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Abstract 

A novel application of partial order theory for object rank correlation analysis of 

multiple variables is presented by the new software package PO Correlation. The 

design is made transparent for rank correlation analysis by a detailed mapping of the 

rank relations between all objects. In contrast to conventional rank correlation methods, 

it is possible to identify specific relations among the single variables using PO 

Correlation. The principle and application is described using a specific data set based 

on environmental monitoring of pesticide findings in small streams in Denmark, 

however, the PO Correlation is usable for many different correlation problems. It is 

shown how PO Correlation is effective for data interpretation by identifying a series of 

useful conclusions in relation to the mechanism of pesticide exposure under realistic 

conditions, which hardly can be found using conventional procedures of data analysis. 

The difference in usage pattern for different pesticides seems to be the main governing 

factor for pesticide exposure in small streams. This is not trivial, and challenges the 

conventional understanding of pesticide exposure, which claims that differences in 

physico-chemical properties including degradation and adsorption are important factors 

governing differences in pesticide exposure in surface waters.  



1  Introduction 
A novel application of partial orders for rank correlation analysis is presented by the 

new software PO Correlation. The design supports an easy, robust and transparent 

analysis of correlation details. Non-commercial use of the software for research is free if 

reference is given to this paper and a version can be made available by contacting the 

first author (email: pbs@dmu.dk). Two other freely available software products exist 

for application of Partial Order Theory in decision support: (1) the software WHASSE , 

Brüggemann et al. (1999); (2) The software ProRank (Vers. 1.0), Pudenz, (2004). The 

software PO Correlation differs from the other programs by focusing on the correlation 

analysis between partially ordered sets.  

 

The method is an extended and improved version of the methodology for assessing 

ranking similarity as presented by Sørensen et al., (2003). This paper will not make a 

comprehensive review of ranking correlation methods, however, and for a more general 

discussion of ranking correlation see e.g. Brüggemann et al., (2001), Brüggemann et al., 

(1995),  Bath et al., (1993), Moock et al., (1998), Conover, (1999), Gibbons, (1993), 

Pavan, (2003) and Pudenz, (1998). 

 

 

2 Data background  
The data set, selected for illustration, is taken from the Danish Monitoring Program 

(NOVA 2003) and includes pesticides finding during the year 2000 in small streams, 

see Table 1. The data set is based on 23 sampling stations, each covering a separated 

catchment area. At each station, 6 water samples were analysed for a series of pesticide 

active ingredients, in the following denoted pesticides. The detection frequency 

(DetFreq) is defined as the frequency for a pesticide to be detected above detection limit 

in the joint set of measurement from the 23 sample stations. If the set of stations is 

assumed representative for Danish conditions then the DetFreq is a measure for the 

propagation of a given pesticide in the stream water environment in Denmark.  For each 

station and for each pesticide, the highest measured concentration level among the 6 

single samples is identified. This yields 23 maximal concentration values and the 

median (MedMax) is subsequently calculated characterising the level of contamination.  
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Table 1. The data set used in the correlation analysis as input for PO Correlation. 

  Predicted variables 

Set 1 

Predicting variables 

Set 2 

Id Substances DetFreq 

(%) 

MedMax 

(ng/l) 

Dose 

(g/ha) 

SpArea 

 (1000 ha) 

1 2,4_D 2 40 0 0 

2 Atrazine 9 30 0 0 

3 Bentazone 36 20 523 91 

4 Bromoxynil 6 80 383 110 

5 Carbofuran 0 0 659 1 

6 Chloridazon 1 380 0 0 

7 Chlorsulforon 2 30 0 0 

8 Cyanazin 2 200 0 0 

9 Diclorprop 7 70 847 2 

10 Dimethoat 2 40 304 81 

11 Ethofumesat 5 90 491 31 

12 Fenpropimorph 2 70 477 249 

13 Glyphosat 76 220 1172 573 

14 Ioxynil 6 30 349 113 

15 Isoproturon 40 130 2750 4 

16 Maleinhydrazid 1 10 1790 0.3 

17 MCPA 20 140 1410 101 

18 Mecoprop 17 30 900 13 

19 Metamitron 8 90 2098 48 

20 Metribuzine 1 50 250 27 

21 Metsulfuron methyl 1 10 5 151 

22 Pendimethalin 12 40 1368 178 

23 Pirimicarb 4 30 135 7 

24 Propiconazole 6 20 6837 3 

25 Terbuthylazine 33 100 1500 22 

 

