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Abstract  

Hierarchical cluster analysis is a well-known method of stepwise data compression. As 

a result one gets a dendrogram, that is, a special binary tree with a distinguished root 

and with all the data points (objects) at its leaves. Unfortunately both the real or poten-

tial order of the objects and the potential quantitative locations of the objects are not 

reflected in the dendrogram. Often, neighbouring objects in the dendrogram are quite 

distinct from one to each other in the reality of a heterogeneous, high-dimensional set-

ting. Therefore the reading of conventional dendrograms as well as their interpretation 

becomes difficult and it is often confusing. Here some dendrogram drawings and reor-

dering techniques are proposed that reflect the total order in the one-dimensional case 

(univariate case) and, in the multivariate case, an order that corresponds approximately 

to a total order in some degree. The result, a so-called ordered dendrogram, is recom-

mended because it makes the interpretation of hierarchical structures much easier. The 

proposed dendrogram reordering and drawing techniques are applied on high-

dimensional data points of chemical compounds.  

 
 
 
 
 



1. Introduction 
 

Most generally, cluster analysis aims at finding interesting structures or clusters directly 

from the datasets without using any background knowledge about structures. There are 

model-based as well as heuristic clustering techniques. At most, one will set up new 

hypotheses about the data. At least, clustering should result in practically useful parti-

tions or hierarchies. Here the family of hierarchical clustering techniques will be con-

sidered only. They start with pairwise proximities (distances, similarities) between ob-

jects. Then, in a stepwise manner, they form clusters by amalgamations of pairs of simi-

lar objects and/or clusters. A hierarchical clustering method gives a unique solution. 

Usually the steps of the algorithm of hierarchical clustering are presented in a dendro-

gram, that is, a special binary tree with a distinguished root and with all the data points 

(objects) at its leaves. Some original methods of cluster analysis as well as modified 

ones are based on graph theory [1]. For instance, the algorithm of minimum spanning 

tree (usual synonyms are Single Linkage method or Nearest Neighbour) is such a well-

known technique of hierarchical cluster analysis (HCA) with roots in graph theory [2, 9, 

11, 12]. As already mentioned above, dendrograms are the graphical output of HCA. 

Alternatively, they often are called binary trees in graph theory. However, dendrograms 

record both the steps of agglomerative or divisive clustering and the quantitative incre-

ment of distances between the emerging clusters (see at the top of Figure 1: the axis 

shows the distance levels of merging clusters). One of the most difficult tasks of hierar-

chical cluster analysis remains: finding an appropriate number of clusters by cutting the 

dendrogram at a certain distance value. An automatic validation technique for hierarchi-

cal cluster analysis is recommended that can be considered as a so-called built-in valida-

tion of the number of clusters and of each cluster itself, respectively [35, 36]. Improved 

dendrograms, that will be proposed here, can support these decisions. 

Concerning an extensive consideration about dendrograms and trees in the framework 

of graph theory the reader is referred to [3]. Another reference concerning dendrograms 

is [8] where the authors propose a new interactive interface to help the user to interpret 

dendrograms. Here we recommend also improvements in the graphical presentations of 

dendrograms, but we will reach this aim in a quite different way.  
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Figure 1:  Conventional dendrogram of the result of the unweighted pair-group method 
using centroids (UPGMC). Instead of names here the values of the objects (leaves) are 
presented at the left hand side. 
 

Unfortunately both the real or potential order of the objects and potential quantitative 

locations of the objects are not reflected in the dendrogram. Conventionally, the order-

ing of the objects (leaves) is arbitrary in certain degree and the leaves are drawn equi-

distant (see Figure 1). Therefore often, neighbouring objects in the dendrogram are quite 

distinct from one to each other in the reality of distance in a high-dimensional setting. 

