
MATCH 
Communications in Mathematical 

and in Computer Chemistry 

MATCH Commun. Math. Comput. Chem. 54 (2005) 465-480  
 

                                          ISSN 0340 - 6253  
 

Sharp lower bounds for the general Randić index
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Abstract

The general Randić index wα(G) of a graph G is the sum of the weights (d(u)d(v))α of
all edges uv of G, where α is a real number and d(u) denotes the degree of the vertex u.
Let T n,m be the set of all trees on n vertices with a maximum matching of cardinality m.
Denote by T 0

n,m the tree on n vertices obtained from the star graph Sn−m+1 by attaching
a pendant edge to each of some m − 1 non-central vertices of Sn−m+1. In this paper, we
first prove that T 0

n,m has the minimum general Randić index among the trees in T n,m for
− 1

2 ≤ α < 0. Also we obtain lower bounds for the general Randić index among trees in
T n,m (2m ≤ n ≤ 3m+ 1) for α > 0, and the corresponding extremal graphs.

1 Introduction

For a (molecular) graph G = (V,E), the general Randić index wα(G) is defined in [1] as

wα(G) =
∑

uv∈E

[d(u)d(v)]α,

where α is a real number.

It is well known that the Randić index w− 1
2
(G) was proposed by Randić [17] in 1975 and

Bollobás and Erdős [1] generalized the index by replacing −1
2 with any real number α in 1998.

The research background of Randić index together with its generalization appears in chemical

field and can be found in the literature (see [4, 11, 12, 15, 17]).
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Recently, finding bounds for the general Randić index of graphs, in particular, of trees, as

well as related problem of finding the graphs having maximum or minimum general Randić

index, attracted the attention of many researchers and many results are obtained (see [1,3-6,8-

10,13-16,18,19]). Among them the following results are of interest for trees. Yu [19] gave a sharp

upper bound of w− 1
2

for trees of order n. Later, Caporossi et al [3] obtained the same result

using an alternative approach. Clark and Moon [4] gave bounds for w−1 of trees with order n.

Rautenbach [18] gave sharp upper bounds for w−1 of trees with some restrictions on degree of

vertices. In [14], X. Li and Y. Yang gave best lower and upper bounds for w−1 of chemical trees.

Y. Hu et al discussed trees with minimum and maximum general Randić index in [10] and [9],

respectively. Y. Hu et al [8] studied two unsolved questions on the best upper bounds for w−1

of trees.

In this paper, we give sharp lower bounds for the general Randić index wα among trees

of order n with an m-matching and the corresponding extremal graphs, where n ≥ 2m for

−1
2 ≤ α < 0 and 2m ≤ n ≤ 3m+ 1 for α > 0, respectively.

The proofs of our results are in Section 3, and some terminologies, notations and lemmas

are given in Section 2.

2 Notations and lemmas

In order to discuss the general Randić index of molecular graphs, we first introduce some

terminologies and notations of graphs. Other undefined terminologies and notations may refer

to [2].

The number of vertices, |V |, is called order of the graph. For a vertex x of a graph G, we

denote the neighborhood and the degree of x by N(x) and d(x), respectively. We denote by

∆(G) the maximum degree of vertices of G. Let V ′ ⊂ V , we will use G − V ′ to denote the

graph obtained from G by deleting the vertices in V ′ together with their incident edges. If

V ′ = {v}, we write G − v for G − {v}. A tree is a connected acyclic graph. A pendant vertex

is a vertex of degree 1 and a pendant edge is an edge incident to a pendant vertex. Denote by

PV the set of pendant vertices of T . Let T be a tree and Ps = v0v1 · · · vs a path of T with

d(v1) = d(v2) = · · · = d(vs−1) = 2 (unless s = 1). If d(v0), d(vs) ≥ 3, then Ps is called an

internal chain of T .

