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Abstract 

The appearance of the White Book of the EU has refreshed the interest in ranking systems for 

chemicals. Many ranking schemes have a very simple mathematical structure: The chemicals 

are characterized by several attributes, such as fate descriptors in surface waters. These 

attributes are then combined by an appropriate method in order to derive a ranking index 

which gives a linear order. One simple method belongs to the approach of utility functions 

and implies by a weighting scheme the complete compensation among different attributes. An 

alternative approach is that of the Hasse Diagram Technique, where a dominance of one 

chemical over another is only established, if all attributes simultaneously support this 

dominance. The link between both extremes, namely that of utility functions and that of Hasse 

Diagram Technique, is the set of linear extensions, LE, which can be deduced from the partial 

order found by Hasse Diagram Technique. It is shown that any weighting scheme within the 

utility function approach will reproduce one linear order of the set of linear extensions. Hence 

it is of interest to characterize the LE set by statistical methods. One of the most promising 

methods is to calculate the averaged rank. The averaged rank depends solely on the structure 

of the Hasse Diagram, which in turn is an order theoretical representation of the data matrix. 



1 Introduction 

The evaluation of chemicals is of renewed interest, as the appearance of the "White book" by 

the European Community shows [1]. Risk assessment of chemicals based on available data is 

of specific interest as it allows to identify chemicals of high environmental and health hazard. 

However, such careful risk assessment is time and cost intensive and therefore priority setting 

by ranking methods is of major importance (see also [2]). Without going into details the 

priority setting of chemicals by ranking methods is mainly performed by a numerical 

combination of available chemical attributes including their weighting. The aim is to form a 

ranking index which provides a linear order. This procedure, however, implies a complete 

compensation among attribute values: A bad evaluation on one attribute can be compensated 

for by a good one in another attribute. As attributes describe different chemical 

characteristics, such as volatilization or sedimentation fluxes, a compensation can be 

questionable in general.  

An alternative approach to sort chemicals is the Hasse Diagram Technique (HDT), which can 

be considered as a specific partial order. The chemicals are to be sorted with respect to their 

potential environmental hazard, as follows: Let be q(i) appropriate attributes by which the 

chemicals are to be ordered. Traditionally, in HDT the set of attributes is called the 

information basis, IB1. Let further x, y be two chemicals, and q(i,x) the value of the ith 

attribute of the chemical x (i=1,...,m) . Then x ≥ y (read x is evaluated worse or equal than y) 

if and only if q(i,x) ≥ q(i,y) for all i=1,...,m. The mere fact that x is comparable with y, i.e. x ≥ 

y or x ≤ y will denoted by x ⊥ y. We call the set G of N elements (here: chemicals), the 

ground set. By R ⊂ G × G an equivalence relation is introduced as follows: 

 

GyxandIBiqyiqxiqyRx ∈∈∀=⇔ ,)(),(),(:      (Eq. 1) 

 

In the following we assume that the quotient set G/R can be identified with G (i.e. there is no 

equivalence class with more than one element of G). Let be x, y ∈ G. If x ⊥ y is not valid, 

then x is incomparable with y. Incomparability between two elements x and y is denoted as  

x || y. 

                                                 
1 Note that in the well known Formal Concept Analysis [3] the information base is also simply called the 
attribute set. 
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The partially ordered set (abbr.: poset) can be denoted either by (G, ≤) or by (G, IB), because 

the ≤-relation is based on the simultaneous comparison of attribute values q(i,x), x ∈ G, 

q(i) ∈ IB. For more details, see [4]. Consequently, compensation is excluded and appears as 

"incomparability" among chemicals. 

Information which chemical should be considered as important, can be deduced from the 

Hasse Diagram, without a difficult weighting process. However, due to incomparabilities the 

identification of one worst chemical is often no more possible. Therefore it is a good strategy 

to add besides the results of HDT a linear order which is solely based on the graph theoretical 

structure of the Hasse Diagram and which also avoids the difficult weighting process. Such a 

linear order can be deduced by the so-called averaged height of posets [5], which is called an 

averaged rank in applicational studies [6]2. We demonstrate the use of Hasse Diagrams by a 

real life example to evaluate chemicals detected in the river Main, Germany, and show that in 

many cases a statistical characterization by averaged ranks can easily be obtained by a simple 

probability scheme.  

 
2 The link between utility function approach and partial orders 

The utility function approach has a firm theoretical foundation [7], unfortunately this 

approach is often used in a simple manner. In the simplest form of the utility approach one 

proceeds as follows: (1) Select attributes q(i) ∈ IB, (2) define individual preference functions 

for any of these q(i): fi(q(i)), (3) find individual weights gi for each fi(q(i)), (4) calculate a 

ranking index Γ(x) for a chemical x ∈ G by equation 2 (see below) and (5) order the 

chemicals by their Γ(x)-values. 

 

∑
=

⋅=Γ
m

1i
ii xiqfgx )),((:)(         (Eq. 2) 

 

Between evaluation techniques like that of the utility functions and that of the HDT, described 

in section 1,  a link can be found as follows: 

1. From the partial order (G, IB) the set of linear extensions, LE can be obtained [8]. 

2. If there are no ties (i.e. equivalence of chemicals with respect to the function Γ) any 

utility function positive monotonous in q(i) leads to a linear ranking, which must be 
                                                 
2 Note that the concept of "averaged rank" does not imply that (G,IB) has a rank-function! 
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one of the linear extensions, obtained from the partial order. Note, however that the 

reverse need not be true: Simple counterexamples show that not each linear extension 

can be thought of as a result of an equation such as Eq. 2.  