As a consequence, the reading of conventional dendrograms as well as their interpreta-

tion becomes difficult and it is often confusing. Here some dendrogram drawing and 

reordering techniques are proposed that reflect the total order in the one-dimensional 

case (univariate case) and, in the multivariate case, an order that corresponds approxi-

mately to a total order in some degree. To illustrate this idea, let us go through a binary 

tree from the root to the leaves. In order to guarantee the total order one has to stop at a 

certain level (i.e. a certain number of clusters). The result is a truncated tree (called or-

dered dendrogram) that satisfies a given order of the nodes. By the way, in hierarchical 

clustering the main question arises: What is the right number of clusters (groups, sub-

sets), i.e. when should the aggregation stop without losing the essential character of the 

data? The ordered dendrogram can a little bit better support this decision than the 

conventional dendrograms. 
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Figure 2: The “rearranged” dendrogram of Figure 1 reflecting both the total order and 
the native quantitative position of the objects (leaves). Here an example of reading at 
the right hand side: The leaves with values 16 and 17 will be merged together to the 
new node with value 16.5. Some steps of the algorithm later on, this node will be 
merged together with the leave with value 20 to the bigger node with value 17.67. This 
value is the average over the values of the corresponding three leaves. 
 
The focus of this paper is on ordering of objects in dendrograms only. A dendrogram 

can be seen as a binary tree with a distinguished root (right hand side of Figure 1) and 

with all the objects at its leaves (left hand side of Figure 1). Additionally the distance 

levels of merging the clusters are reported in a dendrogram. In the following monotone 

non-decreasing distance levels are assumed during the merging process. It should be 

mentioned that some of the pairwise agglomerative clustering methods can lead to de-

creasing distance levels. Furthermore, the problem of violation of the uniqueness of the 

merging process will not be discussed here, because equal distance levels (i.e., non-

increasing levels) do not really affect the drawing of dendrograms. In the framework of 

graph theory, distinct edge weights w(e), e∈E, of a connected, undirected, weighted 

graph G = (V, E) guarantee that the corresponding minimum spanning tree is unique. 

Here V and E are the set of vertices (nodes) and edges, respectively. For more details on 

graph theory see [18, 19]. 

As an appetizer let us consider the dendrogram of the tiny dataset of I = 13 objects in 

IR1 in more detail. Without any doubt there is a total order of the objects in IR1 given by 

their values. Figure 1 shows both the data values of the objects at the left hand side and 

the result of hierarchical clustering. Unfortunately for an easy reading of dendrograms, 
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the ordering of the objects is arbitrary and the leaves are drawn equidistantly by conven-

tional statistical software. Really, the order of leaves in conventional dendrograms is 

arbitrary because usually it depends on two factors at least. First it depends on how the 

objects are stored in the dataset, i.e., in which succession they occur. Second it depends 

on the algorithms that are used for drawing dendrograms. Generally, these algorithms 

rearrange the given order of the leaves (in the dataset) in order to avoid the crossing of 

the branches (lines) of the tree. Some examples of well-known statistical software, often 

with a long history, are: CLUSTAN [15], SPSS [16], SAS [17], S and S-PLUS [20]. 

Figure 1 shows such a conventional dendrogram. Here the reading as well as the inter-

pretation becomes difficult and it is simply confusing. 

 

 
 
Figure 3: “Triangle shape“ dendrogram of the result of the weighted pair-group method 
using arithmetic averages (WPGMA) reflecting both the total order and the native quan-
titative position of the objects (leaves). 
 

The well-known Centroid method is applied (see for more details [4, 11, 13, 14]). Usual 

synonyms of the Centroid method are unweighted pair-group method using centroids 

(UPGMC) or centroid sorting. This method is based on the (squared) Euclidean dis-

tance between the objects. In Figure 1 one can see that some leaves with quite distinct 

values are drawn aside in the tree. For example, the most distinct leaves with the values 

0 and 20 are located side by side in the dendrogram. 
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Figure 2 shows the result of the Centroid method in a more informative manner (see 

Figure 1 for a comparison). Here the leaves are drawn non-equidistantly and they are 

rearranged in their total order, i.e. they occur in their native order. Additionally most of 

the terminal nodes (at the bottom of the figure) and non-terminal nodes (branching 

points) are marked by their value. Therefore let’s illustrate briefly the algorithm of the 

pairwise agglomerative clustering method that is applied here, namely the unweighted 

pair-group method using centroids. The values of 13 terminal nodes (= 13 separate triv-

ial clusters of one object apiece) at the bottom of Figure 2 are the starting point. For 

each step in the algorithm the closest two clusters in terms of the Euclidean distance 

between their centroids are successively merged to a bigger one, i.e., the two most simi-

lar clusters are replaced by a new one. The value of the new cluster becomes equal to 

the unweighted average (centroid) of the values of the two corresponding small clusters. 

