l2, l3) = {Sh(l1, l2, l3) | h =∑3
i=1 li − 2, l1 ≥ l2 ≥ l3 ≥ 2}.
In the theory of the Wiener number, the most basic problems are how to calculate

W and to find the correlation between structures and Wiener numbers of graphs. The

greatest progress in solving the problems was made for trees and hexagonal systems. The

results on the Wiener number of trees and hexagonal systems were summarized in ref
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[9, 10, 12] by Dobrynin and Gutman et al. For general hexagonal systems, there is no

known recursive method to calculate W of them. However Klavzar and Gutman [11]

showed that the complexity of computing the Wiener number of them can be reduced to

O(p) and developed a sublinear time algorithm for simple hexagonal systems. For some

special classes of hexagonal systems, Dobrynin [8] provided their calculating formulas.

Followed from them, the extremal elements of these special classes of hexagonal systems

with respect to W were specified in ref [11]. In ref [14], Gutman proved that in CHSh, Lh

have the maximum Wiener number. In ref [5], Dobrynin proved that in CHSh the serpent

Sh have the minimum Wiener numbers, where Sh ∈ HCh, L(Sh) = (2, 2̄, 2̄, 2, 2̄, 2̄, 2, · · · , 2).

In ref [1], Bonchev determined that the CHSh with the minimum Wiener number which

have zigzag segments only is the HC whose segments are of length 2.

A natural generalization of the problem of determining the extremal elements of the

CHSs with respect to W is to order CHSs by W. The order of CHSs can uncover the cor-

relation between structures and Wiener numbers of graphs and will be useful in comparing

the stability and other properties of molecular graphs. Some results in ordering graphs

with respect to some topological indices can be seen in [20, 24, 25]. In the present paper,

we introduce the length transformations and the length transformation digraphs of several

classes of hexagonal chains, Lh(l1, l2, · · ·), Lh(l1, · · · , l̄i, · · ·), Lh(l1, · · · , l̄i, · · · , l̄j, · · ·), and

Sh(l1, l2, l3), in which the length transformation digraphs of Lh(l1, l2, · · ·) and Sh(l1, l2, l3)

show partial order relations of the hexagonal chains with respect to their Wiener num-

bers. In addition, some algorithms for ordering the hexagonal chains by Wiener numbers

are established. Based on the length transformation digraphs and the algorithms, the

above several classes of CHSs with h hexagons can be completely ordered for a given h.

Furthermore, the catacondensed hexagonal systems with the second up to the thirty-third

largest Wiener numbers are determined.

2 Some related results

To obtain our main results we need the following lemmas.

Lemma 1. [8] Let G be an arbitrary element of HCh with L(G) = (l1, l2, · · · , ln).

Then W (G) = W (Lh)−16
∑

S∈Ω(G) h1h2−4(h2+n−1−∑n
i=1 l2i ), where the first summation

goes over all nonzigzag segments of G.
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Let r ∈ Kink(G), the subgraph of G induced by all the hexagons of G other than

r has two connected components, say G1 and G2, the numbers of hexagons of G1 and

G2 are denoted by h3 = h(G1) and h4 = h(G2), respectively. The following lemma is a

variant of Dobrynin’s results.

Lemma 2. [4] Let G ∈ HCh. Then

W (G) = W (Lh)− 8(
∑

r∈Kink(G) h3h4 +
∑

S∈Ω(G) h1h2 −
∑

S∈Ω̄(G) h1h2).

Lemma 3. [4] W (Sh(l1, l2, l3)) = W (Lh)− 8(4(l1 − 1)(l2 − 1)(l3 − 1) + (l1 − 1)(l2 −
1) + (l1 − 1)(l3 − 1) + (l2 − 1)(l3 − 1)).

Let G1, G′
1, G2, G′

2 be the CHSs in Fig. 2. We say that G′
1 (resp. G′

2) is obtained from

G1 (resp. G2) by the first kink transformation (resp. the second kink transformation).

Let l1 = l(S1), l2 = l(S2), A and B stand for arbitrary fragments, in particular, they may

be absent. A and B contains hA and hB hexagons, respectively [7].

Figure 2: kink transformations of hexagonal systems.

Lemma 4. [7] Let G′
1 (resp. G′

2) be the CHS obtained from a CHS G1 (resp. G2)

by the first kink transformation (resp. the second kink transformation). Then

W (G′
1)−W (G1) = 16(l2 − 1)hB + 8(l1 − 1)(l2 − 1),
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W (G′
2)−W (G2) = 16(l2 − 1)[2(l1 − 1)(hG − l1) + hA − hB] + 8(l1 − 1)(l2 − 1).

Following from Lemma 1, Lemma 2, we have

Corollary 5. W (Lh(l1, l2)) = W (Lh)−4(h2+1)+4(l21+l22) = W (Lh)−8(l1−1)(l2−1),

W (Lh(l1, l2, l3)) = W (Lh)− 4(h2 + 2) + 4(l21 + l22 + l23) = W (Lh)− 8((l1 − 1)(l3 − 1) +

(l1 − 1)(l2 − 1) + (l2 − 1)(l3 − 1)),

W (Lh(l1, l̄2, l3)) = W (Lh)− 8(3(l1 − 1)(l3 − 1) + (l1 − 1)(l2 − 1) + (l2 − 1)(l3 − 1)),

W (Lh(l1, l2, l3, l4)) = W (Lh)− 4(h2 +3)+4(l21 + l22 + l23 + l24) = W (Lh)− 8((l1− 1)(l2−
1) + (l1− 1)(l3− 1) + (l1− 1)(l4− 1) + (l2− 1)(l3− 1) + (l2− 1)(l4− 1) + (l3− 1)(l4− 1)),

W (Lh(l1, l2, · · · , l̄i, · · · , ln)) = W (Lh) − 4(h2 + n − 1) + 4(l21 + l22 + · · · + l2n) − 16(l1 +

l2 + · · ·+ li−1 − i + 1)(li+1 + · · ·+ ln − n + i),

W (Lh(l1, l̄2, l̄3, l4)) = W (Lh)− 8((l1− 1)(l2− 1) + 3(l1− 1)(l3− 1) + 5(l1− 1)(l4− 1) +

(l2 − 1)(l3 − 1) + 3(l2 − 1)(l4 − 1) + (l3 − 1)(l4 − 1)).

3 Some order relations in Lh(l1, l2, · · ·), Lh(l1, · · · , l̄i, · · ·),
Lh(l1, · · · , l̄i, · · · , l̄j, · · ·), and Sh(l1, l2, l3) on Wiener num-

bers

By Lemma 1, l1, l2, · · ·, ln are symmetric in the formula W (Lh(l1, l2, · · · , ln)). In other

words, let (l′1, l
′
2, · · · , l′n) be a permutation of (l1, l2, · · · , ln), then W (Lh(l

′
1, l

′
2, · · · , l′n)) =

W (Lh(l1, l2, · · · , ln)). In this sense, we may assume without generality l1 ≥ l2 ≥ · · · ≥ ln ≥
2, and let Lh(l1, l2, · · · , ln) be the representative of the set of all the HCs consisting of any

ordered sequences of n zigzag segments S1, S2, · · ·, Sn, where li = li(Si), i = 1, 2, · · ·, n.