- 645 -



So, the two numbers DetFreq and MedMax together form an eco-toxicological 

meaningful way of characterising occurrence by taking into account both propagation 

(DetFreq) and level (MedMax) as discussed by Sørensen et al., (2003).  

 

The ranking of pesticides using data of DetFreq and MedMax together will be compared 

with two variables for the pesticide field application in the form of recommended 

dosage level (Dose in g/ha) and total sprayed area in Denmark (SpArea in 1000 ha). The 

application data are taken from the Danish sales statistics and the reported 

recommended dosage. The data set is shown in Table 1. Some of the pesticides in the 

monitoring program have been banned since year 1995 and are thus not used in the year 

2000. They are identified in Table 1 as: Dose=0 and SpArea=0.  

The primary topic in this correlation analysis is to investigate the coincidence between 

the ranking of pesticides based on the measured variable set DetFreq and MedMax on 

one side (Set 1) and the field application in terms of the variable set Dose and SpArea 

on the other side (Set 2). The variables DetFreq and MedMax are denoted the predicted 

variables while Dose and SpArea are denoted the predicting variables.  

 

3 Correlation analysis 
A simple rank correlation measure is Kendalls Tau (Kendall, 1938). The principle in 

Kendalls Tau is partly linked to Partial Order Theory as explained in the following. For 

a set of two variables as e.g. the variables DetFreq and MedMax in Table 1, the ranking 

of two objects (two pesticides in Table 1) can be done using either the first or the 

second variable. If the ranking using the first variable is equivalent with the ranking 

using the second variable then the ranking is claimed to be concordant. A pair of objects 

is discarded if at least one of the variables is equal or equivalent. In Table 1, a 

concordant ranking is seen for the ranking of Id. 13 above Id. 8, while Id. 13 > Id. 8 for 

both the variables DetFreq (76>2 in Table 1) and MedMax (220>200 in Table 1). A 

discordant ranking appears when there is discordance between the single variables in the 

order. The variable pair formed by the Ids. 6 and 13 is an example of a discordant 

ranking, where DetFreq (1<73 in Table 1) and the MedMax (380>220 in Table 1) yields 

a different ranking of the two objects. The number of concordant rankings is denoted by 
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C and the number of discordant rankings is denoted by D. A modified Kendalls Tau is 

used in PO Correlation as suggested by Goodman and Kruskal, (1963): 

 

DC
DC

+
−

=τ  

 

The τ value is 1 for complete ranking agreement and –1 if we have complete 

disagreement between the two variables. 

The correlation between two variables can also be graphically displayed as a partial 

order using a Hasse Diagram. This is illustrated in the following for the variables 

DetFreq and MedMax in Figure 1. This diagram ranks two pesticides if they are neither 

equal nor discordantly ranked. They are equal if they have the same values for both 

DetFreq and MedMax. A discordant ranked pair of objects in the Hasse diagram does 

not have downward connecting lines between the two objects as e.g. seen for the object 

pair Id. 6 and Id. 8 in Figure 1. A more detailed discussion about these relationships can 

be seen in Brüggemann and Bartel, (1999). The value for C and D in case of the ranking 

using DetFreq and MedMax is respectively: C= 169 and D= 97 and τ=0.24, indicates a 

positive but not strong correlation. 
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Figure 1. Hasse Diagram using DetFreq and MedMax as parameters. The numbering 
refers to the Id's in Table 1. The equal objects, between which both the variables 
DetFreq and MedMax are equal, are listed in the right column. 
 