3. The statistical characterization of LE is of interest. One characteristic value which can 

be found from LE is the averaged rank, Rkav, for each element of G. 

4. By Rkav a linear order is induced. 

Taking this approach, the concept of partially ordered set is not replaced by another linear 

order, but a measure is derived, which is independent of weight factors gi and which does not 

depend on transformations of the attributes as far as they let the partial order invariant. The 

benefits are that it can be used as an internal mean in order to compare results of other ranking 

schemes and it summarizes the complex information of a partial order. Hence, the linear order 

induced by the averaged ranks is thought of as an additional help for decision makers. 

Especially in complex diagrams this linear order might be a convenient tool. Figure 1 shows 

schematically the basic idea: 

 

 

 

 

 

 

 

 

 

Figure 1: Relation between partially ordered sets and linear ranks induced by averaged ranks 

 

3 The concept of averaged ranks 

Taken the linear extensions of a partial order, the so called spectrum λ(x) of an element x can 

be calculated (see for example [12]): The ith component, λi(x), of the spectrum λ(x) is the 

frequency how often an element x ∈ G has the rank i in the set of the linear extensions. (Note, 

as the linear extensions are linear orders, a rank function exists.) Clearly ∑ λi(x) = LT, the 

number of linear extensions. The exact averaged rank of any element is then found by 

equation 3: 
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Equivalently one may write: 

 

LT

jxrank

xRkav

LT

j
∑

=

),(

)(         (Eq. 3b), 

 

where rank(x,j) is the rank of element x taken the jth linear extension having a value 

i ∈ {1,...,N}. Note that even in this most general case, elements of the ground set G may be 

equivalent, as their spectrum is equivalent. One may define an appropriate equivalence 

relation, by the equality of  Rkav -values. Especially in symmetric Hasse Diagrams one may 

find many nontrivial equivalence classes. The equivalence relation we define as follows: 

Let be A ⊂ G × G then: 

 

)()(: yRkavxRkavxAy =⇔         (Eq. 4) 

 

As later different approximations for the averaged rank are discussed, equation 4 may be 

specified by indices, like Ai, Rkav(i)(x).  

 

4 The concept of local partial order models 

4.1 Introductory remarks 

In a preceding paper [9] the concept of a local partial order model (LPOM) was introduced. 

The main idea, outlined there, was: 

• Select one element x ∈ G 

• Find a partial order which represents as far as possible the order relations for x and 

which is simple enough to 

• derive an estimation formula for the averaged rank of x. 

Here we generalize the estimation procedure by introducing different degrees of 

approximation. That means that we intend to analyze more and more complex local partial 
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orders, LPOM(i), and derive the corresponding approximations for the averaged rank, Rkav(i) 

(i= 0,1,2,3,....). 

 

4.2 Basic definitions 

Cardinalities 

Cardinalities of finite sets are denoted by | ...|. For example: 

||: GN = , is the number of elements of G, here the number of chemicals    

 

Important sets 

Furthermore the principal order ideals, O(x), principal order filters F(x), generated by x ∈ G 

and the set of elements incomparable with x, U(x), are of interest: 

 

O(x): ={y ≤ x  : y ∈ G}        (Eq. 5a) 

F(x): = {y ≥ x  : y ∈ G}.        (Eq. 5b) 

U(x): = {y || x  : y ∈ G}        (Eq. 5c) 

 

We call the elements ≠ x of O(x) the successors of x, the elements ≠ x of F(x) the 

predecessors of x and the elements y ∈ U(x) the x-incomparable elements. 

 

Cover relation 

Let x, y, z be elements of G. The element z covers x, if and only if x < z and for all y we have 

that x ≤ y ≤ z implies y is either x or z. We also say: z covers x or x is covered by z. 

 

Connection 

Let x, y ∈ G. If there is (in an ordinary graph theoretical sense) a path from x to y then we call 

x, y to be connected.  

 

4.3 The S-x-P - construction and U(x) - transformation 

4.3.1 The S-x-P - chain  

A modified ground set, G', related to x is introduced: 

 

)()(:)(' xFxOxG ∪=          (Eq. 6) 
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An order preserving map φ is applied, such that 

 

φ(G',IB) is a linear order.         (Eq. 7a) 

 

The linear order φ(G',IB) is called the S-x-P - chain (S ; successors of x , P predecessors of x). 

z ∈ S-x-P is an element of O(x) or F(x) which is mapped by φ onto the linear order φ(G',IB). 

If z ≠ x, then z is an element below or above x. We write: 

 

S-x-P := φ(G',IB)         (Eq. 7b) 

 

According to incomparabilities in O(x) and F(x), respectively, there can be found many 

mappings φ, which do the job. Based on the experiences in deriving Rkav(1)(x) it is expected 

that Rkav(i) is mainly depending on |O(x)| , |F(x)| and |U(x)|. Therefore any arbitrarily selected 

φ might be applied on (G',IB). However, as Figure 3 exemplifies, the order relation z ∈ G', 

y ∈ U(x) is affected by the specific selection of φ.  

 

 

 

 

 

 

 

 

 

Figure 2: A simple partial order whose S-x-P - chain is not uniquely defined. In order to 
clarify the argument, the elements of G' are differently hatched. The black circle symbolizes 
the specifically selected element x. The right side shows two possible S-x-P - chains. 
 

In the following we assume that one S-x-P - chain can be selected. 