Let L∗h(l1, l2, · · · , ln) = {Lh(l1, l2, · · · , ln) | l1 ≥ l2 ≥ · · · ≥ ln ≥ 2, h =
∑n

i=1 li − n + 1} ⊂
Lh(l1, l2, · · · , ln). Let L∗h(l1, l2, · · ·) = ∪h−1

n=1L∗h(l1, l2, · · · , ln) = {Lh(l1, · · · , lh−1) | l1 ≥ l2 ≥
· · · ≥ lh−1 ≥ 0, li 6= 1, i = 1, 2, · · · , h− 1}.

It is clear that, for ordering the HCs in Lh(l1, l2, · · ·), we need only to order the HCs

in L∗h(l1, l2, · · ·). Now we will establish an algorithm for ordering the HCs in L∗h(l1, l2, · · ·).
To do this, we first introduce some operations called length transformations.

Definition 6. Let G = Lh(x1, x2, · · · , xh−1) ∈ L∗h(l1, l2, · · ·). Let G′ be obtained

from G by one of the following three operations: (1) if there exists some i < h − 1
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such that xi − 2 ≥ xi+1 ≥ 2, then G′ = Lh(x1, · · · , xi − 1, xi+1 + 1, · · · , xh−1); (2) if

there exists some i < h − 1 such that xi ≥ 3, xi+1 < 3, xj = 0, xj−1 > 0, then

G′ = Lh(x1, · · · , xi − 1, 2, · · · , 2, xj+1, · · ·); (3) if there exists i + 1 < j < h such that

xi − 1 = xi+1 = · · · = xj−1 = xj + 1, then G′ = Lh(x1, · · · , xi − 1, · · · , xj + 1, · · · , xh−1).

Then G′ is said to be obtained from G by an kth length transformation (or a LTk-

transformation), denoted by G′ = LTk(G), where k = 1, 2, 3.

By Lemma 1, we have the following lemma.

Lemma 7. Let G = Lh(x1, x2, · · · , xn) ∈ L∗h(l1, l2, · · ·), and let G′ be obtained from G

by a length transformation. Then (1) if G′ = LT1(G), W (G)−W (G′) = 8(xi− xi+1− 1);

(2) if G′ = LT2(G), W (G) −W (G′) = 8(xi − 2); (3) if G′ = LT3(G), W (G) −W (G′) =

8(xi − xj − 1) = 8.

For any G = Lh(l1, l2, · · · , ln) ∈ L∗h(l1, l2, · · ·), where ln ≥ 2, G can be uniquely de-

termined by the (h − 1)-dimension vector L(G) = (l1, l2, · · · , ln, 0, · · ·), or simply by the

n-dimension vector L(G) = (l1, l2, · · · , ln). The length transformations between two zigzag

hexagonal chains G′ = LTk(G) may be expressed as the transformations between the cor-

responding (h− 1)-dimension vectors L(G′) = LTk(L(G)), where k = 1, 2, 3.

We define an order relation of (h− 1)-dimension vectors (x1, x2, · · · , xh−1) as follows:

(x1, x2, · · · , xh−1) Â (x′1, x
′
2, · · · , x′h−1) ⇔ ∃ j ≤ h − 1 such that xj > x′j and xi = x′i for

i = 1, 2, · · · , j − 1.

Lemma 8. Let G = Lh(x1, x2, · · · , xn) ∈ L∗h(l1, l2, · · ·) be any zigzag HC with h

hexagons and n ≥ 2. Then G can be obtained from Lh by a sequence of length transfor-

mations, and also from Lh(h− 1, 2) by a sequence of length transformations in which all

the second length transformations are taken only for xi = 3.

Proof. Lh(h − 1, 2) can be obtained from Lh by the second length transformation.

So, if G 6= Lh(h− 1, 2), we need only to prove that G can be obtained from Lh(h− 1, 2)

by a sequence of length transformations in which all the second length transformations

are taken only for xi = 3.

If there is some i < n such that xi = xi+1 > 2, we may assume that i is minimal

and j is maximal such that xi = xi+1 = · · · = xj, xi−1 > xi if i > 1, and xj > xj+1 if

j < n. Then G can be obtained from Lh(x1, · · · , xi + 1, · · · , xj − 1, · · · , xn) by either the

first length transformation if j = i + 1, or the third length transformation if j > i + 1.
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If there is some i < n such that xi = xi+1 = 2, we may assume that i is minimal

such that xi = xi+1 = · · · = xn = 2, xi−1 > xi if i > 1. Then G can be obtained from

Lh(x1, · · · , xi−1, 3, 2, · · · , 2, 0) by the second length transformation.

Otherwise, x1 > x2 > · · · > xn. If n ≥ 3, then G can be obtained from Lh(x1 +1, x2−
1, · · · , xn) by the first length transformation. If n = 2, since G 6= Lh(h−1, 2), then x2 > 2

and G can be obtained from Lh(x1 + 1, x2 − 1) by the first length transformation.

Now we can assume G = LTk(G1), k = 1, 2, 3. Clearly, L(G1) Â L(G).

Repeating the above reasoning, we can obtain a series of graphs G1, G2, · · · , Gt such

that Gi = LTk(Gi+1) for i = 1, 2, · · · , t− 1, L(Gi+1) Â L(Gi), and Gt = Lh(h− 1, 2).

The proof is thus completed. 2

By Lemma 7, if G = Lh(x1, x2, · · · , xn) ∈ L∗h(l1, l2, · · ·) and G′ = LTk(G), then
1
8
(W (G) − W (G′)) is equal to either (xi − xi+1 − 1) > 0 for k = 1, or xi − 2 > 0 for

k = 2, or 1 > 0 for k = 3. Based on Lemmas 7,8, we can define the length transformation

digraph of all the zigzag hexagonal chains in L∗h(l1, l2, · · ·) as follows.

Definition 9. Let D
(0)
h = (V (D

(0)
h ), A(D

(0)
h )) be the digraph, called the length

transformation digraph (simply LT -digraph) of all the zigzag hexagonal chains with h

hexagons, where V (D
(0)
h ) = L∗h(l1, l2, · · ·), and between two vertices Gi = Lh(x1, x2, · · ·)

and Gj = Lh(y1, y2, · · ·) there is an arc (Gi, Gj) ∈ A(D
(0)
h ) if and only if LTk(Gi) = Gj for

some k ∈ {1, 2, 3} where if Gi 6= Lh the second length transformation is taken only for

xi = 3.

By Lemmas 7,8, we have the following.

Theorem 10. Let D
(0)
h be the length transformation digraph of the zigzag hexagonal

chains with h hexagons. Then, for any vertex G∗ = Lh(x1, x2, · · ·) in D
(0)
h different

from Lh and Lh(h − 1, 2), there is a directed path G0G1G2 · · ·Gt such that G0 = Lh,

G1 = Lh(h − 1, 2), Gt = G∗, and W (G0) > W (G1) > W (G2) > · · · > W (Gt) (that is, a

complete order of G0, G1, G2, · · · , Gt with respect to Wiener numbers).

In the LT -digraph D
(0)
h of zigzag hexagonal chains with h hexagons, there are some

vertices Gi and Gj which are not connected by a directed path, and so W (Gi) and W (Gj)

are not comparable by the LT -digraph D
(0)
h . Hence the LT -digraph D

(0)
h gives a partial

order relation of zigzag hexagonal chains with h hexagons with respect to Wiener numbers.