Table 2. τ  values for all parameter combinations using the complete data set in Table 1. 
 
  Predicted variables Predicting variables 

  DetFreq MedMax Dose SpArea 

DetFreq 1,00 0,27 0,42 0,24 Predicted variables 

MedMax 0.27 1,00 0,07 0,07 

Dose 0,42 0,07 1,00 0,20 Predicting variables 

SpArea 0,24 0,07 0,20 1,00 

 

- 648 -



 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Comparison of two partially ordered sets (Hasse Diagrams).  Set 1 is the 
partially ordered set for respectively DetFreq and MedMax and Set 2 is the partially 
ordered set for respectively the Dose and the SpArea.  All pesticides in Table 1 are 
included. 
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The value of τ is calculated for all combinations of variable pairs in PO Correlation as 

shown in Table 2. A general positive correlation is seen in Table 2 for Dose and 

DetFreq. However a very weak correlation is seen between MedMax and respectively 

Dose and SpArea. 

The τ -values in Table 2 show only the correlation between pairs of a predicting and a 

predicted variable, while more complex correlation showing combined ranking of 

several variables will be investigated in the following. Two partially ordered sets are 

defined: (1) Set 1, composed by DetFreq and MedMax as also shown by the Hasse 

Diagram in Figure 1.; (2) Set 2 composed by Dose and SpArea. Both concordant and 

discordant rankings are compared between the two sets for all pair of objects. This 

procedure is illustrated for two pairs of objects in Figure 2.  

The agreement in rankings between the sets can be graphically shown in an Agreement 

Diagram as a Hasse diagram where all variables in the two sets are applied for ranking 

in one diagram as defined by Sørensen et al., (2003). This is shown in Figure 3, where 

all the variables DetFreq, MedMax, Dose and SpArea are used simultaneously.  

 

 

Figure 3. Graphical displays of the agreements (Agreement Diagram) between Set 1 and 
Set 2 (the sets shown in Figure 2). 
 

- 650 -



The Agreement Diagram has a complementary diagram denoted the Conflict Diagram 

(Sørensen et al., 2003) in where the Set 1 parameters are ranked upward while the Set 2 

parameters are ranked downward (inverse rank). Such a diagram is shown in Figure 4, 

where the variables: DetFreq, MedMax, negative Dose and negative SpArea are used. 

No ranking can exist simultaneously in both the Agreement Diagram and the Conflict 

diagram. These two diagrams show important elements of the correlation for each 

single object in relation to the other objects. The Conflict Diagram maps the conflicting 

ranking for each object. In this way Id. 8 is seen to be ranked above several objects in 

the Conflict Diagram telling that Set 1 will like to rank Id. 8 upward while the variables 

of Set 2 rank Id. 8 downward. The top objects in the Conflict Diagram having multiple 

comparisons to other objects are dominated by pesticides banned in 1995 and thus not 

used in 2000 (The Ids.: 1, 2, 6, 7, 8). Hence the Conflict Diagram indicates that the 

correlation between occurrence and field application is damaged by the fact that some 

of the pesticides have not been used since 1995. It also tells that there are only a few 

conflicts between the pesticides, which are still in use.  

 

 

 
 

Figure 4.  Graphical displays of the conflicts (Conflict diagram) between Set 1 and Set 2 
(The sets shown in Figure 2). 
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Many different indices can be used for similarity between two partial ordered sets. 

However, it is important to make clear that a single number for similarity is unable to 

capture all information. The similarity between partial orders is a multi-dimensional 

problem and any one-dimensional representation will discard information. The principle 

of the modified Tanimoto-index as a similarity index, T(...,...) and the linkage to other 

concepts are shown in Sørensen et al., (2003).  

