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Abstract

The present paper contains a brief description of the order theoretic foundations of the
application of partial orders, in particular in environmental sciences. Posets and lattices
are introduced as well as the corresponding Hasse diagrams which are an important tool for
their visualization. Then we define the notion of concept. It is very helpful (and relatively
new), since one of the main achievements of human society is conceptual thinking. We
consider one- and many-valued contexts as well as generalizations, the L-fuzzy contexts
which show up in many daily situations. They serve very well in the organization of
interviews, tests and evaluations and so they play a role as a tool to support decisions in
environmental risk management, for example.

1 Posets and Lattices

A partially ordered set, for short: a poset, is a set X together with a binary relation
¹, say, which means that we are given, together with X, a set of certain pairs (x, x′) of
elements x, x′ ∈ X, for short:

x ¹ x′,

such that the following conditions are satisfied:

• ¹ is reflexive: x ¹ x, for each x ∈ X.

• ¹ is antisymmetric: x ¹ x′, x′ ¹ x imply x = x′, for each x, x′ ∈ X.

• ¹ is transitive: x ¹ x′, x′ ¹ x′′ imply x ¹ x′′ for each x, x′, x′′ ∈ X.

The point is that there may exist elements x, x′ ∈ X, for which neither x ¹ x′ nor x′ ¹ x
holds, in which case we say that x and x′ are incomparable. Hence partial orders are



helpful in cases when some of the elements are comparable while others are not. Such
situations occur quite often in daily life.

Partial orders can nicely be visualized by their Hasse diagram, the nodes (also called
vertices) of which represent the elements of the set, and where two nodes are connected
by an edge if and only if they are (immediate) neighbors with respect to the partial order.
The Hasse diagram is usually read from bottom to top, the smaller elements are lower
down. Here is, as an example, the Hasse diagram of the partial order ⊆ on the set X,
consisting of all the eight subsets of the set {0, 1, 2} :
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The use of posets in chemistry is the topic of a special issue of MATCH ([12]), edited
by D. Klein and J. Brickmann. The Prolegomenon of this issue, written by D. Klein, is
strongly recommended, as are the other contributions.

Many examples of partial orders that occur in environmental sciences can be found in
the publications of R. Brüggemann, for example in [4], where 13 pesticides are considered
with respect to environmental hazards, based on their persistence T (half-life in soils),
aqueous solubility W (in mg/L), vapor pressure of the pure substance V (in mPa) and
the yearly usage U in Italy (in tons per year). Hence, for each of these pesticides there is
a quadruple of values. For example, to propanil there corresponds the quadruple

(T, W,−V, U) = (1, 200,−5.3, 694),

while for alachlor we find

(T, W,−V, U) = (15, 240,−1.87, 1537),

and for carbaryl
(T,W,−V, U) = (10, 120,−0.16, 590).

The bigger the entries are, the worse is the influence of the pesticide on the environment,
and so there is a natural partial order according to the given measurements. It models the
ranking according to “worse in every respect”:

(T,W,−V, U) ¹ (T ′,W ′,−V ′, U ′) ⇐⇒ T ≤ T ′,W ≤ W ′,−V ≤ −V ′, U ≤ U ′.

Using this partial order, alachlor is worse than propanil, while carbaryl can neither be
compared with alachlor nor with propanil. The Hasse diagram obtained is
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Among other things we note that methylbromide is incomparable with the other pesti-
cides. In other words: Compared with any one of the other pesticides it has advantages
as well as disadvantages.

Partial orders are lattices if for any two elements there exists an infimum x ∧ x′ and a
supremum x ∨ x′. In our example of subsets of {0, 1, 2}, the infimum of two subsets is
their intersection: x ∧ x′ = x ∩ x′, and their supremum is their union: x ∨ x′ = x ∪ x′. In
the case of divisibility, the infimum is the greatest common divisor: x ∧ x′ = gcd{x, x′},
while the supremum is the least common multiple: x ∨ x′ = lcm{x, x′}. A lattice is said
to be complete, if there is an infimum and a supremum not just for two elements, but also
for any subset.
In the partial order on the set of pesticides mentioned above we have, for example,

ziram ∧ TCA = thiram,

but it is not a lattice because, for example, there does not exist an infimum of methyl-
bromide and TCA, the infimum of ziram and atrazine is not defined, and many other
violations of the definition of lattice can be found.

2 Contexts and their concepts

We are now going to apply the notions of partial order and of lattice to situations of the
following sort of kind: Suppose that we are given information on properties of certain
objects, say on chemical substances and some of their environmental properties. We call
this knowledge a context, and we should like to explore the information contained in it.
For example, we should like to

- visualize its content,

- to draw conclusions,

- or to form hypotheses,

based on the context and on nothing else.

For this purpose, we can use concept analysis, introduced by R. Wille about twentyfive
years ago. Its main tool is the notion of lattice of concepts, which is a particular partial
order that beautifully reflects the information contained in the given context.
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The notion of concept, mathematically modelled by concept analysis, is in fact due to the
17-th century philosophy of Port-royal, (Pascal et al., see e.g. [1], also Leibniz had some
influence) where it was called idée universelle (in German: Begriff).