For ordering all zigzag hexagonal chains by Wiener numbers, we need to introduce a
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number for any zigzag hexagonal chain G∗ with h hexagons. By Theorem 10, there are a

series of graphs G0 = Lh, G1 = Lh(h− 1, 2), G2, · · · , Gt = G∗ such that Gi = LTk(Gi−1)

for i = 1, 2, · · · , t. Let ∆i = 1
8
(W (Gi−1) − W (Gi)). For every Gi, we assign a number

n(Gi) so that n(G1) = 0, n(G2) = −∆2, n(G3) = n(G2)−∆3 = −∆2 −∆3, · · · , n(G) =

n(Gt−1) − ∆t. Particularly let n(Lh) = h − 2 because ∆1 = 1
8
(W (Lh) − W (G0)) =

h − 2. Obviously, W (Gi) ≥ W (Gj) if and only if n(Gi) ≥ n(Gj). If we can establish an

algorithm for generating the LT -digraph D
(0)
h of zigzag hexagonal chains with h hexagons

and assigning the number n(Gi) to any graph Gi in L∗h(l1, l2, · · ·) by the above method,

the zigzag hexagonal chains in L∗h(l1, l2, · · ·) will can be ordered by the numbers n(Gi).

For convenience, we denote a graph G = Lh(x1, x2, · · · , xn) in L∗h(l1, l2, · · ·) by the vector

X = (x1, x2, · · · , xn), n(G) by n(X), and LTk(G) by LTk(X). In particular, the linear

chain Lh is denoted by the vector (h). If X 6= (h), the second length transformation

LT2(X) is taken only for xi = 3.

Algorithm 11. Let X0 = (h) and X1 = (h − 1, 2), n(X0) = h − 2, n(X1) = 0,

V0 = {X0}, V1 = {X1}, A1 = {(X0, X1)}, and i = 1.

1. For every vector Xj in Vi, find the set N(Xj) = {Xr | Xr = LTk(Xj), Xr /∈ Vi},
and let n(Xr) = n(Xj) − ∆(Xr) for every Xr. Set Vi+1 = ∪Xj∈Vi

N(Xj). Set Ai+1 =

{(Xj, Xr) | Xr = LTk(Xj), Xj ∈ Vi ∪ Vi+1, Xr ∈ Vi+1}.
2. If Vi+1 has only the vector (2, 2, · · · , 2), go to step 3. Otherwise, set i + 1 → i, go

to step 1.

3. Let i + 1 = t, V (D
(0)
h ) = ∪t

i=0Vi, A(D
(0)
h ) = ∪t

i=1Ai. If h is a given constant, order

elements in V (D
(0)
h ) = ∪t

i=0Vi by n(Xi).

By Lemma 8, it is not difficult to see that Algorithm 11 can generate all vectors

corresponding to all graphs in L∗h(l1, l2, · · ·), and the LT -digraph D
(0)
h can be determined

by V (D
(0)
h ) and A(D

(0)
h ). In addition, for a given value of h, the graphs in L∗h(l1, l2, · · ·)

can be completely ordered by the numbers n(Xi). For example, if h = 9, the LT -digraph

D
(0)
9 with the numbers n(Xi) below each vector Xi can be given in Fig. 3.

By the numbers n(Xi), the graphs in L∗9(l1, l2, · · ·) are completely ordered. Note

that the order relation is not a complete order on L∗9(l1, l2, · · ·), since n(5, 2, 2, 2, 2) =

n(4, 4, 2, 2), but L9(5, 2, 2, 2, 2) 6= L9(4, 4, 2, 2).
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Figure 3: The LT -digraph D
(0)
9 of L∗9(l1, l2, · · ·)

Figure 4: The LT -digraph D
(0)
h of L∗h(l1, l2, · · ·)
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If h is a unknown number, n(Xi) is a linear function of h and the order relation of

some graphs in L∗h(l1, l2, · · ·) with respect to W should depend on the value of h. The

LT -digraph D
(0)
h in general cases with the numbers n(Xi) below vectors can be expressed

in Fig.4.

Property 12. Let Vi be the subset of V (D
(0)
h ), each vector of which has the first

component equal to h− i. Then, if 1 ≤ i ≤ bh−1
2
c,

(i) the subgraph of D
(0)
h induced by Vi together with a new arc ((h− i, i+1), (h− i, i, 2)),

D
(0)
h [Vi] + ((h− i, i + 1), (h− i, i, 2)), is isomorphic to D

(0)
i+1, and

LTk(h− i, x2, x3, · · ·) = (h− i, y2, y3, · · ·) if and only if LTk(x2, x3, · · ·) = (y2, y3, · · ·) where

k = 1, 2, 3;

(ii) the maximum element max{Vi} in D
(0)
h [Vi] + ((h− i, i+1), (h− i, i, 2)) is (h− i, i+1)

with n(h− i, i + 1) = −((i− 1)h− (i + 2)(i− 1)), and the minimum element min{Vi} in

D
(0)
h [Vi] + ((h− i, i + 1), (h− i, i, 2)) is (h− i, 2, · · · , 2) with n(h− i, 2, · · · , 2)

= −((i− 1)h− (i + 4)(i− 1)/2);

(iii) n(h− i + 1, 2, · · · , 2)− n(h− i, i + 1) = h− i(i+1)
2

− 1;

(iv) if h ≥ i(i+1)
2

+1, then n(min{Vi−1}) ≥ n(max{Vi}) and n(min{Vj−1}) > n(max{Vj})
for 1 < j < i.

Property 12 holds immediately by Lemmas 7,8, Definition 9 and Algorithm 11. Let

L∗h(h−i, l2, · · ·) be the set of all the zigzag hexagonal chains in L∗h(l1, l2, · · ·) with l1 = h−i.

Since, for a given value of h, say a constant k, graphs in L∗k(l1, l2, · · ·) can be completely

ordered by Algorithm 11, we have the following Corollary by Property 12.

Corollary 13. Let 1 ≤ i ≤ bh−1
2
c. Then

(i) the graphs in L∗h(h − i, l2, · · ·) can be completely ordered by Algorithm 11 and the

order relation of graphs in L∗i+1(l1, l2, · · ·);
(ii) if h ≥ i(i+1)

2
+1, the graphs of ∪i−1

j=1L∗h(h−j, l2, ...)∪{Lh(h−i, i+1)} can be completely

ordered with respect to their Wiener numbers, and any other graph in L∗h(l1, l2, · · ·) has

Wiener number smaller than Lh(h− i, i + 1).

Note that if k(k+1)
2

+1 ≤ h < i(i+1)
2

+1, the order of ∪i−1
j=kL∗h(h−j, l2, ...)∪{Lh(h−i, i+1)}

will have some change dependent on values of h.

By Theorem 10, Corollary 13, Property 12 and Fig. 4, we also have the following.