The quantification of similarity in PO Correlation  is based on the following counting 

of object pairs which are:                                                                                                                                  

a: Concordant ranked in both sets having the same ranking (concordant ranked) between 

the two sets (see Figure 2: agreement). 

b: Concordant ranked in both sets but discordant ranked between the two sets (see 

Figure 2: conflict).  

c: Concordant ranked in Set 1 and discordant ranked in Set 2.  

d: Concordant ranked in Set 2 and discordant ranked in Set 1.  

e: Concordant ranked in Set 1 and concordant ranked in Set 2 simultaneously (e=a+b). 

f: Discordant ranked in both sets simultaneously.  

g: Equivalent in Set 1 and not equivalent in Set 2. 

h: Equivalent in Set 2 and not equivalent in Set 1. 

i: Equivalent in both  Set 2 and Set 1 simultaneously. 

These definitions will be used in the following tables showing the correlation between 

the two sets. The similarity of Set 1 and Set 2 is analysed as shown in Table 3. 

The number of agreements between Set 1 and Set 2 is relatively high (a=82) compared 

with the number of disagreements (b=25). Obviously some positive correlation seems to 

exist between the predicting and predicted variables as also indicated in Table 2. All the 

pairs of objects that contribute to the value a are ranked in the Agreement Diagram, 

Figure 3, while all the pairs contributing to b are ranked in the Conflict Diagram, Figure 

4. The significance of the numbers is tested by an estimate of the probability for a 

randomly formed value to be equal or larger than the actual value. This procedure will 

be explained below. If the probability estimate is close to zero the actual value is 

“relatively large” and probability estimates close to one shows that the actual value is 

“relatively low”. The T(0,0) value of 0.77 is seen to be relatively large by having a 

probability of 0.014 for a random estimate to be larger than or equal to the actual value. 
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There is a tendency for that a concordant ranking in one set is discordant in the other set 

as seen in Table 3, where the c and d values are significantly high (related probability 

estimate of 0.030). This is supported by relatively low values for e and f. 

 

Table 3. The correlation results between Set 1 and Set 2. 

Comparison 

n=25 

Counting Probability 

for larger or 

equal value 

a 82 0.067 

b 25 0.993 

c 91 0.030 

d 72 0.030 

e 107 0.980 

f 25 0.980 

g 2 0.932 

h 10 0.932 

i 0 1.000 

T(0,0) = a/(a+b) 0.77 0.014 

T(1,0) = a/(a+b+c) 0.41 0.078 

T(0,1) = a/(a+b+d) 0.46 0.078 

T(1,1) = 

a/(a+b+c+d) 

0.30 0.124 

This shows some degree of correlation within respectively the pairs (DetFreq, MedMax) 

and (SpArea, MedMax), which is not reflected in a corresponding correlation between 

the pairs.  

 

The similarity between Set 1 and Set 2 is governed by the following three factors: 

1. The value setting of the descriptors, within the sets. This is illustrated in Table 3 

where the value setting of both Dose and SpArea shows several zero values in pairs 

and thus many equal objects in Set 2. This tends to reduce the number of concordant 

rankings and thus the potential number of rankings, which can be compared with 

rankings done in Set 1.   
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2. The inter-correlation (both negative and positive) between the descriptors within the 

sets. This is important for the number of concordant rankings within each set and 

thus also for the potential similarity of the two sets. 

3. Correlation between the ranking of the predicted descriptors in Set 1 compared to 

the ranking of the predicting descriptors in Set 2.  

 

Only the third factor is important when the confidence of correlation between Set 1 and 

Set 2 are going to be assessed. So, the challenge is to design a statistical test that can 

keep the two first factors constant (take them as conditions) and only test the correlation 

between the two set of descriptors. Keeping the structure of the Hasse Diagram of Set 2 

constant as a condition for the test is one way to solve this problem. Such a procedure is 

shown in the following by using a simple example. 