 

4.3.2 The U(x) - transformation 

We introduce (if necessary) new order relations such that for each single element y ∈ U(x): 

y ∈ U(x) covers exactly one z ∈ S-x-P or      (Eq. 8a) 

or 

(a) (b) 
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y ∈ U(x) is covered by exactly one z ∈ S-x-P or (exclusively)   (Eq. 8b) 

there may be some  

y ∈ U(x): y || z  and for all z ∈ S-x-P (these elements are isolated)   (Eq. 8c) 

We call the element z ∈ S-x-P of equation 8a an "lower anchor point" and write ay
<.  

We call the element z ∈ S-x-P of equation 8b an "upper  anchor point" and we write ay
> . 

Note that -by assumption- the location of the anchor points within the S-x-P - chain is well 

defined. 

Considering one single y ∈ U(x), equations 8a - 8d lead to four cases: 

1. y ∈ U(x) has only one lower anchor point     (Eq. 9a) 

2. y ∈ U(x) has only one upper anchor point     (Eq. 9b) 

3. y ∈ U(x) is covered by an upper and covers a lower anchor point   (Eq. 9c) 

4. y ∈ U(x) is not connected with the S-x-P - chain, i.e. is isolated at all  (Eq. 9d) 

 

Now a partitioning of U(x) can be found due to the following equivalence relation: 

 

y1, y2 ∈ U(x): y1∼y2:⇔ same equation 9_i (one of the four equations) 

and the same anchor point(s)        (Eq. 10) 

 

Let Ui(x) be the subset of U(x), obeying one of the equations 9 and with the same anchor 

point(s), then we write for the anchor point aUi. By equation 10 the set U(x) will be 

partitioned: 

 

U(x) = U1(x) ⊕ U2(x) ⊕... ⊕Ui(x) ⊕ Ui+1(x) ⊕ ...⊕ Uk(x) ⊕ Uk+1(x) ⊕...  (Eq. 11) 

i,k ∈ {3,4,....} 

 

U1(x): all elements of U(x) having the same lower anchor point aU1 

U2(x): all elements of U(x) having the same lower anchor points aU2 ≠ aU1 

... 

Ui(x): all elements of U(x) having the same upper anchor point aUi 

Ui+1(x): all elements of U(x) having the same upper anchor point aUi+1 ≠ aUi 

... 
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Uk(x): all elements of U(x) having the same upper and lower anchor points  

Uk+1(x): all elements of U(x) having the same upper and lower anchor points, but differ in at 

least one anchor point from the setting of Uk(x). 

An example might be helpful (Figure 4): 

 

 

 

 

 

 

 

 

 

 
Figure 3: For element x in the empirical Hasse Diagram (left side, x: black circle) a LPOM(i) 
is to be found. The lower anchor points are arbitrarily located in the chain below x. The upper 
anchor point gets a unique position, because for all elements z∈ F(x)  z ⊥ a>

y. The set U(x) 
(five elements) can be partitioned into 4 subsets.   
 

 

4.4 Different Local partial order models (LPOM(i)) 

In order to estimate the averaged rank by local partial order models the main idea is:  

1. to select the element x,  

2. find O(x), F(x) and U(x)  

3. to apply mapping φ (equation 7) 

4. to select one S-x-P - chain and 

5. to perform the U(x) - transformation. 

 

4.4.1 LPOM(0)3 

This model assumes 

1. the S-x-P - construction and  

2. U(x) is an empty set. 

                                                 
3 Note that the enumeration scheme of the local partial order models used here deviates slightly from that used in 
[9]. 
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If there are no elements y ∈ U(x), then the averaged rank of x in (G, IB) is easily determined: 

As any linear extension is obtained from an order preserving map, all elements 

y ∈ (O(x) - {x}) will be located below x. Similarly, all elements y ∈ (F(x) - {x}) will be 

located above x. Therefore, the number of elements ≤ x is independent of the selected linear 

extension (i.e. independent of the selected S-x-P - chain) and is always |O(x)|. Hence we 

arrive (applying equation 3b) at  

 

Rkav(0)(x) = |O(x)|         (Eq.12). 

 

4.4.2 LPOM(1): 

This model assumes: 

1. the S-x-P - construction 

2. U(x) is not empty 

3. for all y ∈ U(x), z ∈ S-x-P  is valid: y || z  

4. the U(x) transformation, i.e. all elements of U(x) are mutually incomparable 

 

As there are no cover relations between elements of S-x-P and elements of U(x), the arbitrary 

choice of one S-x-P - chain does not affect the estimation of the averaged rank. In a previous 

publication [9] it was shown that then two relations can be derived: The first one is based on 

the fact that the averaged rank Rkav(1)(x) takes values in the closed interval [|O(x)|, 

|O(x)|+|U(x)|]. Rkav(1')(x) is just the mean of the two limiting cases (in [9] called Rkav(0)). 

 

Rkav(1')(x) = |O(x)|+|U(x)|/2 x ∈ G       (Eq. 13)  

 

However, Rkav(1')(x) ,calculated by equation 13 is a poor approximation, see for details [9].  

The second one takes into account that the averaged rank will not only depend on |O(x)| and 

|U(x)| but also on the number of predecessors, i.e. on |F(x)|. The calculation of Rkav(1)(x) was 

fully discussed in [9]. However, in order to show the similarity in the arguments, beginning 

with LPOM(0), stopping with LPOM(3), we sketch the derivation:  

The minimum value of Rkav is, as in equation 12: 

 

Rkav(1)min(x) = |O(x)| 

- 498 -



The maximum value would be 

 

Rkav(1)max(x) = |O(x)| +|U(x)|    

 

Both equations may be combined by: 

 

|)(||)(|)()( xUwxOxRkav 1 ⋅+=        (Eq. 14) 

 

The quantity w varies between 0 and 1 and can be interpreted as probability that |U(x)| sees 

only the positions below x within the S-x-P - chain. Hence the probability w can be estimated 

by the number of positions for U(x) below x divided by the number of all available positions. 