Corollary 14. The elements of L∗h(l1, l2), can be ordered by their Wiener numbers as

follows: W (Lh(h− 1, 2)) > W (Lh(h− 2, 3)) > · · · > W (Lh(bh/2c+ 1, dh/2e)).
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Corollary 15. For h ≥ 22, the hexagonal chains in L∗h(l1, l2, · · ·) can be ordered by

their Wiener numbers as follows:

W (Lh(h− 1, 2)) > W (Lh(h− 2, 3)) > W (Lh(h− 2, 2, 2)) > W (Lh(h− 3, 4)) >

W (Lh(h− 3, 3, 2)) > W (Lh(h− 3, 2, 2, 2)) > W (Lh(h− 4, 5)) > W (Lh(h− 4, 4, 2)) >

W (Lh(h− 4, 3, 3)) > W (Lh(h− 4, 3, 2, 2)) > W (Lh(h− 4, 2, 2, 2, 2)) > W (Lh(h− 5, 6)) >

W (Lh(h− 5, 5, 2)) > W (Lh(h− 5, 4, 3)) > W (Lh(h− 5, 4, 2, 2)) > W (Lh(h− 5, 3, 3, 2)) >

W (Lh(h− 5, 3, 2, 2, 2)) > W (Lh(h− 5, 2, 2, 2, 2, 2)) ≥ W (Lh(h− 6, 7)) > · · ·.
We now consider to order the HCs in Lh(l1, · · · , l̄i, · · ·).
Let L∗h(l1, · · · , l̄i, · · ·) = {Lh(l1, · · · , l̄i, · · ·) | l1 ≥ l2 ≥ · · · ≥ li−1 ≥ 2, li ≥ 2, li+1 ≥

2, li+1 ≥ li+2 ≥ · · · ≥ lh−1 ≥ 0,
∑i−1

j=1 lj − (i− 1) = h1(Si) ≥ h2(Si) = h− h1(Si)− li} ⊂
Lh(l1, · · · , l̄i, · · ·). Let L∗h(l1, · · · , l̄i, · · · , ln) = {Lh(l1, · · · , l̄i, · · · , ln) | l1 ≥ l2 ≥ · · · ≥ li−1 ≥
2, li ≥ 2, li+1 ≥ li+2 ≥ · · · ≥ ln ≥ 2,

∑i−1
j=1 lj − (i − 1) ≥ ∑n

j=i+1 lj − (n − i)}. By

Lemma 1, if (l′1, l
′
2, · · · , l′i−1) and (l′i+1, l

′
i+2, · · · , l′h−1) are permutations of (l1, l2, · · · , li−1)

and (li+1, li+2, · · · , lh−1), respectively, then W (Lh(l1, · · · , l̄i, · · ·)) = W ((l′1, · · · , l̄i, l′i+1, · · ·)).
So we need only to order HCs in L∗h(l1, · · · , l̄i, · · ·).

Definition 16. Let G = Lh(l1, l̄2, l3) ∈ L∗h(l1, l̄2, l3). If l2 ≥ 3, let G′ = Lh(l1 +

1, l2 − 1, l3), if l2 ≥ 3 and l1 > l3, let G′′ = Lh(l1, l2 − 1, l3 + 1). Then G′ (resp. G′′) is

said to be obtained from G by the first length transformation (resp. the second length

transformation), denoted by G′ = LT 1(G) (resp. G′′ = LT 2(G)).

Lemma 17. Let G = Lh(l1, l̄2, l3), G′ = LT 1(G), and G′′ = LT 2(G). Then

∆(G′) = 1
8
(W (G)−W (G′)) = (l2 − l1 − 1) + 2(l3 − 1),

∆(G′′) = 1
8
(W (G)−W (G′′)) = (l2 − l3 − 1) + 2(l1 − 1).

It is easy to see that any HC in L∗h(l1, l̄2, l3) can be obtained from Lh(2, h− 2, 2) by

a sequence of LT k-transformations for k = 1 or 2. Specially, we say that Lh(2, h− 2, 2)

can be obtained from Lh(h − 1, 2) by a LT -transformation. Note that, by Lemma 17, if

G′ = LT 1(G) and G′′ = LT 2(G), ∆(G′) = 1
8
(W (G) −W (G′)) = (l2 − l1 − 1) + 2(l3 − 1)

may be less than or equal to zero, and so does ∆(G′′) = (l2 − l3 − 1) + 2(l1 − 1). Thus,

the length transformation digraph of HCs in L∗h(l1, l̄2, l3) can be defined in the following

method different from D
(0)
h .

Definition 18. Let D
(1)
h = (V (D

(1)
h ), A(D

(1)
h )) be the digraph, called the length

transformation digraph (simply LT -digraph) of all the hexagonal chains in L∗h(l1, l̄2, l3),
where V (D

(1)
h ) = L∗h(l1, l̄2, l3), and between two vertices Gi = Lh(x1, x̄2, x3) and Gj =
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Lh(y1, ȳ2, y3) there is an arc (Gi, Gj) ∈ A(D
(1)
h ) if and only if either LT k(Gi) = Gj for

some k ∈ {1, 2} and ∆(Gj) = 1
8
(W (Gi) − W (Gj)) ≥ 0, or LT k(Gj) = Gi for some

k ∈ {1, 2} and ∆(Gi) = 1
8
(W (Gj)−W (Gi)) ≤ 0.

Clearly, if LT k(Gi) = Gj for some k ∈ {1, 2} and ∆(Gj) = 1
8
(W (Gi) −W (Gj)) = 0,

then there will be two arcs (Gi, Gj) and (Gj, Gi) in A(D
(1)
h ), called an edge or an arc with

two directions, and W (Gi) = W (Gj). Hence D
(1)
h does not show a partial relation of HCs

in L∗h(l1, l̄2, l3). However, for a directed path each arc on which is not an arc with two

directions, the vertices on the directed path have a complete order with respect to their

Wiener numbers.

Before continuing, we give the following Lemmas.

Lemma 19. Let Vj = {Lh(j, h− 2j + 2, j), Lh(j+1, h− 2j + 1, j), Lh(j+2, h− 2j, j),

Lh(j +3, h− 2j − 1, j), · · · , Lh(h− j, 2, j)}, j = 2, 3, · · · , bh
2
c, and let y = h− j−1. Then

(i) ∆(Lh(j + i, h− 2j + 2− i, j)) = 1
8
(W (Lh(j + i − 1, h− 2j + 3− i, j)) − W (Lh(j +

i, h− 2j + 2− i, j))) = y − 2(i − 1) for i = 1, 2, · · · , h − 2j; (ii) if by
2
c − j + 3 > 2, then

W (Lh(j + by
2
c − i, dy

2
e − j + 3 + i, j)) = W (Lh(j + dy

2
e + 1 + i, by

2
c − j + 2− i, j)) for

i = 0, 1, · · · , by
2
c − j.

Proof. (i) By Lemma 17, it is easy to verify that ∆(Lh(j + 1, h− 2j + 1, j))

= 1
8
(W (Lh(j, h− 2j + 2, j))−W (Lh(j + 1, h− 2j + 1, j))) = h− j − 1 = y,

∆(Lh(j + 2, h− 2j, j)) = 1
8
(W (Lh(j + 1, h− 2j + 1, j))−W (Lh(j + 2, h− 2j, j)))

= y − 2, · · ·, ∆(Lh(j + i, h− 2j + 2− i, j)) = 1
8
(W (Lh(j + i− 1, h− 2j + 3− i, j))

−W (Lh(j + i, h− 2j + 2− i, j))) = y − 2(i− 1) for i = 1, 2, · · · , h− 2j.