 

The following simple example will use two, small and arbitrary chosen, partially 

ordered sets for illustration of the probability estimates, see Figure 5. Consider two 

partially ordered sets: Set 1 and Set 2. The ranking of the objects named A, B, C and D 

is done in Set 1 using predicted variables (like e.g DetFreq and MedMax) and the same 

objects are ranked in Set 2 using predicting variables (like e.g. SpArea, MedMax). The 

box marked in top of Figure 5 shows the two Hasse Diagrams of respectively Set 1 and 

Set2 and the small table between them shows the actual values for the parameters 

defined in Table 3. The comparison of the two sets can be illustrated in matrix form as 

follows:  
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The entries of the matrix are to be read as follows: For example first row , second 

column: A < B in Set 1 and A || B in Set 2. Three agreements (quantity a =3), no 

conflicts, i.e. no entry like >,<, or <,>; therefore b = 0; concordant rankings only in Set 

1 (entries C1,2 and C2,3), thus c=2, one concordant ranking only in Set 2: entry C1,3. 

therefore d=1. Furthermore it is found from the Comparison matrix that e = 3 , f = 0. 

Equivalent objects are not included in this simple example. They will not serve any 

purpose for illustration and this excludes g, h and i.   

 

The concept of testing is based on a fixed Hasse Diagram structure for Set 2, where 

positioning of the objects in this Hasse Diagram is considered as not given. This mean 

that all possible namings of objects are allowed in the Hasse Diagram and the procedure 

is to test all these combinations for similarity to Set 1. This yield 24 possible Hasse 

Diagrams in Figure 5, listed from high correlation towards lower correlation measured 

positive for a high value for a and a low value for b. In this way it is seen that Set 2 

belongs to the Hasse Diagram, which is among the four best similarity diagrams. The 

probability for a a value to be equal of larger than the actual a value of 3 is seen to be 

6/24 and the probability for a b value to be equal or larger than the actual value of 0 is 

20/24.
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This simple example shows that there exists a variety of interrelations between the 

single comparison parameters. The four objects have six possible ranking relations 

between each other (generally for n as the number of objects: n⋅ (n-1)/2). Every relation 

can either be a concordant or a discordant ranking (Note: we have neglected 

equivalence). Thus the vertical sum of the comparison parameters (neglecting e, which 

just is the sum a+b) will always be 6. The total number of discordant rankings is 3 (one 

in Set 1 and two in Set 2), so the relation c+d+f=3 needs to be valid due to the constancy 

of the Hasse Diagram structure. Similarly, the number of concordant rankings in Set 2 is 

4, so a+b+d= 4 and for Set 1 there are 5 concordant rankings yielding a+b+c= 5. 

Another example of interaction is seen for d and e, where d= 1 for e=4 and d=2 for e=3. 

These simple interrelations become more complex when some objects are equivalent in 

Set 1 and/or Set 2. However, there will still be a close interrelation between the single 

comparison parameters as seen in Table 3, where the probability estimates for 

respectively (c,d), (e,f) and (g,h) in pairs are equivalent. 

 

The number of possible Hasse Diagram versions for testing of Set 2 is n! (4!=24 

diagrams in Figure 5). So, it will not be advisable to try to test more than about 10 

objects using the outlined method directly and an approximate method is to be applied 

in order to solve this problem. In this procedure, the full number of possible Set 2 

versions is estimated using a random sampled subset, see Figure 6. Every random 

sample is found by mixing up the object Ids in Set 2. More precisely first Id. 1 is 

selected and subsequently by random choice a selection is made of e.g. Id. 5 and 

exchange is made between respectively all the descriptors for Id. 1 and Id. 5. This 

procedure is repeated for all the other objects ending up in a Hasse Diagram like Set 2, 

but where the object naming is randomly distributed. The correlation between Set 1 and 

Set 2 is first calculated yielding the “actual” correlation result (AC). Then subsequently 

a random Hasse Diagram is generated as explained above and a comparison with Set 1 

generates a correlation estimate (RC). A sum (sum in Figure 6) sums up how many 

times RC>AC is true out of totally I randomly formed Hasse Diagrams. The ratio I/sum 

is an estimate for the probability for a randomly formed correlation to exceed the actual 

correlation.  
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Figure 6. The principle of the probability estimate for a randomly formed comparison 
between the two sets to be of higher or equal value compared to the true comparison. 
A.randomised version of Set 2 denoted Set 2i is formed by mixing the Ids (names) for 
the rows in the data set of Set 2. 
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The value of I needs to be high enough to assure a robust probability estimate, however, 