As a chain, the S-x-P - chain is supposed, the probability is given as follows: 

 

w = |O(x)|/(|O(x)|+|F(x)|)  

 

Within LPOM(1) the final result is therefore: 

 

|)(|
|))(||)((|

|)(||)(|)()( xU
xFxO

xOxOxRkav 1 ⋅
+

+=      (Eq. 15) 

  

Equation 15 shows that the estimation of the averaged rank by equation 13 will only lead to 

reliable results, if |O(x)| ≈ |F(x)| . The equation 15 implies that the averaged rank Rkav(1)(x)  

- and by this a linear order - can be deduced from very simple quantities, namely |O(x)|, |F(x)| 

and |U(x)|. As in the theory of topological indices, a motive for deriving more sophisticated 

estimates of the averaged rank is just to reduce the degeneracy, i.e. to get as small equivalence 

classes due to A (or Ai) due to equation 4. E.g., the reduction of the degeneracy is 

documented by equation 15 (three variables) in comparison to equation 13 (only one 

variable).  

The LPOM(1) is satisfying in that sense that all further models depend more or less crucially 

on the assumption that exactly one S-x-P - chain is selected. As there are no cover relations 

between z ∈ S-x-P and y ∈ U(x) the result (equation 15) does not depend on the selection of 

S-x-P. 
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If such cover relations are to be taken into account, we will at least reduce the problem of 

degeneracy, however, if the assumptions made are justified is a question which we solved by 

an empirical study.  

 

4.4.3 LPOM(2) 

The derivation of equation 15 is based on the assumption that x-incomparable elements are 

isolated. This assumption is seldomly justified. For example in the poset, whose Hasse 

Diagram is shown in Figure 4 all elements of U(x) are connected with one element z ∈ O(x). 

We assume: 

1. validity of the S-x-P - construction  

2. U(x) is not empty 

3. the elements of U(x) cover either exactly one lower anchor point or (exclusively) are 

covered by exactly one upper anchor point.  

4. the elements of U(x) are mutually incomparable  

The procedure is sketched for the case, where a lower anchor point is assumed.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The type of local partial order which is considered in LPOM(2). The element x is 
symbolized as grey circle. |F(x)|=3, |O(x)|=4, |U(x)|=2. The element y covered by the elements 
of U(x) is called the anchor point of U(x) : a<

y.  
 

 

As a S-x-P - chain is supposed, it is useful to define the interval 

F(x) 

O(x) 

U(x) 
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I(a<
y, x) = {z ∈ S-x-P: a<

y < z ≤ x}= (O(x) - O(a<
y))      (Eq. 16) 

 

As there is no partitioning of U(x) we write for the lower anchor point simply aU. 

Similar to the approach in LPOM(1) we set: 

 

|)(||)(|)()( xUwxOxRkav 2 ⋅+=  

 

w is the probability to find a location below x and is estimated by: 

 

|)(||),(|
|),(|

xFxaI
xaIw

U

U
+

=  

 

Hence we arrive at: 

|)(|
|)(||),(|

|),(||)(|)()( xU
xFxaI

xaIxOxRkav
U

U
2 ⋅

+
+=      (Eq. 17) 

 

Now, the averaged rank is not only depending on |O(x)|, |F(x)| and |U(x)| but also on the 

location of the anchor point, here of the lower anchor point. If, several S-x-P - chains can be 

found, where the location of the anchor point varies, an uncertainty arises. Future studies have 

to solve this ambiguity. Beyond this, applying the S-x-P - and U(x) - transformation on 

empirical posets such that only one anchor point is allowed, is seldom a good approximation. 

In the next model the S-x-P - construction is still maintained and also the U(x) - 

transformation, however within the S-x-P - chain there are several anchor points allowed 

which are related to subsets of U(x).  

 

4.4.4 LPOM(3) 

Assumption and steps 

1. A S-x-P - chain will be formed  

2. Anchor points can be defined after forming the S-x-P - chain. 

3. U(x) will be partitioned according to equation 11. 

4. Elements of Ui(x) are mutually incomparable and obey the four cases, described by 

equations 9a to 9d.   
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By LPOM(3) the graph - theoretical structure, regarding the elements of U(x) is considered in 

more detail. Figure 5 shows two examples. Figure 5 (a): Step 1: The S-x-P - construction: The 

S-x-P - chain of this partial order can be uniquely defined. A unique lower anchor point 

(covered by one element of U(x), hatched diagonally) and a unique upper anchor point 

(covering two elements of U(x), hatched diagonally) can be found. Here an arbitrary selection 

was done. Step 2: The upper anchor point is considered as covering two elements of U(x).  

Figure 5 (b): Step 1: The S-x-P - chain of this partial order cannot be uniquely defined. The 

vertically hatched element of O(x) may be located in several ways. However, only one 

possibility is shown. Step 2: U(x) - transformation: Partitioning of U(x). Two elements 

(horizontally hatched) are connected with a lower anchor point, for the other four elements of 

U(x) (diagonally hatched) there is no comparable element of the S-x-P - chain. 