The definition of idée universelle, given there, reads as follows:

• ... dans ces idées universelles il y a deux choses qu’il est très important de bien
distinguer, la comprehension et l’étendue...

• ...J’appelle comprehension de l’idée, les attributs qu’elle enferre en soi, & qu’on ne
lui peut ôter sans détruire, comme la comprehension de l’idée du triangle conferme
extension, figure, trois lignes, trois angles, & l’égalité de ces trois angles á deux
droits, & c...

• ...J’appelle étendue de l’idée, les sujets á qui cette idée convient...

The standard reference for its mathematical model is the book [7] by Ganter and Wille.

Corresponding to the philosophical definition, a concept consists of two sets, the extent
(étendue, Umfang) the set of objects (sujets, Gegenstände) implied in the concept, and
the intent (comprehension, Inhalt), a set of attributes (attributs, Merkmale).

Hence, this notion of concepts applies in particular to situations, where the information
given is of the form

The object ω has (has not) the attribute α

for a given set of objects ω ∈ Ω, and a given set of attributes α ∈ A. Such a set of
informations can be gathered e.g. in the form of a table, a context.
Here is the oldest context of environmental chemistry ([2]). It describes the classical “four
elements”:

ω\α w c d h
F 1 0 1 0
E 0 1 1 0
W 0 1 0 1
A 1 0 0 1

Its objects are: Fire, Earth, Water, Air, and the attributes: warm, cold, dry, humid. The
entry at the intersection of the row corresponding to an object ω and the column of the
attribute α is put to 1 (or ×) if the object has this property, otherwise it is put to 0 (or
left empty).

The concepts reflect its information content. They are pairs (B,C), B ⊆ Ω, C ⊆ A,
such that the corresponding entries form a rectangle of 1s, not contained in a bigger
rectangle full of 1s: For example, if B = {b1, . . . , bm} is the extent of a concept and
C = {c1, . . . , cn} its intent, the situation looks as follows (after a suitable rearrangement
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of rows and columns):
ω\α . . . c1 . . . cn . . .

...
b1 1 · · · 1
...

... · · · ...
bm 1 · · · 1
...

In formal terms: If we define the derivation of B by

B′ := {α ∈ A | each ω ∈ B has the attribute α},

and, analogously, the derivation of C:

C ′ := {ω ∈ Ω | each α ∈ C is an attribute of ω},

then (B,C) is a concept, if and only if

B = C ′ and C = B′.

We note in passing that this implies C ′′ = C as well as B′′ = B.

The concepts obtained from a given context form a partial order ¹, defined by

(B, C) ¹ (D,E) ⇐⇒ B ⊆ D ⇐⇒ C ⊇ E,

(B, C) is said to be a subconcept of (D,E), (D,E) a superconcept of (B, C). This partially
ordered set of concepts is even a lattice, i.e. for two concepts there exists both an infimum
(= the biggest subconcept of both of them) and a supremum (= the smallest superconcept
of them). Hence we may call this partial order the lattice of concepts corresponding
to the context in question. It is in fact a complete lattice.
Here is, for example, the Hasse diagram of the lattice of concepts corresponding to the
context on the “four elements”:
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The letters F, A, E, W label the smallest concepts containing the objects F,A, E,W in
their content, i.e. F, for example, labels the concept (B, C) = ({F}′′, {F}′). Correspond-
ingly, the attribute w, say, labels the concept (B,C) = ({w}′, {w}′′). It is important to
notice that the lattice of concepts given obviously allows to reconstruct the context

ω\α w c d h
F 1 0 1 0
E 0 1 1 0
W 0 1 0 1
A 1 0 0 1

and in fact, also in the general case, the lattice of concepts, better say the Hasse dia-
gram of the lattice of concepts perfectly reflects and visualizes the information
contained in the context in question! For example, we can easily read off from the
above diagram, that fire is supposed to be warm and dry (and neither humid nor cold).
This is why Hasse diagram techniques (HDT) are so helpful and important.

This context on the four elements contains, besides zeros, entries of just one further
value. We call such contexts one-valued contexts. There is an obvious generalization,
for example the following context that may express our feeling that water is more humid
than air, for example,

ω\α w c d h
F 2 0 2 0
E 0 1 1 0
W 0 1 0 2
A 1 0 0 1

Such contexts are called many-valued contexts. They can easily be transformed into
a one-valued context. This transformation is called scaling, and the scale can be chosen
in a problem oriented way. For example, a self-explaining scaling of the above two-valued
context is

ω\α w≥ 2 w≥ 1 c≥ 2 c≥ 1 d≥ 2 d≥ 1 h≥ 2 h≥ 1
F 1 1 0 0 1 1 0 0
E 0 0 0 1 0 1 0 0
W 0 0 0 1 0 0 1 1
A 0 1 0 0 0 0 0 1

A different scaling uses the attributes

w ≤ 2, w ≤ 1, c ≤ 2, c ≤ 1, d ≤ 2, d ≤ 1, h ≤ 2, h ≤ 1,

for example.