the analysis has an upper limited for a meaningful increment of the I value around the 

factorial value for the number of objects (n!).For higher values of I no further 

information will be gained by further increasing the value of I.  However, in case of 25 

objects as in Table 3, the factorial value is about 1.6⋅1025 and thus far above any 

realistic value for I. Different values of I are tested for the data set in Table 1 and the 

results is shown in Figure 7 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The principle shown in Figure 6 applied for different values of I and for 
testing a=82 from Table 3. The line shows an estimate of the “true” probability using 
I=106. 
 

The probability estimate is graphically shown in PO Correlation, in form of a 

Significance Plot, see Figure 8. This figure shows two numbers for the correlation 

quality and every point is formed based on Set 2i for i=1,2..,I. The number on the x-axis 

is T(0,0) as a measure for the quality of correlation. The quality number on the y-axis 

describes the total completeness of tested correlation. This quality number is calculated 

as the ratio between the number of rankings, which can be included as either an 

agreement or a conflict (a + b in Table 3), and the total number of possible ranking 

relations in the data set (n⋅(n-1))/2. The marked circle is the actual correlation estimate. 

In Figure 8 the actual estimate is located in the high end of the point cluster in the 

direction of T(0,0) (to the right from the middle), which indicates some degree of 

positive correlation. On the y-axis the actual estimate is located close to the lower edge 
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of the point cluster showing some misfit between the comparability in Set 1 and in Set 2. 

This was also seen in Table 3 as discussed above, where the random probability (equal 

or larger value) for the e value of 117 is quite high (0.980). 

 

The banned pesticides (Ids. 1,2, 6, 7, 8) are now excluded from the data set and the 

correlation analysis is repeated. The results for the τ correlation are shown in Table 4. 

The product of Dose and SpArea could be an effective variable, having unit of used 

amount per year (kg/year). Sørensen et al. (2003) show, for the Swedish data, that this 

product is far from being complete, however, this statement will be investigated using 

the Danish data set also. The correlation in Table 4 has changed substantially compared 

with Table 2. The correlation between the predicted and predictive variables has 

improved. The product Dose⋅SpArea has the best correlation to both DetFreq and 

MedMax. 

 

Figure 8. Significance Plot based on Set 2i for i=1,2,..,I (I=100000) using the data set in 
Table 1. The red circle is equal to the actual value from Table 3.  
 

 

 

Actual value 
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Table 4. τ values for all parameter combinations using the data set in Table 1, where the 
banned pesticides, Ids. 1,2, 6, 7 and 8, are excluded. 

  Predicted variables Predicting variables 

  DetFreq MedMax Dose SpArea Dose+SpAre

a 

DetFreq 1.00 0.49 0.41 0.14 0.46 Predicted 

variables MedMax 0.49 1.00 0.22 0.21 0.43 

Dose 0.41 0.22 1.00 -0.22 0.17 

SpArea 0.15 0.22 -0.22 1.00 0.61 

Predicting 

variables 

Dose+SpArea 0.46 0.43 0.17 0.61 1.00 

 

 

The correlation between Set 1 and Set 2 is recalculated for the data set without the 

banned pesticides (Ids. 1, 2, 6, 7 and 8) and the results are displayed in Table 5. 

The numbers in Table 5 are smaller compared to Table 3 due to a smaller number of 

pesticides. However, a much more confident positive correlation is seen having only 3 

conflicting rankings and thus a T(0,0) value of 0.94. The Significance Plot also shows 

an improved confidence compared to Figure 8, as displayed in Figure 9. A better 

separation between the actual correlation (marked circle) and the cluster of points is 

seen. It is also seen in Figure 9 that the actual correlation is placed in the centre of the 

cluster in the direction on the y-axis. This indicates absence of information within the 

sets, which is not reflected in the correlation between the two sets. The latter is also 

seen in Table 4, where the probability level for a higher e value has moved away from 

unity (0.980 in Table 3 down to 0.815 in Table 5). 
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Table 5. Correlation results between Set 1 and Set 2, where the banned pesticides having 
the Ids. 1,2, 6, 7 and 8 are withdrawn from the analysis leaving 19 pesticides in the 
correlation analysis. 
 