(ii) If by
2
c − j + 3 > 2, then ∆(Lh(j + dy

2
e, h− 2j + 2− dy

2
e, j))

= ∆(Lh(j + dy
2
e, by

2
c − j + 3, j)) = 1 (if y is odd), or 2 (if y is even), and ∆(Lh(j +

dy
2
e + 1, by

2
c − j + 2, j)) = −1 (if y is odd), or 0 (if y is even). Hence we have that

W (Lh(j + by
2
c − i, dy

2
e − j + 3 + i, j)) = W (Lh(j + dy

2
e + 1 + i, by

2
c − j + 2− i, j)) for

i = 0, 1, · · · , by
2
c − j. 2

Lemma 20. Let V ∗ = {Lh(l1, l̄2, l3) | Lh(l1, l̄2, l3) ⊂ L∗h(l1, l̄2, l3), and l1 = l3 or l3+1}.
Then the hexagonal chains in V ∗ can be ordered by their Wiener numbers as follows:

W (Lh(2, h− 2, 2)) > W (Lh(3, h− 3, 2)) > W (Lh(3, h− 4, 3)) > W (Lh(4, h− 5, 3)) >

W (Lh(4, h− 6, 4)) > · · · > W (Lh(dh
2
e, 2̄, bh

2
c), where ∆(W (Lh(3, h− 3, 2))), ∆(W (Lh(3,

h− 4, 3))), ∆(W (Lh(4, h− 5, 3))), ∆(W (Lh(4, h− 6, 4))), · · ·, are equal to h−3, h−2, h−
4, h− 3, h− 5, h− 4, h− 6, · · ·, respectively.
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By Lemma 20, the induced subgraph D
(1)
h [V ∗] in D

(1)
h is a directed path having no arc

with two directions, and the number n(Gi) of a vertex Gi on the path can be easily given.

From the proof of Lemma 19, if by
2
c − j + 3 > 2 where y = h − j − 1, ∆(Lh(j +

dy
2
e, h− 2j + 2− dy

2
e, j)) = ∆(Lh(j + dy

2
e, by

2
c − j + 3, j)) = 1 (if y is odd), or 2 (if y

is even). So the induced subgraph D
(1)
h [Vj] in D

(1)
h consists of either two directed paths

P
(1)
j , P

(2)
j with one common terminal vertex Lh(j + dy

2
e, by

2
c − j + 3, j) (if y is odd),

or two directed paths P
(1)
j , P

(2)
j together with one arc with two directions connecting

Lh(j + dy
2
e, by

2
c − j + 3, j) and Lh(j + dy

2
e + 1, by

2
c − j + 2, j) (if y is even), where P

(1)
j

contains the vertex Lh(j, h− 2j + 2, j). In addition, for any vertex Gi on P
(2)
j , there is a

vertex Gk on P
(1)
j such that n(Gi) = n(Gk).

Note that P
(1)
j , P

(2)
j are maximal directed paths in D

(1)
h [Vj] containing no arc with

two directions, respectively. If ∪b
h
2
c

j=2P
(1)
j and D

(1)
h [V ∗] together with the numbers n(Gi) of

their vertices are given, we will be able to order all HCs in L∗h(l1, l̄2, l3).
For convenience, we denote a graph G = Lh(x1, x̄2, x3) in L∗h(l1, l̄2, l3) by the 3-

dimension vector X = (x1, x̄2, x3), n(G) by n(X), and LT k(G) by LT k(X). By Lemma 1,

we have that ∆(Lh(2, h− 2, 2)) = 1
8
(W (Lh(h− 1, 2))−W (Lh(2, h− 2, 2))) = h− 1. Now

we can give the following algorithm.

Algorithm 21. Let Vj = {(j, h− 2j + 2, j), (j+1, h− 2j + 1, j), (j+2, h− 2j, j), (j+

3, h− 2j − 1, j), · · · , (h − j, 2, j)}, j = 2, 3, · · · , bh
2
c, and let y = h − j − 1. Let X0 =

(h− 1, 2), X1 = (2, h− 2, 2), n(X0) = 0, n(X1) = −(h− 1).

1. By Lemma 20, let X2 = (3, h− 3, 2), X3 = (3, h− 4, 3), X4 = (4, h− 5, 3), X5 =

(4, h− 6, 4), · · · , Xh−3 = (dh
2
e, 2, bh

2
c), and let n(X2) = n(X1)−∆(X2) = −(h−1)− (h−

3) = −(2h− 4), n(X3) = n(X2)−∆(X3) = −(2h− 4)− (h− 2) = −(3h− 6), n(X4) =

n(X3)−∆(X4) = −(3h− 6)− (h− 4) = −(4h− 10), · · ·.
2. By Lemma 19, for ∀j ∈ {2, 3, · · · , bh

2
c}, let ∆((j + i, h− 2j + 2− i, j)) = y − 2(i−

1) = h−j−1−2(i−1) and n((j+i, h− 2j + 2− i, j)) = n((j+i−1, h− 2j + 3− i, j))−
(h− j − 1− 2(i− 1)) for i = 1, 2, · · · , h− 2j.

3. If h is a given constant, order elements in ∪b
h
2
c

j=2Vj by the numbers

n((j + i, h− 2j + 2− i, j)) for i = 1, 2, · · · , h− 2j and j = 2, 3, · · · , bh
2
c.

The LT -digraph D
(1)
h and ∪b

h
2
c

j=2Vj with the numbers n(Xi) below vectors can be ex-

pressed in Fig.5.
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Figure 5: The LT -digraph D
(1)
14 of L∗14(l1, l̄2, l3)

For G = Lh(l1, · · · , l̄i, · · · , ln) ∈ L∗h(l1, · · · , l̄i, · · ·), n > 3, h1 = h1(Si) and h2 = h2(Si),

the (i−1)-dimension vector (l1, · · · , li−1) and the (n−i)-dimension vector (li+1, · · · , ln) can

be obtained from (h1+1) and (h2+1) by a sequence of length transformations respectively.

So G can be obtained from Lh(h1 + 1, l̄2, h2 + 1) by a sequence of length transformations.

Let Nh(h1, h2) = {Lh(l1, · · · , l̄i, · · · , ln) | Lh(l1, · · · , l̄i, · · · , ln) ∈ L∗h(l1, · · · , l̄i, · · ·), h1(Si) =

h1, h2(Si) = h2, ln ≥ 2, n = 3, 4, 5, · · ·}. Similarly, we can define the length trans-

formation digraph D
(1)
h of all the hexagonal chains in L∗h(l1, · · · , l̄i, · · ·) by both LT k-

transformations and LTk-transformations. By Algorithms 11,21, we can give the following

algorithm for ordering the HCs in L∗h(l1, · · · , l̄i, · · ·).
Algorithm 22. Let L∗h(l1, · · · , l̄i, · · ·) = ∪Lh(h1+1,l̄2,h2+1)∈L∗h(l1,l̄2,l3)Nh(h1, h2).

1. Attach the number n(X) to all X in L∗h(l1, l̄2, l3) by Algorithm 21.

2. For every Lh(h1 + 1, l̄2, h2 + 1) in L∗h(l1, l̄2, l3), by Algorithm 11, generate all the

HCs in Nh(h1, h2) from Lh(h1 + 1, l̄2, h2 + 1) and obtain the correspond numbers n(X)

to them.