A subset M ⊆ E is called a matching in G if its elements are edges and no two are adjacent

in G. A matching M saturates a vertex v, and v is said to be M -saturated, if some edge of M

is incident with v. If every vertex of G is M -saturated, the matching M is perfect. A matching

M is said to be an m-matching, if |M | = m and for every matching M ′ in G, |M ′| ≤ m. Denote

T n,m = {T : T is a tree of order n ≥ 2m with an m-matching}.
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Let n and m be positive integers with n ≥ 2m. We define T 0
n,m (shown in Fig. 1) as a tree

of order n obtained from the star graph Sn−m+1 by attaching a pendant edge to each of some

m − 1 non-central vertices of Sn−m+1. Clearly, T 0
n,m is a tree of order n with an m-matching

and T 0
2m,m (shown in Fig. 1) is a tree of order 2m with a perfect matching.

Lemma 2.1 [7]. Let T be a tree of order n (n > 2) with a perfect matching. Then T has at

least two pendant vertices such that they are adjacent to vertices of degree 2, respectively.

Lemma 2.2 [7]. Let T be a tree of order n with an m-matching. If n = 2m+ 1, then T has

a pendant vertex which is adjacent to a vertex of degree 2.

Lemma 2.3 [7]. Let T be a tree of order n with an m-matching, where n > 2m. Then there

is an m-matching M and a pendant vertex v such that M does not saturate v.

T 0
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{
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r rpp rr
r
��
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Fig. 1

The proof of the following lemma is very trivial, so we will omit it here.

Lemma 2.4. Let G be a graph of order 2m with a perfect matching. If PV 6= ∅, then for

any vertex u ∈ V (G), |N(u) ∩ PV | ≤ 1.

Lemma 2.5. Let f(x) := (x+ 1)α · (x · 2α + 1), x ≥ 1. Then

(i) the function f(x)− f(x+ 1) is monotonously increasing for −1
2 ≤ α < 0 in x ≥ 1;

(ii) the function f(x+ 1)− f(x) is monotonously increasing for α > 0 in x ≥ 1.

Proof. Note that

d2f(x)
dx2

= α(x+ 1)α−2 ·
[
(α+ 1) · x · 2α + 2α+1 + α− 1

]
. (1)

(i) Let g(x) := (α+ 1) · x · 2α + 2α+1 +α− 1. Then for −1
2 ≤ α < 0, dg(x)

dx = 2α · (α+ 1) > 0.

Since −1
2 ≤ α < 0, by (1), we get

(α+ 1) · x · 2α + 2α+1 + α− 1 ≥ (α+ 1) · 2α + 2α+1 + α− 1

≥ 4 · 2α − 3
2
· 2α − 3

2
=

5 · 2α − 3
2

> 0.

Hence d2f(x)
dx2 < 0 for −1

2 ≤ α < 0. Thus the function f(x)− f(x+1) is monotonously increasing

for −1
2 ≤ α < 0 in x ≥ 1.

(ii) If α ≥ 1, then by (1), we have d2f(x)
dx2 > 0; if 0 < α < 1, then by (1), we have 2α+1 > 2 >

1− α, and hence d2f(x)
dx2 > 0. Thus the function f(x+ 1)− f(x) is monotonously increasing for

α > 0 in x ≥ 1.
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Lemma 2.6. The function (x+ 1)α · (x+ 2α)− xα · (x− 1 + 2α) is monotonously increasing

for α > 0 in x ≥ 1.

Proof. Let f(x) := xα · (x− 1 + 2α), x ≥ 1. Then

d2f(x)
dx2

= α · xα−2 · [(α+ 1) · x+ (2α − 1) · (α− 1)] .

If α ≥ 1, then d2f(x)
dx2 > 0; if 0 < α < 1, then 1 +α > 1 > 2α − 1, and hence d2f(x)

dx2 > 0. Thus the

function f(x+ 1)− f(x) is monotonously increasing for α > 0 in x ≥ 1.

Lemma 2.7. Let g(x) := xα, x ≥ 1. Then

(i) the function g(x+ 1)− g(x) are monotonously increasing in x ≥ 1 for α < 0 and α > 1,

respectively;

(ii) the function g(x)− g(x+ 1) is monotonously increasing for 0 < α < 1 in x ≥ 1.