Comparison 

n=19 

Counting Probability 

for larger or 

equal value 

a 51 0.003 

b 3 1.000 

c 91 0.273 

d 20 0.273 

e 54 0.815 

f 25 0.786 

g 1 1.000 

h 0 1.000 

i 0 1.000 

T(0,0) = a/(a+b) 0.94 0.000 

T(1,0) = a/(a+b+c) 0.35 0.003 

T(0,1) = a/(a+b+d) 0.69 0.003 

T(1,1) = 

a/(a+b+c+d) 

0.31 0.006 
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Figure 9. Significance Plot formed by random testing for the data set (I=100000), where 
the banned pesticides are neglected (Ids. 1, 2, 6, 7, 8). 
 

 

The 3 conflicts ( b = 3) in Table 5 need to be analysed using the Conflict Diagram 

before a final conclusion is possible, see Figure 10. The Conflict Diagram in Figure 10, 

which arises from that of Figure 4 by subtracting the banned pesticides from the set of 

chemicals, shows separated pairs of rankings, where no pesticide is connected to more 

than one single other pesticide. This indicates that there is no single responsible 

pesticide for all conflicts and thus no strong discrepancy for specific pesticides. The 

inclusion of other variables like physico-chemical parameters and the analytical 

detection limit is discussed by Sørensen et al., (2003) in relation to South Sweden 

monitoring data. However, any further addition of ranking variables will increase the 

number of discordant rankings in Set 2 and thus tends to damage the completeness of 

the correlation analysis. In this way there is a trade off between the number of variables 

to be included and the completeness of the correlation analysis. So, it seems irrelevant 

to consider any additional variables and the simple information about field application 

seems to be rather powerful for describing the occurrence of current used pesticides in 

streams. This is not a trivial conclusion because the main paradigm for the mechanism 

 

Actual 
value 
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of pesticides exposure is based on the hypothesis that basic physico-chemical properties 

including degradation and adsorption are governing factors for the quantification of 

differences in exposure between different pesticides.  

 
 

Figure 10. Conflict Diagram for the data set where the banned pesticides are neglected 
(Ids. 1,2, 6, 7, 8). 
 

 

The correlation of the single predictive variables including their interaction will be 

investigated in the following. This is easy to do using PO Correlation by repeating the 

correlation analysis only for respectively Dose and SpArea as single variable in Set 2. 

Inspection of the Conflict Diagrams shows how the two variables are acting alone and 

in relation to each other. In Figure 11 the Conflict Diagram is displayed, where only the 

Dose is included as single variable in Set 2. The three pesticides (Ids. 5, 16 and 24) are 

ranked strongly downward having many concordant rankings. This tells us that the Dose 

variable tends to rank these pesticides upward while downward rankings are more likely 

to happen for the variables DetFreq and MedMax. The values in Table 1 also show that 

these pesticides are characterised by having a relatively high Dose value and a low 

SpArea value. Hence the occurrence seems limited (low value for DetFreq and 
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MedMax) due to rare application even though the dose level is high for the few events 

where application takes place in the field. The Id. 13 is concordant ranked above 6 other 

pesticides and also associated with a very high SpArea value, which is not reflected in a 

high Dose value. 

 

 
 

 

Figure 11. Conflict Diagram for the data set where the banned pesticides are neglected 
(1, 2, 6, 7, 8) and where the only predicting variable used in Set 2 is Dose. 
 

 

The Conflict Diagram using only the SpArea variable for Set 2 is shown in Figure 12. 