3. If h is a given constant, order the HCs in

L∗h(l1, · · · , l̄i, · · ·) = ∪Lh(h1+1,l̄2,h2+1)∈L∗h(l1,l̄2,l3)Nh(h1, h2) by the numbers n(X).

By lemmas 17,18,19 and algorithms 21,22, we have the following:

Corollary 23. For h ≥ 30, the hexagonal chains in L∗h(l1, · · · , l̄i, · · ·) can be ordered

by their Wiener numbers as follows (where the number n(Gi) of every hexagonal chain

Gi is attached after W (Gi)):

W (Lh(2, h− 2, 2)) (−(h− 1)) > W (Lh(3, h− 3, 2)) (−(2h− 4))

> W (Lh(2, 2, h− 3, 2)) (−(2h−3)) > W (Lh(4, h− 4, 2)) (−(3h−9)) = W (Lh(h−2, 2, 2))
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> W (Lh(3, 2, h− 4, 2)) (−(3h− 7)) > W (Lh(2, 2, 2, h− 4, 2)) (−(3h− 6))

= W (Lh(3, h− 4, 3)) > W (Lh(2, 2, h− 4, 3)) (−(3h− 5))

> W (Lh(2, 2, h− 4, 2, 2)) (−(3h− 4)) > W (Lh(5, h− 5, 2)) (−(4h− 16))

= W (Lh(h− 3, 3̄, 2)) > W (Lh(4, 2, h− 5, 2)) (−(4h− 13))

> W (Lh(3, 3, h− 5, 2)) (−(4h− 12)) > W (Lh(3, 2, 2, h− 5, 2)) (−(4h− 11))

> W (Lh(2, 2, 2, 2, h− 5, 2)) (−(4h− 10)) = W (Lh(4, h− 5, 3))

> W (Lh(4, h− 5, 2, 2)) (−(4h− 9)) > W (Lh(3, 2, h− 5, 3)) (−(4h− 8))

> W (Lh(3, 2, h− 5, 2, 2)) (−(4h− 7)) = W (Lh(2, 2, 2, h− 5, 3))

> W (Lh(2, 2, 2, h− 5, 2, 2)) (−(4h− 6)) > W (Lh(6, h− 6, 2)) (−(5h− 25))

= W (Lh(h− 4, 4̄, 2)) > W (Lh(5, 2, h− 6, 2)) (−(5h− 21))

> W (Lh(4, 3, h− 6, 2)) (−(5h− 19)) > W (Lh(4, 2, 2, h− 6, 2)) (−(5h− 18))

> W (Lh(3, 3, 2, h− 6, 2)) (−(5h− 17)) > W (Lh(3, 2, 2, 2, h− 6, 2)) (−(5h− 16))

= W (Lh(5, h− 6, 3)) > W (Lh(2, 2, 2, 2, 2, h− 6, 2)) (−(5h− 15)) = W (Lh(5, h− 6, 2, 2))

> W (Lh(4, 2, h− 6, 3)) (−(5h− 13)) = W (Lh(4, h− 6, 4))

> W (Lh(3, 3, h− 6, 3)) (−(5h− 12)) = W (Lh(4, 2, h− 6, 2, 2))

> W (Lh(3, 2, 2, h− 6, 3)) (−(5h− 11)) = W (Lh(3, 3, h− 6, 2, 2))

= W (Lh(3, 2, h− 6, 4)) > W (Lh(3, 2, 2, h− 6, 2, 2)) (−(5h− 10))

= W (Lh(2, 2, 2, 2, h− 6, 3)) = W (Lh(2, 2, 2, h− 6, 4)) = W (Lh(4, h− 6, 2, 2, 2))

> W (Lh(2, 2, 2, 2, h− 6, 2, 2)) (−(5h− 9)) = W (Lh(3, 2, h− 6, 3, 2))

> W (Lh(2, 2, 2, h− 6, 3, 2)) (−(5h− 8)) = W (Lh(3, 2, h− 6, 2, 2, 2))

> W (Lh(2, 2, 2, h− 6, 2, 2, 2)) (−(5h− 7)) > W (Lh(7, h− 7, 2) (−(6h− 36))

= W (Lh(h− 5, 5, 2)) > · · ·.
Similar to the case of L∗h(l1, l2, · · · , ln), we can also define the length transformations

and the length transformation digraph for Sh(l1, l2, l3), and give an algorithm for ordering

Sh(l1, l2, l3) with respect to Wiener numbers.

Definition 24. Let G = Sh(x1, x2, x3) ∈ Sh(l1, l2, l3), let G′ be obtained from G by

one of the following three operations:

(1) If x1 − 2 ≥ x2 ≥ 2, let G′ = Sh(x1 − 1, x2 + 1, x3); (2) if x2 − 2 ≥ x3 ≥ 2 , let

G′ = Sh(x1, x2 − 1, x3 + 1); (3) if x1 − 1 = x2 = x3 + 1, let G′ = Sh(x1 − 1, x2, x3 + 1).

Then G′ is said to be obtained from G by an kth length transformation , denoted by

G′ = LTk(G), where k = 1, 2, 3 .

Lemma 25. Let G = Sh(x1, x2, x3) ∈ Sh(l1, l2, l3), and let G′ be obtained from

G by a length transformation. Then (1) if G′ = LT1(G), ∆(G′) = 1
8
(W (G) −W (G′)) =
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(4x3−3)(x1−x2−1)) > 0; (2) if G′ = LT2(G), ∆(G′) = 1
8
(W (G)−W (G′)) = (4x1−3)(x2−

x3 − 1) > 0; (3) if G′ = LT3(G), ∆(G′) = 1
8
(W (G)−W (G′)) = (4x2 − 3)(x1 − x3 + 1) =

3(4x3 + 1) > 0.

It is easy to see that any CHS in Sh(l1, l2, l3) can be obtained from Sh(h− 2, 2, 2) by

a sequence of LTk-transformations for k = 1, 2, 3, and 1
8
(W (Lh(h − 1, 2) − W (Sh(h −

2, 2, 2))) = 5h − 15. Similarly we can define the length transformation digraph of

Sh(l1, l2, l3). Now we can give the following algorithm.

Algorithm 26. Let X0 = (h− 2, 2, 2), n(X0) = −(5h− 15), V0 = {X0} and i = 0.

1. For every vector Xj in Vi, find the set N(Xj) = {Xr | Xr = LTk(Xj), Xr /∈ Vi},
and let n(Xr) = n(Xj)−∆(Xr) for every Xr. Set Vi+1 = ∪Xj∈Vi

N(Xj).

2. If Vi+1 has only the vector (k, k, k) when h = 3k− 2 , (k + 1, k, k) when h = 3k− 1

or (k + 1, k + 1, k) when h = 3k, go to step 3. Otherwise, set i + 1 → i, go to step 1.

3. Let i + 1 = t. Order all vectors in ∪t
i=0Vi by the numbers n(Xj) for a definite value

of h.