 

Definition of several quantities:  

As now by the principle of LPOM(3) only the S-x-P - chain and the x-incomparable elements 

in cover relations are considered we simplify -as before- the notation and introduce the 

following quantities: 

 

|},,:{|:),( rzsandPxSsrzzsrI <<−−∈=      (Eq. 18a) 

|},:{|:)( rzandPxSrzzrI <−−∈=       (Eq. 18b) 

),(),()(: 1212 axIaaIaIIT ++=        (Eq. 18c) 

2xFxUITn 1tot +++= |)(||)(|:        (Eq. 18d) 

 

Note that the intervals do not contain the interval limits. 

In Figure 6b the defined quantities are exemplified: Partitioning is performed due to equation 

11. All elements of Ui(x) have the same lower anchor point (i=1,2). The black circle 

symbolizes x ∈ G. Thus, we consider a model system with two sets : U1(x) = {u1,1 , u2,1,..., 

uk1,1} and U2(x) = {u1,2, u2,2, ...,uk2,2} (only two are shown). All elements of any of these two 

Ui - sets are considered as mutually incomparable according to the demand of covering in 

equation 8 (U(x) - transformation). 
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(a)   

 

 

 

 

 

 

 

 

(b) 

Figure 5 a: Examples of partial orders, where x-incomparable elements are not isolated. The 
element x is black coloured, the incomparable elements are hatched. The S-x-P - construction 
and the U(x) - transformation are performed in corresponding two steps (see text). 
 

Step
1 

Step
2

Step 
1 

U1(x) U2(x)

Step 
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     (a)           (b)  

Figure 6 (a): The S-x-P - chain and two subsets of U(x). (b): Explanation of the notation used 
in equations 18a - d. 
 

Derivation of an estimate of Rkav(3) according to LPOM(3) 

Instead of deriving a closed formula of the LPOM(3) we outline the strategy of deriving 

equations with the example of the Hasse Diagram, shown in Figure 6.  

For deriving an equation for Rkav(3) one may start as for the other models: 

 

|)(|'|)(|'|)(|)()( xUwxUwxOxRkav 22113 ⋅+⋅+=      (Eq. 19) 

 

 

 

 

 

 

 

 

 
Figure 7: The diagonal hatched element sees three position in the S-x-P - chain. These 
positions are marked with arrows. If a position of an element below x (the black circle) is 
taken, then the element vertically hatched sees 4 positions below and two above x (dotted 
arrows). 
 

U1 with k1  U2 with k2 
elements  elements 

aU2 

aU1 

aU2 

aU1 

U1(x) U2(x) 

F(x) 

I(x,a1) 

I(a1,a2) 

I(a2) 
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Even though, we finally arrive at an equation such as equation 19, this equation hides a trap: 

The terms w'1 and w'2 are not independent from each other: Merging U1(x) into the 

S-x-P - chain, will change the probability for U2(x) to be located below or above x, and the 

other way round. By Figure 7 the problem of mutual influence of the Ui(x)-subsets is 

demonstrated. In seeking for positions of U1(x) within the S-x-P - chain there are two 

possibilities: 

(1) U1(x) sees successors of x and locating  U1(x) below x may have the probability w1; and 

(2) U1(x) sees predecessors of x. The probability to locate the U1(x) above x is w2. 

After locating the U1(x) - set in one of the accessible parts above or below x in the 

S-x-P - chain, the U2(x) - set sees an extended S-x-P - chain. The location of the U2(x)-set 

depends now on how many positions are available below or above x. For example, if the 

extended S-x-P - chain is found by locating the U1(x) set below x (with probability w1) then 

the U2(x)-set has the probability w11 also to be located below x. The probability w11 must take 

into account the number of positions below x, in comparison to all -now available- positions, 

by counting the additional positions of U1(x) too. The probability that both events, U1(x) 

below x and U2(x) below x in the extended S-x-P - chain appear, is the product w1*w11. 

Therefore an event-tree is the appropriate graphical scheme to describe the process of locating 

subsets of U(x) within the S-x-P - chain, see Figure 8. The number of positions for merging 

U2(x) depend on the step done before, i.e. by which U1(x) is positioned within the S-x-P - 

chain. According to the below-x, above-x - consideration and assuming only two Ui-subsets 

there are four possible ranks and correspondingly four probabilities to get these ranks 

(equations 20a-d): 

 

prob [rk(x) = IT+3+|U1(x)|+|U2(x)|]   = w1*w11      (Eq. 20a) 

prob [rk(x) = IT+3+|U1(x)|]    = w1*w12      (Eq. 20b) 

prob [rk(x) = IT+3+|U2(x)|]    = w2*w21      (Eq. 20c) 

prob [rk(x) = IT+3+0]    = w2*w22      (Eq. 20d) 

 

The probabilities wi are easily calculated as only the available positions for the U1(x)-set 

above or below x in the S-x-P - chain are to be counted and divided by the count of all 

accessible positions in the original obtained S-x-P - chain. Similarly the probabilities wij for 

the location of the U2(x) are to be calculated in counting the available positions above and 
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below x in the extended S-x-P - chain. Compare the event tree, shown in Figure 8 and Table 1 

for the relevant equations. 