Two strongly top ranked pesticides are identified (Ids. 15 and 9) having many 

concordant rankings downward. They both have a high Dose value and small SpArea 

value in Table 1 and thus pesticides where a low rank due to SpArea is in conflict with 

the occurrence because of a high dose level. The complementary situation is also seen in 

Figure 12 for Id. 21. This pesticide is ranked strongly downward in Figure 12 and also a 

pesticide, which has low dose level and large sprayed area in according to Table 1. The 
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Id. 21 is a very low dosage pesticide and this low dose level seems to prevent the 

pesticide to occur in the stream water even though the sprayed area is rather large.   

 

The common set of rankings for Figures 11 and 12 is displayed in Figure 10, so only 

three rankings are in common between the Figures 11 and 12. This shows that the two 

variables Dose and SpArea are working well together by describing different parts of 

the information captured by DetFreq and MedMax. This is supported by the negative 

correlation between SpArea and DetFreq in Table 4, which indicates that the two 

variables are not reproducing each other.  

 

 

 
 

Figure 12. Conflict Diagram for the data set where the banned pesticides are excluded 
(Ids. 1, 2, 6, 7, 8) and where the only predicting variable used in Set 2 is SpArea. 
 

 

In Figure 13 a graphical display is made for a series of correlation analyses using 

different combinations of variables. The x and y axis are similar as the axis in the 

Significance Plot (Figures 8 and 9). Six different correlation analyses are performed for 
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the pesticides, which have not been banned in 2000. The numbered circles show the 

correlation results for a series of different variable combinations used for Set 1 and Set 2 

and the numbering refers to the columns in the Table to the right in Figure 13. The 

small circles in the Table to the right identify the included variables in every 

combination as numbered. So e.g. for analysis no. 1, Set 1 consist of the two variables 

DetFreq and MedMax and Set 2 consist of only Dose. The variable denoted PRODUCT 

is the product between Dose and SpArea as presented by Table 4. The analyses 1, 2 and 

3 is all correlation analyses with Set 1 (DetFreq and MedMax) using respectively Dose 

(analysis 1), SpArea (analysis 2) and PRODUCT (analysis 3) as single predictive 

variable in Set 2. The product is seen to be best as single predictive variable, because the 

circle numbered 3 has in comparison with numbers 1 and 2 the highest T(0,0) value. 

The next best correlation is seen for Dose (number 1 in the figure) and SpArea has the 

lowest correlation. It is possible to improve the correlation by using more than one 

predicting descriptor in Set 2 as seen for number 4, where the descriptors Dose and 

SpArea are included. However, the completeness of the correlation decreases 

(downward direction in the figure) when two variables are included in Set 2 instead of 

only a single, because of the emergence of discordant rankings in Set 2. The use of 

respectively DetFreq and MedMax as single variable in Set 1 is also tested as 

respectively no. 5 and no. 6. Neither analysis no. 5 nor 6 can make the same good 

correlation measured by T(0,0) as analysis no. 4.  

 

4 Conclusion 
Application of partial ordering for rank correlation analysis including multiple variables 

has been shown effective by the software package PO Correlation. The design is shown 

transparent for correlation analysis, where the correlation of every object is 

characterised in detail in relation to all other objects. The principle and use of the 

software is shown and described using a specific data set based on environmental 

monitoring of pesticide findings in small streams in Denmark. It is shown how PO 

Correlation is valid for robust data interpretation. 
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Figure 13. A graphical display of the correlation result for a series of different variable 
combinations. The numbered circles reefers to the numbering in the top row in the table 
to the right. Each number is a correlation analysis and the small circles in the tables 
indicate which variables that have been used in respectively Set 1 and Set 2. The x and y 
axis is similar to the axis in the Significance Plots as explained for Figure 9.  
 

 

A series of useful conclusions are shown to come out simply and clear. It is seen how 

the difference in the field application seems to be the main governing factor for 

pesticides exposure in stream water. The data analysis has shown how PO Correlation 

can make detailed data mining into single object relations using multiple variables. 

Using this novel methodology, it possible to identify specific interactions between the 

variables, which hardly can be reproduced by more conventional methods. 
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