By the above algorithm, the length transformation digraph with the numbers n(Xi)

below vectors similar to Fig. 3 can be obtained. Thus we have the following:

Corollary 27. For h ≥ 37, the CHSs in Sh(l1, l2, l3) can be ordered by their Wiener

numbers as follows:

W (Sh(h − 2, 2, 2)) > W (Sh(h − 3, 3, 2)) > W (Sh(h − 4, 4, 2)) > W (Sh(h − 4, 3, 3)) ≥
W (Sh(h − 5, 5, 2)) > W (Sh(h − 6, 6, 2)) > W (Sh(h − 5, 4, 3)) ≥ W (Sh(h − 7, 7, 2)) >

W (Sh(h − 8, 8, 2)) ≥ W (Sh(h − 6, 5, 3)) > · · ·. If 30 ≤ h ≤ 37, the only change in the

above order is W (Sh(h − 5, 4, 3)) ≥ W (Sh(h − 7, 7, 2)). If 26 ≤ h ≤ 30, the changes in

the above order are W (Sh(h − 5, 4, 3)) ≥ W (Sh(h − 7, 7, 2)) and W (Sh(h − 8, 8, 2)) ≥
W (Sh(h − 6, 5, 3)). If h ≤ 26, the changes in the above order are W (Sh(h − 5, 4, 3)) ≥
W (Sh(h − 7, 7, 2)), W (Sh(h − 8, 8, 2)) ≥ W (Sh(h − 6, 5, 3)) and W (Sh(h − 4, 3, 3)) ≥
W (Sh(h− 5, 5, 2)).

From the above, we can see that the orders of Sh(l1, l2, l3) are much different from

Lh(l1, l2, l3).

Now we consider to order the HCs in Lh(l1, · · · , l̄i, · · · , l̄j, · · ·) by Wiener number.

Let L∗h(l1, · · · , l̄i, · · · , l̄j, · · ·) = {Lh(l1, · · · , l̄i, · · · , l̄j, · · ·) | l1 ≥ l2 ≥ · · · ≥ li−1 ≥
2, li, lj, lj+1 ≥ 2, li+1 ≥ li+2 ≥ · · · ≥ lj−1 ≥ 0, lj+1 ≥ lj+2 ≥ · · · ≥ lh−1 ≥ 0, h1(Si) =
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(
∑i−1

t=1 lt) − i + 1 ≥ h2(Sj)} ⊂ Lh(l1, · · · , l̄i, · · · , l̄j, · · ·). Let L∗h(l1, · · · , l̄i, · · · , l̄j, · · · , ln) =

{Lh(l1, · · · , l̄i, · · · , l̄j, · · · , ln) | l1 ≥ l2 ≥ · · · ≥ li−1 ≥ 2, li, lj, lj+1 ≥ 2, li+1 ≥ li+2 ≥ · · · ≥
lj−1 ≥ 0, lj+1 ≥ lj+2 ≥ · · · ≥ ln ≥ 2, h1(Si) ≥ h2(Sj)} ⊂ L∗h(l1, · · · , l̄i, · · · , l̄j, · · ·). By

Lemma 1, if (l′1, l
′
2, · · · , l′i−1), (l′i+1, l

′
i+2, · · · , l′j−1) and (l′j+1, l

′
j+2, · · · , l′h−1) are permutations

of (l1, l2, · · · , li−1), (li+1, li+2, · · · , lj−1) and (lj+1, lj+2, · · · , lh−1) respectively, then

W (Lh(l1, · · · , l̄i, li+1, · · · , l̄j, · · ·)) = W (Lh(l
′
1, · · · , l̄i, l′i+1, · · · , l̄j, l′j+1, · · ·)). So we need only

to order HCs in L∗h(l1, · · · , l̄i, · · · , l̄j, · · ·).
Definition 28. Let G = Lh(l1, l̄2, l3, l̄4, l5) ∈ L∗h(l1, l̄2, l3, l̄4, l5) where l1 ≥ l5 and if

l1 = l5 we may assume l2 ≥ l4. For l3 6= 0, if l2 ≥ 3, let G(1) = Lh(l1 + 1, l2 − 1, l3, l̄4, l5),

let G(2) = Lh(l1, l2 − 1, l3 + 1, l̄4, l5) where if l1 = l5 let l2 > l4, and let

G(3) = Lh(l1, l2 − 1, l3, l4 + 1, l5) where if l1 = l5 let l2 − l4 ≥ 2; if l4 ≥ 3 and l1 > l5, let

G(4) = Lh(l1, l̄2, l3, l4 − 1, l5 + 1). Then G(k), k = 1, 2, 3, 4, are said to be obtained from G

by a LT k-transformation, denoted by G(k) = LT k(G). For l3 = 0, similarly, if l2 ≥ 3, let

G(1′) = Lh(l1 + 1, l2 − 1, l̄4, l5), let G(2′) = Lh(l1, l2 − 1, 2, l̄4, l5) where if l1 = l5 let l2 > l4,

and let G(3′) = Lh(l1, l2 − 1, l4 + 1, l5) where if l1 = l5 let l2 − l4 ≥ 2; if l4 ≥ 3 and l1 > l5,

let G(4′) = Lh(l1, l̄2, l4 − 1, l5 + 1). Then G(k′), k = 1, 2, 3, 4, are said to be obtained from

G by a LT k′-transformation, denoted by G(k′) = LT k′(G).

By Lemma 1, we have the following.

Lemma 29. Let G = Lh(l1, l̄2, l3, l̄4, l5). For l3 6= 0, let G(k) = LT k(G), k = 1, 2, 3, 4.

Then

∆(G(1)) = 1
8
(W (G)−W (G(1))) = l2 − l1 + 2l3 + 2l4 + 2l5 − 7,

∆(G(2)) = 1
8
(W (G)−W (G(2))) = 2l1 + l2 − l3 − 3,

∆(G(3)) = 1
8
(W (G)−W (G(3))) = 2l1 + l2 − l4 − 2l5 − 1,

∆(G(4)) = 1
8
(W (G)−W (G(4))) = 2l1 + 2l2 + 2l3 + l4 − l5 − 7.

For l3 = 0, let G(k′) = LT k′(G), k = 1, 2, 3, 4. Then

∆(G(1′)) = 1
8
(W (G)−W (G(1′))) = l2 − l1 + 2l4 + 2l5 − 5,

∆(G(2′)) = 1
8
(W (G)−W (G(2′))) = 2l1 + l2 − 4,

∆(G(3′)) = 1
8
(W (G)−W (G(3′))) = 2l1 + l2 − l4 − 2l5 − 1,

∆(G(4′)) = 1
8
(W (G)−W (G(4′))) = 2l1 + 2l2 + l4 − l5 − 5.

It is easy to see that any HCh in L∗h(l1, l̄2, l3, l̄4, l5) can be obtained from Lh(2, h− 4, 2, 2)

by a sequence of LT k-transformations and LT k′-transformations for k = 1, 2, 3, 4, and any

HCh in L∗h(l1, · · · , l̄i, · · · , l̄j, · · ·) can be obtained from Lh(2, h− 4, 2, 2) by a sequence of
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LT k-transformations and LT k′-transformations for k = 1, 2, 3, 4 and LTk-transformations

for k = 1, 2, 3.