Proof. Note that d2g(x)
dx2 = α · (α − 1) · xα−2. Then d2g(x)

dx2 > 0 if α < 0 or α > 1 and
d2g(x)

dx2 < 0 if 0 < α < 1. The lemma follows.

Lemma 2.8. Let x, y be positive integers with 0 ≤ y ≤ x−1. Denote h(x, y) := xα · [y+(x−
y) · 2α]. Then the function h(x− 1, y)−h(x, y+1) are monotonously increasing for −1

2 ≤ α < 0

in x ≥ 2 and y ≥ 0, respectively.

Proof. (i) Since −1
2 ≤ α < 0 and x ≥ 2, we have

∂[h(x− 1, y)− h(x, y + 1)]
∂y

= (1− 2α) · [(x− 1)α − xα] > 0.

Thus h(x− 1, y)− h(x, y + 1) is monotonously increasing in y ≥ 0 for −1
2 ≤ α < 0.

(ii) Note that

∂[h(x− 1, y)− h(x, y + 1)]
∂x

= 2α · [(x− 1)α − xα]

+α ·
{
(x− 1)α−1 · [y + (x− 1− y) · 2α]− xα−1 · [y + 1 + (x− 1− y) · 2α]

}
.

Since y ≤ x− 1, we have

∂[h(x− 1, y)− h(x, y + 1)]
∂x

≥ 2α · [(x− 1)α − xα] + α · [(x− 1)α−1 · (x− 1)− xα−1 · x]

= (2α + α) · [(x− 1)α − xα] > 0.

Hence h(x− 1, y)− h(x, y + 1) is monotonously increasing in x ≥ 2 for −1
2 ≤ α < 0.

Lemma 2.9. (i) If −1
2 ≤ α < 0, then 3 · 4α − 2 · 6α − 3α > 0;

(ii) If α > 0, then 6α+2·3α−2·4α−2α > 0, 2·6α+3α−3·4α > 0, 2·3α+9α−6α−4α−2α > 0

and 9α + 3α − 2 · 4α > 0;
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(iii) If α > 0, then 5 · 4α + 8α − 3 · 3α − 3 · 6α > 0, 2α + 4 · 4α + 8α − 4 · 3α − 2 · 6α > 0 and

2α + 4 · 5α + 10α − 4 · 3α − 2 · 6α > 0.

Proof. (i) If −1
2 ≤ α < 0, then, by Lemma 2.7 (i), we have 3 · 4α − 3α − 2 · 6α =

4α − 3α + 2α+1 · (2α − 3α) > 3α − 2α + 2α+1 · (2α − 3α) = (2α − 3α) · (2α+1 − 1) > 0.

(ii) If α = 1, then 6α + 2 · 3α − 2 · 4α − 2α = 2 > 0. If α > 1, by Lemma 2.7 (i), then

6α + 2 · 3α − 2 · 4α − 2α > 6α + 3α − 4α − 2α + (4α − 5α) = 6α − 5α + 3α − 2α > 0. If 0 < α < 1,

by Lemma 2.7 (ii), then 6α + 2 · 3α − 2 · 4α − 2α > 6α + 3α − 4α − 2α + (2α − 3α) = 6α − 4α > 0.

Thus 6α + 2 · 3α − 2 · 4α − 2α > 0 if α > 0.

Note that 2·6α+3α−3·4α = 6α+2·3α−2·4α−2α+(2α−1)·(3α−2α) > 6α+2·3α−2·4α−2α > 0,

2 · 3α + 9α − 6α − 4α − 2α = 6α + 2 · 3α − 2 · 4α − 2α + (2α − 3α)2 > 0 and 9α + 3α − 2 · 4α =

2 · 6α + 3α − 3 · 4α + (2α − 3α)2 > 2 · 6α + 3α − 3 · 4α > 0, where α > 0.