The next steps repeat the same procedure of finding the closest two clusters (nodes), 

calculating the average and merging these two nodes to a new one. At the end the clus-

ter at the left hand side consisting of five objects (average = 1.9) and the cluster at the 

right hand side consisting of all remaining objects (average = 12.875) are merged to-

gether at a distance level of 10.975 (= 12.875 – 1.9). At the left hand side of Figure 2 

(see also at the top in Figure 1) the axis of the (Euclidean) distance levels between clus-

ters is drawn. 

An alternative representation of binary trees is shown in Figure 3. Here the same dataset 

is used as in Figures 1 and 2, respectively. However, another simple automatic pairwise 

agglomerative clustering method is applied, namely the weighted average linkage. 

Usual synonyms are weighted pair-group method using arithmetic averages (WPGMA) 

or simple average linkage. This stepwise algorithm is similar to the above one. It begins 

with 13 terminal clusters of one leave apiece. For each step the closest two clusters in 

terms of the Euclidean distance between their values are merged successively to a big-

ger one. The value of the new cluster becomes equal to the weighted average of the val-

ues of the two corresponding small clusters. At the end of the stepwise procedure the 

cluster at the right hand side consisting of three objects (weighted average = 18.25) and 

the cluster at the left hand side consisting of all remaining objects (weighted average = 

6.125) are merged together at a distance level of 12.125 (= 18.25 – 6.125). For further 

details on these and other hierarchical methods and on dendrograms see [4,9,21,25]. 
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Figure 4: Plot of an example of eight points in a tiny dataset in IR2 (left hand side), and 
the corresponding data table at the right hand side. 
 
Unfortunately, the property of total order of objects is usually limited to the univariate 

case. Figure 4 shows a tiny two-dimensional artificial data set. Obviously it is a hard 

problem to find a proper rearrangement of the points in the subspace IR1. The minimum 

spanning tree of these eight points can be obtained by the Single Linkage method. It is 

shown in Figure 5. Here the squared Euclidean distance (4) (see below) is used to 

weight the edges e∈E of the connected, undirected, weighted graph G = (V, E). By cut-

ting some edges in the minimum spanning tree subgraphs (clusters, subtrees) are ob-

tained. The conventional dendrogram of the Single Linkage cluster analysis is shown in 

Figure 6. 

Generally in the multivariate case, an approximate order can be reached by using pro-

jection methods like principal component analysis or discriminate analysis. This order is 

approximate in some sense by taking into account an appropriate number of clusters K 

(equivalence classes). The latter are the result of hierarchical clustering and they are in 

total order for at most K clusters. The greater K the better the used projection method is 

in view of rearranging the leaves in the dendrogram. 
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Figure 5:  Minimum spanning tree with I = 8 vertices (nodes, leaves) and 7 edges (left 
hand side) and the corresponding distance matrix at he right hand side. The total (mini-
mum) weight of the MST is equal to 50. The MST of this tiny dataset is a unique one. 
 

 
 
Figure 6:  Dendrogram of Single Linkage cluster analysis of the set of eight points of 
Figure 4. 
 
An underlying hypothesis for application of many distance measures like the Euclidean 

one is that the variables are measured in the same scale. If this is not the case (as in 

many statistical applications, see section 5 below) a standardization of the data should 

be first applied. Otherwise, the statistical analysis of ranks is an interesting special case 

of order statistics, i.e. transforming the original variables into quantiles. (This case will 

be not traced here, for an impression on this see, for instance [4].) In that way, both 

cluster analysis and principal component analysis become independent of the scales of 

variables. The latter can be used for getting an approximate order of objects.  
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2. Simple model-based Gaussian hierarchical cluster analysis 
 
Often (weighted) Euclidean distances are the basis of both the methods of cluster analy-

sis and projection methods. The ideal case would be the use of the same distance meas-

ure in both families of multivariate methods. Concerning model-based clustering the 

paper [5] give a comprehensive insight into the topic. Some relevant relations between 

simple model-based Gaussian clustering and graph theory are considered in [1].  