Similar to the discussion for L∗h(l1, l̄2, l3) and L∗h(l1, · · · , l̄j, · · ·), we can define the

length transformation digraph and design analogous algorithm to order HCs in

L∗h(l1, l̄2, l3, l̄4, l5) and L∗h(l1, · · · , l̄i, · · · , l̄j, · · ·) with respect to their Wiener numbers, and

give the following.

Corollary 30. For h > 19, the HCh in L∗h(l1, · · · , l̄i, · · · , l̄j, · · ·) can be ordered by

their Wiener numbers as follows (where the number n(Gi) of every hexagonal chain Gi is

attached after W (Gi)):

W (Lh(2, h− 3, 2, 2)) (−(4h− 9)) > W (Lh(2, h− 4, 3, 2)) (−(5h− 15))

> W (Lh(2, h− 4, 2, 2, 2)) (−(5h− 12)) > W (Lh(3, h− 4, 2, 2)) (−(5h− 11))

> W (Lh(2, h− 5, 4, 2)) (−(6h− 23)) > W (Lh(2, h− 5, 2, 3, 2)) (−(6h− 19))

> W (Lh(2, h− 5, 3, 2, 2)) (−(6h− 17)) > W (Lh(3, h− 5, 3, 2)) (−(6h− 16))

> W (Lh(4, h− 5, 2, 2)) (−(6h− 15)) > W (Lh(3, h− 5, 2, 2, 2)) (−(6h− 13))

> W (Lh(2, h− 6, 5, 2)) (−(7h−33)) > · · ·. Furthermore, for h ≥ 5, W (Lh(2, h− 3, 2, 2))

is the HC in L∗h(l1, · · · , li, · · · , lj, · · ·) with the maximum Wiener number, and

∆(Lh(2, h− 3, 2, 2)) = 1
8
(W (Lh(h− 1, 2))−W (Lh(2, h− 3, 2, 2))) = 4h− 9.

4 The CHSs with the second up to thirty-second

larger Wiener number

Lemma 31. The hexagonal chain in HCh with at least two nonzigzag segments and

with the maximum Wiener number is Lh(2, h− 3, 2̄, 2) for h > 6.

Proof: Let G be a hexagonal chain in HCh with at least two nonzigzag segments

and with the maximum Wiener number. If G has more than two nonzigzag segments,

suppose G = Lh(l1, · · · , l̄i1 , · · · , l̄i2 , · · · , l̄i3 , · · · , l̄ik , · · · , ln), let

G′ = Lh(l1, · · · , l̄i1 , · · · , l̄i2 , · · · , li3 , · · · , lik , · · · , ln), by Lemma 1, W (G) < W (G′), a con-

tradiction. Hence G has exactly two non-zigzag segments. and so by Corollary 30,

G = Lh(2, h− 3, 2̄, 2) for h > 6. 2

Lemma 32. The branched CHS with the maximum Wiener number is Sh(h−2, 2, 2).

Proof: Let G be a branched CHS with the maximum Wiener number. If G /∈
Sh(l1, l2, l3), then either G contains at least two branched hexagons or G contains exactly
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one branched hexagon and at least one kink. Then either G has a terminal segment such

that an end hexagon r of S is a kink of G, or there are two terminal segments with a

common end hexagon r which is a branched hexagon of G. By Lemma 4. there is a

branched CHS in Sh(l1, l2, l3), say Gt, such that Gt is obtained from G by a series of the

first or the second kink transformations, and W (Gt) > W (G), a contradiction. Hence

G ∈ Sh(l1, l2, l3). By Corollary 27, G can only be Sh(h− 2, 2, 2). 2

Now, from the results in Section 2 and 3, we can obtain the following result:

Theorem 33. Let Wi, i = 1, 2, · · ·, be the CHS with the ith largest Wiener number.

Then, for h ≥ 31, W1 = Lh, W2 = Lh(h− 1, 2), W3 = Lh(h− 2, 3), W4 = Lh(h− 2, 2, 2),

W5 = Lh(2, h− 2, 2), W6 = Lh(h − 3, 4), W7 = Lh(h − 3, 3, 2), W8 = Lh(h − 3, 2, 2, 2),

W9 = Lh(3, h− 3, 2), W10 = Lh(2, 2, h− 3, 2) , W11 = Lh(h− 4, 5), W12 = Lh(h− 4, 4, 2),

W13 = Lh(h − 4, 3, 3), W14 = Lh(h − 4, 3, 2, 2), W15 = Lh(h − 4, 2, 2, 2, 2), W16 =

Lh(h − 2, 2, 2) or Lh(4, h− 4, 2), W17 = Lh(3, 2, h− 4, 2), W18 = Lh(2, 2, 2, h− 4, 2) or

Lh(3, h− 4, 3), W19 = Lh(2, 2, h− 4, 3), W20 = Lh(2, 2, h− 4, 2, 2), W21 = Lh(h − 5, 6),

W22 = Lh(h − 5, 5, 2), W23 = Lh(h − 5, 4, 3), W24 = Lh(h − 5, 4, 2, 2), W25 = Lh(h −
5, 3, 3, 2), W26 = Lh(h − 5, 3, 2, 2, 2), W27 = Lh(h − 5, 2, 2, 2, 2, 2), W28 = Lh(5, h− 5, 2),

W29 = Lh(4, 2, h− 5, 2), W30 = Lh(3, 3, h− 5, 2); W31 = Lh(3, 2, 2, h− 5, 2), W32 =

Lh(2, 2, 2, 2, h− 5, 2), W33 = Lh(4, h− 5, 2, 2) or Lh(2, h− 3, 2, 2).

Proof. By Corollary 30 and Algorithm 26, n(Lh(2, h− 3, 2, 2)) = −(4h − 9) >

n(Sh(h− 2, 2, 2)) = −(5h− 15) for h > 6. Then , by Lemmas 31,32, for any H ∈ CHSh

with W (H) > W (Lh(2, h− 3, 2, 2)), H must be a hexagonal chain with at most one

nonzigzag segment.

For h ≥ 31, n(Lh(2, h− 3, 2, 2)) = −(4h − 9) ≥ n(Lh(h − 6, 7)) = −(5h − 40) >

n(Lh(6, h− 6, 2)) = −(5h − 25). Now, by Corollaries 15,23, W1,W2, · · · ,W33 can be

determined as shown in the theorem.

The proof is thus completed. 2

Remark. For h ≤ 30, all the CHSs with Wiener numbers greater than or equal to

W (Lh(2, h− 3, 2, 2)) can also be determined by Corollaries 15,23, the order of which will

be different from the order in Theorem 33. For a given h ≤ 30, the first changed HC in

the order in Theorem 33 can be listed as follows:

(i) if h ∈ {28, 29, 30}, then Lh(h− 6, 7) = W(h+2);

(ii) if h ∈ {25, 26, 27}, then Lh(h− 6, 7) = W29;
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(iii) if h ∈ {22, 23, 24}, then Lh(h− 5, 6) = W(h−4);

(iv) if h ∈ {20, 21}, then Lh(h− 5, 6) = W17;

(v) if h ∈ {17, 18, 19}, then Lh(h− 5, 6) = W16;

(vi) if h = 16, then Lh(h− 5, 6) = W15;

(vii) if h = 15, then Lh(h− 4, 5) = W10;

(viii) if h ∈ {12, 13, 14}, then Lh(h− 4, 5) = W9.
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