(iii) Let f(x) := 5 ·4x +8x−3 ·3x−3 ·6x, then f (n)(x) = dnf(x)
dxn = 5 · (ln 4)n ·4x +(ln 8)n ·8x−

3 · (ln 3)n ·3x−3 · (ln 6)n ·6x. Since 5 · (ln 4)8−3 · (ln 3)8 > 0 and (ln 8)8−3 · (ln 6)8 = 30.9188 > 0,

f (8)(x) > 0. Then, by f (7)(0) = 33.6671 > 0, f (7)(x) > 0. And, by f (6)(0) = 11.7994 > 0,

f (5)(0) = 4.27868 > 0, f (4)(0) = 1.87423 > 0, f (3)(0) = 1.07794 > 0, f (2)(0) = 0.681085 > 0 and

f (1)(0) = 0.339798 > 0, f (1)(x) > 0. Therefore, by f(0) = 0, f(α) = 5 ·4α +8α−3 ·3α−3 ·6α > 0

if α > 0.

Note that 2α +4 · 4α +8α− 4 · 3α− 2 · 6α = 5 · 4α +8α− 3 · 3α− 3 · 6α +(2α− 1)(3α− 2α) > 0

and 2α + 4 · 5α + 10α − 4 · 3α − 2 · 6α > 2α + 4 · 4α + 8α − 4 · 3α − 2 · 6α > 0, where α > 0.

Let n and m be positive integers with m ≥ 2. Let P2m+1 = x1x2 · · ·x2mx2m+1 be a path

of order 2m + 1. Let S be internal vertices set of P2m+1. Let S n,m = {S′ ⊂ S : x2, x2m ∈
S′, |S′| = n− 2m− 1 and for every pair of vertices u and v in S′, the distance between u and v

in P2m+1 is even }. Let T ∗∗
n,m denote the set of trees created from P2m+1 by attaching a pendant

edge to each vertex in S′ ∈ S n,m. The graph T1 shown in Fig. 2 is an element of T ∗∗
13,4. Let

T ∗
n,m denote the set of trees T of order n with ∆(T ) = 3 and n− 2m+ 1 pedant vertices such

that each pedant vertex is adjacent to a vertex of degree 3, the length of each internal chain in

T is even and the sum of length of all internal chains is 2m− 2. It is easy to see T ∗∗
n,m ⊂ T ∗

n,m.

In Fig. 2, we have drawn T2 ∈ T ∗
13,4 \T ∗∗

13,4.
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Fig. 2

Lemma 2.10. Let T ∈ T ∗
n,m (m ≥ 2). Then 2m+ 3 ≤ n ≤ 3m+ 1, T has an m-matching,

and wα(T ) = φ(n,m), where φ(n,m) = 3α[n−2m+1+2α+1(n−2m−2)]+22α+1(3m−n+1).
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Proof. If m = 2, then T ∼= T7,2 by T ∈ T ∗
n,m. It is easy to check that the lemma holds

clearly for m = 2.

We now suppose that m ≥ 3 and proceed by induction on m. Let P = u0u1u2 · · ·ul be a

longest path in T . Then |N(u1)∩PV | = 2. Denote N(u1)∩PV = {u0, v}. Let P ′ = u1u2 · · ·ut

(t < l) be an internal chain. Then t is odd and denote t = 2h + 1 (h ≥ 1). If t = l − 1,

then T ∼= T2m+3,m. It is easy to check that the lemma holds in this case. Otherwise, t ≤
l − 3. Let T ′ = T − {v, u0, u1, · · · , u2h−1}. Then T ′ ∈ T ∗

n−2h−1,m−h with m − h ≥ 2. By

the induction, 2(m − h) + 3 ≤ n − 2h − 1 ≤ 3(m − h) + 1, T ′ has an (m − h)-matching and

wα(T ′) = φ(n− 2h− 1,m−h). It is not difficult to see that 2m+4 ≤ n ≤ 3m−h+2 ≤ 3m+1,

T has an m-matching and wα(T ) = wα(T ′)+ 2 · 3α +2 · 6α +(2h− 2) · 4α− 3α = φ(n,m). Hence

the proof of Lemma 2.10 is complete.