 

Table 1: Calculation of wi, wij  

First step Second step 

w1=(I(x, ak1)+1)/(I(x, ak1)+|F(x)|+1) w11=( I(a1, a2) + I(x, a1) +|U1(x)|+2)/ntot 

 w12=|F(x)|/ntot 

w2=|F(x)|/(I(x, ak1)+|F(x)|+1) w21=( I(a1, a2) + I(x,a1) +2)/ntot 

 w22=(|F(x)|+|U1(x)|/ntot 

ntot= I(a1, a2) + I(x, a1) +|U1(x)|+|F(x)|+2 

 
Combining the information, given in Table 1 and that of equations 20 a-d, one arrives at the 

final equation to calculate Rkav(3) and the system, shown in Figure 6 

 

|))(|
|))(||)((||))(||)((|

|))(||)(||)((|)()(

xOww
xUxOwwxUxOww

xUxUxOwwxRkav

222

22121121

211113

⋅⋅+

+⋅⋅++⋅⋅+

++⋅⋅=

      Eq. (21) 

 

Rearranging the equation 21: 

 

...|)(|)()()( +⋅⋅+⋅+⋅+⋅= xOwwwwwwwwxRkav 2222121211113  

 

The sums w11+w12 , w21+w22 and w1+w2 equal 1, therefore we arrive at:   

 

|)(|)(|)(||)(|)()( xUwwwwxUwxOxRkav 2212111113 ⋅⋅+⋅+⋅+=   (Eq. 22) 

 

Hence, comparing with equation 19 w1' = w1, however w2' = (w1w11+w2w21) is a little bit 

more complicated expression, taking into account that merging of U2(x) depends on the 

manipulation of U1(x). We observe that obviously the order of merging of the two subsets 

U1(x) and U2(x) respectively is important. The reason is that the merging of U1(x) and U2(x) 

into the S-x-P - chain should be done simultaneously or at least by merging the elements of 

U(x) one by one into the S-x-P - chain. However, by deriving equation 21 the merging was 
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done stepwise, "en bloc" for any subsets of U(x). Empirically we found that better results are 

found if first that U(x)-subset should be merged, which "sees" more positions below x. More 

complicated event trees can be analyzed, if other model systems under the premises of 

LPOM(3) are of interest. For example a LPOM(3) like that shown in Figure 9 would need an 

event tree with four steps, because four U(x) - subsets can be found, whereas local partial 

orders like those shown in Figure 6 can be represented by an event tree with two steps (Figure 

8). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Event tree. Beginning with the "starting point": Lines downwards are associated 
with merging an Ui(x) subset into the part below x and hence enhancing the averaged rank, 
lines upwards are associated with merging into the part above x. "ext. S-x-P": by U1(x) 
extended S-x-P - chain.  
 

4.5 Validation study 

A validation study was performed, taken from a series of Hasse Diagrams of the type shown 

in Figure 6 with varying |U1(x)|, |U2(x)|, S(x,a1), S(a1,a2), S(a2). As for any element of the 

Hasse Diagrams the averaged rank can be calculated there are in the total 93 test cases.  

starting  
point 

 

 

 

 

 

w21: U2(x) → below x 

 

w22: U2(x) → above x,  ext. S-x-P 

Rk(x) =|O(x)|+ … 
 
 
0 
 
 
 
 
 
 
|U2(x)| 
 
 
|U1(x)| 
 
 
 
 
 
|U1(x)|+|U2(x)| 

w1: U1(x)→ below x 

w2: U1(x) → above x 

w11 : U2(x)→ below x ,  ext. S-x-P 

w12: U2(x) → above x 
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Figure 9: The local partial order found for x (grey circle) contains one U-subset (two 
elements) having an upper and a lower anchor point, one U-subset (only one element) having 
exclusively one upper anchor point, one U-subset (three elements) having one lower anchor 
point and finally one U-subset of isolated elements at all. 
 

No one of these test Hasse Diagrams had more than 17 elements in order to to able to 

calculate the exact values Rkavexact by applying the software WHASSE [11]. The results are 

shown in Table 2. Although the correlation coefficients r2
DF are very good in both cases, the 

dramatically improved F-value and especially the small value for t in case of Rkav(3) show the 

improvements. As even for partial orders of the type shown in Figure 6 the equation 19 has to 

be considered as an approximation, the validation study shows promising results. The "en 

bloc" merging as a crucial point of approximation is at least for partial orders of moderate size 

acceptable. 

 

Table 2: Comparison of the equation for Rkav(3) (equation 21) with the Rkav(1)(equation 15).  
Rkav(3) = s*Rkav exact + t , estimation of s and t by SPSS(R) 
 
 cases N |U1(x)|+|U2(x)| r2

DF t s F-

statistics 

Rkav(3) 93 ≤17 ≤7 1.00 -1.2E-5 1.00 1,8E10 

Rkav(1) 93 ≤ 17 ≤7 0.959 -1.99 1.102 2172.5 

 

 

5 The "real life" example. 

For river management purposes, the chemical pollution of the river Main, Germany (Bavarian 

part) was investigated. Typically in water samples polycyclic aromatics (PAHs), 

polychlorinated biphenyls (PCBs) and some volatile chemicals were detected (Table 3). The 

steady state model EXWAT [13], as part of the evaluative model package E4CHEM [13, 14] 
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was applied to derive fate descriptors. These were the degree (scores) of  (i) sedimentation, 

(ii) volatilization, (iii) persistence and (iv) transport down streams (see appendix). The 

diagram, discussed here, is a very simple one and averaged ranks are considered here just for 

demonstration of the method (nevertheless convenient for decision makers). Note that in [14] 

a Hasse Diagram, of the river Main pollution is shown, which includes more chemicals.  

After selecting an element x ∈ G of interest, instead the empirical Hasse Diagram like that 

shown in Fig. 10 a local diagram around x is considered. If |G| elements are in the ground set 

G, then -at the maximum- |G| different local model diagrams are to be analyzed. In the most 

simple approximation, namely the Rkav(1), each local Hasse Diagram consists of a chain, 

containing the actually selected x object and some objects incomparable to x (x-incomparable 

elements or objects) which however are considered as isolated. In Figure 11 the local Hasse 

Diagrams (LPOM(1)) of Fluoroanthene, fl and Chloroforme, ch, are shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Hasse Diagram of 12 chemicals, found in river Main, Germany. The abbreviations 
are explained in Table 3.    