Let a sample of I observations in IRJ be given. Let the matrix X = (xij) denote this sam-

ple. A partition P(I, K) is an exhaustive subdivision of the set of I objects into K non-

empty clusters Ck which are pairwise disjoint. Let us focus on simple covariance struc-

tures. When the covariance matrix is constrained to be diagonal and uniform across all 

groups, the sum-of-squares criterion 
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is the sample cross-product matrix for the kth cluster with the usual maximum 

�ressehood estimate kx  of its expectation value. An equivalent formulation of (1) 
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where nk is the number of observations in kth cluster and dil are the pairwise squared 

Euclidean distances 

( ) 2

1

2
li

J

j
ljijil xxd xx −=−= ∑

=

       (Eq. 4) 

 

between the two observations I and l. The well-known Ward’s method (synonym: 

minimum variance method) starts with pairwise squared Euclidean distances between 

terminal clusters and minimises the criterion (1) by agglomerative hierarchical cluster-

ing [6]. Terminal clusters consist of a single object only, i.e. each object is in a cluster 

by itself. Figures 7 and 8 show the same results of Ward’s method applied to the tiny 
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dataset, but in different fashions. The linear multivariate projection method principal 

components analysis [2, 23] is used in Figure 8 in order to find an appropriate order of 

objects. Obviously this attempt fails here. With respect to the first principal axis the 

order of the objects is simply denoted by the running numbers. Figure 9 shows the qual-

ity of �resservation of distances when using the first principal component. 

 
 
Figure 7 :  Dendrogram of Ward’s hierarchical clustering of the set of eight point of 
Figure 4. The distance axis points up the increment of within-clusters variances during 
the process of fusions. 

 

 
 
Figure 8: Non-equidistant rearranged dendrogram of Ward’s hierarchical clustering of 
the tiny dataset of the eight points of Figure 4. The set of objects {A, B, …, H} is rear-
ranged by the 1st principal component. Below the names of the objects and their order is 
marked by the running numbers 1, 2, …, 8. There are some intersections of the branches 
of the tree. 
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When the covariance matrix of each cluster is constrained to be diagonal, but otherwise 

allowed to vary between groups, the logarithmic sum-of-squares criterion 
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has to be minimized. Once again an equivalent formulation holds: 
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According to (5) or (6) an agglomerative hierarchical method like Ward’s method was 

proposed by [7]. It is named here logarithmic Ward.  

 

 
 
Figure 9:  Graphic display of the quality of preservation of distances after projection of 
the eight points from IR2 in IR1. For instance, the true distance d(D, H)= ( )4.641 ≈  
between object D and object H is broken down to about 0.2 by the projection (see the 
well isolated symbol at the bottom). 
 
 
A three-dimensional dendrogram is one way out when the rearrangement of objects in 

IR1 fails. Here the tree is drawn on a plane. Figure 10 shows the same result of Ward’s 

method as Figure 7 and 8. In comparison with Figure 7 the number of crossing branches 

of the tree can be slightly reduced. 
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Figure 10:  A three-dimensional dendrogram of Ward’s hierarchical clustering. Usually, 
such a “plot-dendrogram” is drawn on a plane that is the result of projection methods 
like principal components analysis. Here the original co-ordinates of the points are used. 
 

 

3. Approximate order of clusters 
 
Let’s assume, an order of I objects is given. Furthermore, let’s assume that a hierarchi-

cal cluster analysis results in a set of partitions. The aim of the following algorithm is to 

determine the number of clusters q so that all the clusters can be drawn without crossing 

the branches in an “ordered” dendrogram. The order of objects is assumed to be labelled 

by the running numbers 1, 2, …, I. Below the following notation is used: 
 

• I : number of objects 
• ci = I – i + 1 : number of classes on step i (i = 1, 2, …, I ) 
• P = {P(1), P(2), …, P(I)} : set of partitions 
� with P(i) = {  P ∈},,, )()(

2
)(

1
i

c
ii

i
PPP …

o with  P∈)(i
jP (i)

 : jth partition on step i (i = 1, 2, …, I; j = 1, 2, …, ci) 
• M ≡ P(I) = {1, 2, …, I} : set of objects 
� with {1, 2, …, I} = IN(I) ⊂ IN 

o with IN : set of natural numbers 
• q : number of clusters that is available 

due to the ordering (1, 2, …, I) ∈ (IN(I))I 
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Here P(1) and P(I) are the trivial partitions into the I clusters {1}, {2},…,{I} and into one 

cluster {1, 2,…,I}, respectively. The following symbolic algorithm ClusterOrder finds 

the number of clusters q that corresponds to a given order of objects in the sense of 

maximum number of non-crossing branches by starting at the root of the dendrogram 

and going down to the leaves (objects).  
 