Lemma 2.11 [10]. Among trees with n (n ≥ 5) vertices, the path Pn has the minimum

general Randić index for α > 0.

3 The cases for α in different intervals

In this section, we deal with our problem by considering the real number α in different

intervals.

Case I. −1
2 ≤ α < 0

Denote ψ(n,m) = (n−m)α · [n−2m+1+(m−1) ·2α]+ (m−1) ·2α, where n,m are positive

integers with n ≥ 2m.

Theorem 3.1. Let T ∈ T 2m,m. If −1
2 ≤ α < 0, then

wα(T ) ≥ ψ(2m,m) (2)

and equality in (2) holds for every particular value of α,−1
2 ≤ α < 0, if and only if T ∼= T 0

2m,m.

Proof. First we note that if T ∼= T 0
2m,m, then the equality in (2) holds obviously.

Now we prove that if T ∈ T 2m,m, then (2) holds and the equality in (2) holds only if

T ∼= T 0
2m,m.

If m = 1, 2, then the theorem holds clearly as T ∼= P2m (P2m
∼= T 0

2m,m) for m = 1, 2. If

m = 3, then T ∼= P6 or T ∼= T 0
6,3. By Lemma 2.9 (i), wα(P6)−wα(T 0

6,3) = 3 · 4α− 2 · 6α− 3α > 0.

Thus the theorem holds for m = 3.

We suppose that m ≥ 4 and proceed by induction on m. Let T ∈ T 2m,m. By Lemma 2.1,

T has a pendant vertex v which is adjacent to a vertex w of degree 2. Thus vw ∈ E(T ) and

there is a unique vertex u 6= v such that uw ∈ E(T ). Denote N(u) ∩ PV = {v1, · · · , vr} and

N(u) \ PV = {x1, · · · , xt−r = w}. Then t ≤ m and all d(xj) = dj ≥ 2.
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Let T ′ = T − v − w. Then T ′ ∈ T 2(m−1),m−1. By the induction, we have

wα(T ) = wα(T ′) + 2α + 2α · tα + r · [tα − (t− 1)α] +
t−r−1∑

i=1

dα
i · [tα − (t− 1)α]

≥ ψ(2m− 2,m− 1) + 2α + 2α · tα

+r · [tα − (t− 1)α] + (t− r − 1) · 2α · [tα − (t− 1)α]

= ψ(2m,m) + (m− 1)α + (m− 2) · 2α · (m− 1)α −mα − (m− 1) · 2α ·mα

+r · [tα − (t− 1)α] + (t− r − 1) · 2α · [tα − (t− 1)α] + 2α · tα. (3)

Note that r ≤ 1 by Lemma 2.4. We consider the following two cases.

Case 1. r = 1.

In this case, by (3), we have

wα(T ) ≥ ψ(2m,m) + (m− 1)α · [(m− 2) · 2α + 1]−mα · [(m− 1) · 2α + 1]

+tα · [(t− 1) · 2α + 1]− (t− 1)α · [(t− 2) · 2α + 1] .

Let f(x) := (x+ 1)α · (x · 2α + 1). Then

wα(T ) ≥ ψ(2m,m) + [f(m− 2)− f(m− 1)]− [f(t− 2)− f(t− 1)] ≥ ψ(2m,m).

The last inequality follows by Lemma 2.5 as m ≥ t.

In order for the equality to hold, all inequalities in the above argument should be equalities.

Thus we have wα(T ′) = ψ(2(m− 1),m− 1), m = t ≥ 4, r = 1 and d1 = · · · = dt−1 = 2. By

the induction hypothesis, T ′ ∼= T 0
2m−2,m−1. Note that T 0

2m−2,m−1 has a unique vertex of degree

greater than 2, and hence T ∼= T 0
2m,m.

Case 2. r = 0.