52na

nt

pytn tr 

28flphch 153

101 
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Table 3: Examples of chemicals found in the river Main. Classification: CCl: small 
chlorinated hydrocarbons, PAH: polyaromatic hydrocarbons, PCB: polychlorinated biphenyls, 
OTH: molecules else (see appendix for the data matrix)  
 
abbreviation 

 

classification name abbreviation

 

classification name 

tr CCl Trichloroethene nt OTH Nitriloacetic 

acid (NTA) 

tn CCl Trichloroethane 28 PCB PCB 28 

ch CCl Chloroforme 52 PCB PCB 52 

py PAH Pyrene 101 PCB PCB 101 

ph PAH Phenanthrene 153 PCB PCB 153 

na PAH Naphthalene fl PAH Fluoroanthene 

 
From Figure 10 we exemplify for the chemicals fl and ch the derivation of the characteristics, 

which are needed in the subsequent calculation of Rkav(1) according to LPOM(1), see Figure 

11.  

U(fl) = {na, ch, tr, tn, 28, 101, 153, ph}  U(ch) = {na, ph, fl, 52, 28, 101, 153, py} 

|U(fl)| = 8      |U(ch)| = 8 

|O(fl)| = 3      |O(ch)| = 2 

|F(fl)| = 2      |F(ch)| = 3 

Note that in reality (i.e. in the empirical Hasse Diagram, Figure 10) all elements of U(fl) and 

U(ch) respectively are connected (in the sense of ordinary graphs) with fl and ch, respectively. 

Therefore the procedure explained in section 4, especially the approach of LPOM(3) (section 

4.4.4) is to be applied. Instead of LPOM(1) the local partial order is as shown in Figure 12. 

Three different approximations, i.e. local partial order models were selected as the best 

matching for the actual element x : LPOM(1), LPOM(2) and LPOM(3). Additionally by the 

software program WHASSE the exact values for the averaged ranks for all chemicals were 

calculated. We begin with showing the results of LPOM(1). The results of LPOM(1) in 

comparison with exact averaged ranks, Rkavexact are summarized in Table 4.    
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Figure 11: Local Partial Order , LPOM(1) with respect to the chemical Fluoroanthene, fl 
(top), LPOM(1) with respect to chemical chloroforme, ch (bottom). In both cases there are 8 
incomparable elements. Note that  in the original HD (Fig. 10) tn ||IB tr . The index IB refers to 
the original poset, induced by IB These two elements are now considered as comparable, here 
we arbitrarily selected tn > tr (as here no anchor point is affected, this ambiguity is not 
relevant.  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Other local partial order models for chemicals ch and fl (see text). 
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For calculating approximately the averaged rank of the chemical ch, the LPOM(2) is 

sufficient, whereas for the estimation of the averaged rank Rkav(fl) the approximation due to 

LPOM(3) may be more suitable. Here the event tree will contain three steps, because U(fl) is 

partitioned into three subsets, namely U1(fl) = {ph, na}, U2(fl) = {28} and U3(fl) = {tr, tn, ch, 

101, 153} according to the U(x) - transformation (section 4.3.2). 

The individual deviations from the exact values can be up to 1.5 as the example of chemical 

153 shows. Figure 13 displays the results of a comparison of Rkavexact with Rkav(1): 

 

Table 4: Real life example, Rkavexact (calculated directly from WHASSE) 

abbreviation Rkav exact Rkav(1) abbreviation Rkav exact Rkav(1) 

nt 1 1.0 ph 7.86 7.8 

na 4.43 5.2 fl 7.43 7.8 

52 3.57 4.33 28 7.43 7.8 

ch 4 5.2 py 11.29 11.375 

tr 8.5 9.75 153 5 6.5 

tn 8.5 9.75 101 9 9.75 
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Figure 13: Scatter diagram of Rkav(1) (Ordinate) and Rkavexact. The dotted line is the 
regression line, with r2

DF = 0.963. See below. 
 

The statistical results of the regression analysis are quite well. However, all U(x)-elements are 

connected with any x ∈ G, hence the estimation by LPOM(1) is questionable. In Table 5 the 
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results can be seen if the methodology, outlined in section 4 is applied for LPOM(1), and for 

LPOM(3) with and without the restriction of a presentation by a partial order system like that 

shown in Figure 6. As a measure of quality of the different approximations, the regression  

 

Rkav exact = s*Rkav(3) + t        (Eq. 23) 

 

is analyzed. Ideally s should be 1 and t=0. The regression coefficient r2
DF should be 1.  The F-

statistics should have as large values for F as possible. 

The estimation of the coefficients and statistical data are taken from SPSS (R). As one can see 

the best results are obtained, if the full methodology of LPOM(3) is selected in order to find 

that partial order which matches best the structure around the actual interesting chemical.  

 

6 Discussion and Conclusions 

A methodological scheme was presented, how to derive equations for local partial order 

models. Clearly the most crucial approximations were  

1. the S-x-P - construction which leads to a linear order for (G', IB) (see section 4.3), and  

2. the U(x) - transformation which simplifies drastically the order relations among the 

elements of U(x).  

Both approximations were found to be imperative to find a procedure to estimate the average 

rank. The sequence of local partial order models can be extended to LPOM(4), LPOM(5) etc. 

to take into account more and more details of the empirical partial order. This task, however 

should be solved in cooperation with other scientific groups. 