 
 
 
 
 
 
 
 

 

Figure 11   The algorithm ClusterOrder. 

 

   INPUT P 
   FOR i = I – 1 TO 1 

        IF i = 1 THEN                q = I  :   END 
        FOR j = 1 TO I – i + 1 
            IF  THEN        q = I-i :   END )card(1)min()max( )()()( i

j
i

j
i

j PPP >+−
        NEXT j 
   NEXT i 
 

 

The greater q the better the agreement is between the given order and the distances be-

tween clusters that built up the partitions. Each cluster analysis method computes the 

distances between clusters in a specific way based on the true distances between objects.  
 

Examples:  

1) Eight points in R2 

For a better understanding of the algorithm let’s look at the tiny dataset of Figure 8. The 

rearranged objects in Figure 8 are denoted simply by the usual running numbers 1, 2,…, 

8. These identifiers are used in the partitions and corresponding subsets (classes). With 

respect to the given order of objects by the first principal component the set of partitions 

is investigated starting from the root of the tree. The first split gives the partition into 

the two clusters {1, 2, 3, 4, 5} and {6, 7, 8}. This partition corresponds with the given 

order. In the next split however, the condition of the algorithm is not fulfilled for the 

cluster {1, 2, 3, 5} and the algorithm stops and returns q = 2. As a consequence, for 

more than two clusters the dendrogram contains crossing lines. 
 

2) Artificial dataset (I = 3 observations)   

Let us look at the following partitions: 

P(3)={1, 2, 3}  (trivial partition: one cluster only),  
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Object P(1) P(2) P(3) 
A 1 1 1 
B 2 2 1 
C 3 1 1 

P(2)={1, 3},{2}  (nontrivial partition, alterna- 

tive partitions are {1}, {2, 3}, …)  

P(1)={1}, {2}, {3} (trivial partition). 
 

The algorithm ClusterOrder finds the number of clusters q = 1 for the above given set of 

partitions. As usual, the given order of these three objects is assumed to be 1 (= A), 2 (= 

B), and 3 (= C). 

 
 
4 Techniques of rearrangements of objects 
 
The most sophisticated task remains: to find an appropriate order of objects. Figure 12 

shows the case of three objects only. The underlying pairwise distances between the 

three objects are: 
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It should be mentioned that there are an infinite number of set of points that all fit the 

given distance matrix above.  
 

 
 

Figure 12:  The starting point: three artificial two-dimensional objects (x-y plot at the 
left hand side), and the dendrogram (method: Single Linkage) regarding the given order 
of objects (AÆ1, BÆ2, and CÆ3) at the right hand side. In order to avoid unclear 
graphical representations the node of the fusion of {1} and {3} is not drawn in the mid-
dle of the two nodes as usual. 
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The ordering regarding the y-axis results in crossing lines in the dendrogram. Here the 

algorithm of the previous section stops at the first split and returns q = 1. The corre-

sponding partition {1, 3}, {2} does not agree with the given order. 

By means of the correspondence analysis a rearrangement of objects can be obtained as 

shown in Figure 13. The correspondence analysis is a special non-linear version of the 

principal components analysis (for details, see for instance [4, 23, 24]). Here the algo-

rithm ClusterOrder of the previous section stops at i = 1 and returns q = 3. That means 

that the dendrogram reflects the given order totally without crossing of lines. 

 

 
 

 
Figure 13 : The “rearranged” dendrogram of Figure 12 based on the scores of the corre-
spondence analysis. 
 

There are other projection techniques for finding an appropriate order like discriminant 

analysis or multidimensional scaling (see [34]). The choice of the technique should de-

pend on both the data under investigation and the cluster analysis model that is used. 

 
 
5 Application in Archaeometry 
 
Theory and successful applications of mathematical methods in chemistry are reported 

by [26]. Especially several successful applications of cluster analysis methods are given 

by [32, 33, 37]. Here the statistical cluster analysis of bricks and tiles is presented that is 

based on measurements of chemical elements. 613 Roman bricks and tiles 

(=observations, objects) from the northern part of the former Roman Empires’s prov-

ince Germania Superior are described by 19 chemical elements. Some of the main ref-

erences on this topic are [27-30]. The main aims of the statistical cluster analysis are  
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• to verify supposed locations of brickyards by their chemical attributes only, and 

• to find brickyards which are unknown yet. 