Sometimes there are too many different entries, and the entries are not integral. In this
case we can use a method that Brüggemann et al. applied to environmental contexts:
Take the mean-value m in a column and replace an entry in that column by 0 if it is < m,
by 1 otherwise (see [5]). Clearly, they also consider a more refined view, using more than
two intervals.

Generalizing the situation of one-valued contexts we obtain the following definition:
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Definition: A generalized context or order context is a triple K = (X,Y, ϕ), where
both X and Y are partially ordered sets and ϕ: X → Y is a Galois mapping (i.e. there
exists another mapping ψ: Y → X such that (ϕ, ψ) is a Galois connection between the
posets, which means that both mappings are antitone and their compositions ϕψ and ψϕ
are extensive). A special case is a power set context, where

X = P (Ω) = {M | M ⊆ Ω}, Y = P (A) = {N | N ⊆ A},

the power sets of Ω and A, respectively, ordered by inclusion, and ϕ, ψ the derivations

ϕ: P (Ω) → P (A), B 7→ B′, ψ: P (A) → P (Ω), C 7→ C ′.

Hence the one-valued contexts are power set contexts. More important is that this defi-
nition allows an easy generalization to the fuzzy case as well.

Consider L-contexts, where the entries are elements of a partial order, or even a lattice
L. An example of an L−context about environment can be obtained from Brüggemann’s
table on pollution (by Pb, Cd, Zn and S) of the regions of Baden-Württemberg ([5]),
measured in herb layers (HL), tree leaves (TL) etc.:

region\pollution (HLPb,HLCd,HLZn, HLS) (TLPb, TLCd, TLZn, TLS) . . .
06 (1, 0.07, 29, 1750) (0.6, 0.04, 22, 1620) . . .
08 (1.5, 0.07, 27, 1750) (0.9, 0.1, 33, 1890) . . .
...

For example, the two entries in the first column are incomparable, while the entries in
the second column can be compared:

(0.6, 0.04, 22, 1620) < (0.9, 0.1, 33, 1890).

Simple examples taken from environmental chemistry are not available, hence for demon-
stration a fictitious example is given. Let Ω be the set of objects {N, P, S, T}. Let
furthermore the set A of attributes be {a, b, c, d, e, f}. Then an L-context may be given
as follows (it is in fact a context containing test results published in the computer journal
c’t some time ago, and the reason that the entries are pairs of evaluation results is due to
the fact that the objects were read/write machines for compact discs and for DVD’s and
that there are two different standards for reading and writing such discs):

a b c d e f
N ++, ++ −,− −−, ◦ +,− −,−− +, ◦
P +,− −,− ◦,− −−, + −, ◦
S ++, ++ ◦, + +, ◦ ++,−− −,−
T ◦,− ◦, ◦ −,− +, + +, ◦

The partial order used is the cartesian product of the linear order −− < − < ◦ < + < ++
with itself:

L = {−− < − < ◦ < + < ++} × {−− < − < ◦ < + < ++}.
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The elements of L are pairs (x, y), the components x, y of which belong to the totally
ordered set {−− < − < ◦ < + < ++}, and the partial order L of pairs is defined by

(v, w) ≤ (x, y) ⇐⇒ v ≤ x and w ≤ y.

It is clear how such a context containing pairs can be replaced by a one-valued context via
separating the components of the pairs of the entries, obtaining a many valued context
and then scaling (cf. [8],[9],[10],[14],[3]).

Thus, most generally, we consider a set Ω of objects ω, a set A of attributes α, together
with a lattice (L,∧,∨) i.e. a partial order such that for each pair of elements λ, µ ∈ L
there exists the infimum λ∧µ and the supremum λ∨µ. For sake of simplicity we assume
that Ω, A and L are finite, as in most applications, and we define the L-power set of
M (for more details on fuzzy sets and concepts see [13],[11],[14]) to be the set PL(Ω) of
mappings BL: M → L (ordered by BL ⊆ B∗

L iff BL(m) ≤ B∗
L(m), for each m ∈ M). Using

this notation we define:

Definition: An L-Fuzzy power set context is a triple K = (PL(Ω), PL(A), ϕ), where

ϕ: PL(Ω) → PL(A)

is a Galois mapping. An L-Fuzzy concept is a pair (BL, CL) of L-Fuzzy subsets BL in
PL(Ω) and CL in PL(A) such that ϕ(BL) = CL and ψ(CL) = BL, if (ϕ, ψ) is the Galois
connection.

Here is the lattice of L-Fuzzy concepts corresponding to the example of an L-Fuzzy context
given above ([3]). It shows, among many other things, that with respect to both attributes
c and d, the object S has the best test results, while T is best with respect to e. N and T
are the best – and of equal quality – with respect to the attribute f. Moreover, if we are
looking for an object with c ≥ ◦, ◦, then we can choose between S and T, and if we insist
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that also d ≥ ◦, ◦, the only product that remains is S.
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For more details, see [10] and [14].
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