Another problem is the following (see also section 4.4.4): If U(x) is partitioned into several 

subsets, then the problem arises in which order the merging process has to be performed. This 

problem might be solved, if the approach of merging the elements of the U(x)-subsets "en 

bloc" is given up. The alternative might be to merge the elements one after another of the 

whole U(x)-set. As this aspect was and will be of much concern it will be explained in more 

detail here: 
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Table 5: Statistical data for the real life example. According to 12 chemicals, twelve averaged 
ranks are estimated by LPOM(3), compared with the exact values (using the software 
WHASSE) and with the results of LPOM(1). The comparison was done by applying equation 
23. 
 
Model system Scheme r2

DF s t F 

LPOM(1)  

 

 

 

0.963 0.981  -0.558 284  

LPOM(3) 

Only LPOM selected like 

those shown in Figure 6 

 

 

 

 

0.982 0.963   0.290 603 

Full methodology of 

LPOM(3)  

 

 

 

 

0.995 1.002 -0.127 1995 

 

Considering the merging of subsets of U(x) into the S-x-P - chain, we implicitly assumed that 

the elements of a U(x)-subset can be located "en bloc" below or above x in the S-x-P - chain. 

Figure 14 and the subsequent text shows the problem: 

 

 

 

 

 

 

 

 

 

  

Figure 14: Example, to explain the "en bloc" distribution (see text) 
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In the Hasse Diagram of Figure 14, the anchor points of U1(x)= {u11, u12} is d and that of 

U2(x)= {u21}is b. As only the part  d < x < e of the S-x-P - chain in Fig. 14 is of interest the 

distribution "en bloc" of U1(x) is demonstrated only for this part: 

 

"en bloc": 

d < {u11, u12} < x < e 

d < x < {u11, u12} < e  and 

d < x < e < {u11, u12}  

The notation "{...}" within the sequences above means that in the subsequent estimation of 

the rank of x, the elements u11, u12 will be counted independently, whether u11 < u12 or u12 < 

u11. In contrast to this "en bloc" merging of U(x)-subsets into the S-x-P - chain one may 

merge the single elements of U(x) until U(x) is exhausted. In contrast to "en bloc" - merging 

we call this a "one by one" merging. Once again Figure 14serves as example: 

 

"one by one": 

d < u11 < u12 < x < e 

d < u11 < x < u12 < e  

d < u11 < x < e < u12 

d < x < u11 < u12 < e  

d < x < u12 < u11 <  e  

d < x < u11 < e < u12 

d < x < e < u11 < u12 

etc. 

 

At least in the case of LPOM(1) it could be shown that both methods, the "en bloc" - and the 

"one by one" merging lead to the same results [9, 15]. However, that simple local partial order 

model does not give rise to partition the U(x)-set. This combinatorial exercise we hope to 

solve in the near future. 

Taking into account such an extent of approximations and assumptions one may question the 

general value of the local partial order model. The answer to the question whether local partial 

order models are helpful or too overloaded with assumptions is difficult: Empirically there is 

an improvement in a statistical sense. However, on the one side this finding depends on the 
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sample of empirical posets which was analyzed, on the other side a statistical improvement 

does not necessarily guarantee that the Rkav(i)-values induce the same linear order as the exact 

averaged ranks, obtained by the WHASSE software. The case that Rkav(i)(x) = Rkavexact(x) 

would only be the case, when the regression equation 23 has ideal statistical characterizations.  

It is planned to develop a more stringent graph-theoretical setting. Which empirical posets can 

now be safely handled? Empirical posets can be safely handled if x-incomparable elements 

within the empirical poset are isolated. In that case the structure of the order ideal O(x) or that 

of F(x) can vary without affecting the numerical result of Rkav(1). 

If the upper anchor points are comparable with all other elements of F(x) or the lower anchor 

points are comparable with all other elements of O(x) then the S-x-P - construction may not 

be unique, albeit the anchor point(s) can uniquely located within the S-x-P - chains. Hence the 

number of elements within the intervals I(x,a1), I(a1,a2), I(a2) is uniquely defined. Therefore 

only the approximation due to the U(x) - transformation remains.  

The derivation of approximate equations to calculate the averaged rank enables us to analyze 

several types of posets without arbitrariness in the S-x-P - construction and U(x) -

 transformation. Hence we get an impression what the leading factors for the averaged rank 

are. Indeed it is evident that:  

• chain length of S-x-P and 

• distance between anchor points 

play a main role. The derivation of approximate equations for averaged ranks helps to get a 

linear order from a Hasse Diagram. Thus the crucial determination of weights, as needed in 

most other evaluation procedures can be avoided. However the question remains, which local 

partial order should be selected to calculate the averaged rank? A program written in the 

interpreter language PYTHON [16] is in preparation, by which several local partial order 

models can be selected to perform further studies in order to find an answer.  
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Appendix: Data matrix of 12 chemicals.  
The indicators are: Vol: score of volatilization flux, Sed: score of sedimentation flux, Pers: 
score of persistence, Adv: score of advective flux down streams   
Chemicals  Vol Sed Pers Adv Chemicals Vol Sed Pers Adv 

na 3 2 2 3 tn 4 1 2 3 

ph 3 2 2 4 tr 4 2 2 2 

py 3 3 2 4 28 3 3 2 2 

fl 2 3 2 4 52 2 3 2 2 

nt 1 1 0 1 101 2 4 2 1 

ch 4 1 2 2 153 1 4 2 1 
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