 

 
 

Figure 14: Principal components plot of the final eight clusters (same colour of the large 
bubbles) found by core-based clustering (for details see [31]). The 613 original observa-
tions are projected additionally.  

 
Figure 14 shows the cluster analysis result in a principal components plot. Here both all 

613 objects and 44 cores (“mini-clusters”) are shown. The latter suggest visually an 

order of the bubbles mainly at the left hand side (for further details see [31]). The size of 

a bubble is proportional to the logarithmic sum-of-squares (5) of the corresponding 

cluster. Cores are very small and homogeneous clusters. The final eight clusters (large 

bubbles of the same colour) are denoted by the supposed locations of brickyards.  

Figure 15 shows the plot-dendrogram of the eight clusters from Figure 14. Here the co-

ordinates of each cluster are the corresponding centroids in the two principal compo-

nents. Using only the first principal component a “rearranged” dendrogram can reflect 

the given order of the centroids without crossing branches. For this purpose the algo-

rithm ClusterOrder of Section 3 is applied to the eight centroids only and not to all 613 

objects. 
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Figure 15   Plot-dendrogram of the eight clusters from Figure 14. There is no crossing 
of branches of the tree. 

 
A quantitative graphical display of the 613 observations of Figure 14 is given in Figure 

16. Here the non-parametric density estimation is applied, and afterwards the resulting 

density surface was cut at several levels.  

Now the aims are to find an appropriate order of the 44 cores in Figure 14 first and then 

to draw an ordered dendrogram without crossing of branches. To reach these aims one 

can search for a rearrangement of the cores. For this purpose, for instance, two local 

principal component analyses (PCA) have to be performed: one PCA for the observa-

tions of the three clusters at the left hand side of Figure 14 and another PCA for the re-

maining observations. Then the resulting scores of the first components of each PCA 

are arranged into one score axis in a consecutive manner. By doing so the first aim is 

reached and a dendrogram can be drawn that reflects the order of the score axis (Figure 

17). This dendrogram is quite informative. However, there occur some crossings of 

branches of the tree. Therefore, to reach the second aim the appropriate number of clus-

ters has to find that allows drawing a dendrogram without crossing of lines.  

Based on the rearrangement of the 44 cores in Figure 17 the set of partitions is investi-

gated using the stepwise procedure ClusterOrder starting from the root of the tree. The 

condition of the algorithm is fulfilled for numbers of cluster 2,3, … until 10. The algo-

rithm stops at the partition into 11 clusters and returns q = 10 clusters. As a conse-

quence, for more than ten clusters the dendrogram contains crossing lines. Figure 18 

shows the corresponding result: an ordered dendrogram. 
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Figure 16:  Univariate and bivariate non-parametric density estimations of the 613 ob-
servations based on the first two principal components (at the left hand side) and several 
cuts of the bivariate density at different levels at the right hand side. 

 

 
 
Figure 17:  Non-equidistantly rearranged dendrogram of logarithmic Ward’s hierarchi-
cal clustering (6) of the 44 cores (bubbles) in Figure 14. In this local rearrangement by 
two PCA some intersections of lines are observed. 
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Figure 18: Part of the dendrogram of Figure 17 that is determined by the algorithm 
ClusterOrder in order to avoid intersections of lines. 
 
 
6 Summary 
 

Often, easy-to-understand graphical output of statistical analysis would be appreciated 

in the reality of a high-dimensional setting. Especially the reading of conventional den-

drograms as well as their interpretation becomes difficult and it is often confusing. 

Some dendrogram drawing and reordering techniques are recommended that reflect a 

given order until a maximum degree. The resulting ordered dendrograms are much more 

informative. These dendrograms are drawn without crossing of lines. However, to find 

an appropriate order remains as the most difficult task. This task is the connecting point 

to the on-going research on both the Order Theory and the Hasse diagram methodology.  

*** 

All the cluster analysis algorithms and multivariate visualisation techniques used here 

are part of the statistical software ClusCorr98 [37]. It uses the spreadsheet environment 

of Excel for displaying data, numerical results and graphics. The programming language 

is Visual Basic for Application (VBA). This prototype-software is under development at 

the Weierstrass Institute for Applied Analysis and Stochastics, Berlin. 
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