In this case, by (3), we have

wα(T ) ≥ ψ(2m,m) + (2α − 1) · [tα − (t− 1)α]

+[f(m− 2)− f(m− 1)]− [f(t− 2)− f(t− 1)]

≥ ψ(2m,m) + (2α − 1) · [tα − (t− 1)α] > ψ(2m,m).

The last second inequality follows by Lemma 2.5 as m ≥ t.

Hence the proof of Theorem 3.1 is complete.

Theorem 3.2. Let T ∈ T n,m (n ≥ 2m, m ≥ 2). If −1
2 ≤ α < 0, then

wα(T ) ≥ ψ(n,m) (4)

and equality in (4) holds for every particular value of α,−1
2 ≤ α < 0, if and only if T ∼= T 0

n,m.
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Proof. First we note that if T ∼= T 0
n,m, then the equality in (4) holds by an elementary

calculation.

Now applying induction on n, we prove that if T ∈ T n,m, then (4) holds and the equality

in (4) holds only if T ∼= T 0
n,m.

If n = 2m, then the theorem holds by Theorem 3.1. Therefore we assume that n > 2m

and the result holds for smaller values of n. By Lemma 2.3, T has an m-matching M and a

pendant vertex v such that M does not saturate v. Let uv ∈ E(T ) with d(u) = t. Denote

N(u)∩ PV = {v1, · · · , vr−1, vr = v} and N(u) \ PV = {x1, · · · , xt−r}. Then all d(xj) = dj ≥ 2.

Let T ′ = T − v. Then T ′ ∈ T n−1,m. By the induction, we have

wα(T ) = wα(T ′) + r · tα − (r − 1) · (t− 1)α +
t−r∑
i=1

dα
i · [tα − (t− 1)α]

≥ ψ(n− 1,m) + r · tα − (r − 1) · (t− 1)α + (t− r) · 2α · [tα − (t− 1)α]

= ψ(n,m) + [r + 2α · (t− r)] · tα + [n− 2m+ 2α · (m− 1)] · (n−m− 1)α

−[r − 1 + 2α · (t− r)] · (t− 1)α − [n− 2m+ 1 + 2α · (m− 1)] · (n−m)α

= ψ(n,m) + [h(n−m− 1, n− 2m)− h(n−m,n− 2m+ 1)]

−[h(t− 1, r − 1)− h(t, r)], (5)

where h(x, y) is defined in Lemma 2.8. Since T has an m-matching, n−m ≥ t and n−2m ≥ r−1.

Then, by (5) and Lemma 2.8, we have

wα(T ) ≥ ψ(n,m) + h(n−m− 1, n− 2m)− h(n−m,n− 2m+ 1)

−[h(n−m− 1, r − 1)− h(n−m, r)]

≥ ψ(n,m).

In order for the equality to hold, all inequalities in the above argument should be equalities.

Thus we have wα(T ′) = ψ(n − 1,m), n −m = t, r − 1 = n − 2m and d1 = · · · = dt−r = 2. By

the induction hypothesis, T ′ ∼= T 0
n−1,m. Then it is not difficult to see T ∼= T 0

n,m.

Hence the proof of Theorem 3.2 is complete.

Case II. α > 0

Denote φ0(m) = 2α+1 + 4α · (2m− 3), φ1(m) = 2α+1 + 4α · (2m− 2), φ2(m) = 2α + 6α + 2 ·
3α + 4α · (2m− 3) and φ3(m) = 4 · 3α + 2 · 6α + 4α · (2m− 4), where m is a positive integer.

By Lemma 2.11, it is easy to obtain Theorems 3.3 and 3.4 immediately.

Theorem 3.3. Let T ∈ T 2m,m. If α > 0, then

wα(T ) ≥ φ0(m) (6)

and equality in (6) holds for every particular value of α, α > 0, if and only if T ∼= P2m.
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Theorem 3.4. Let T ∈ T 2m+1,m. If α > 0, then

wα(T ) ≥ φ1(m) (7)

and equality in (7) holds for every particular value of α, α > 0, if and only if T ∼= P2m+1.

Let Sn
4 (n ≥ 4) (shown in Fig. 1) denote a tree created from the star graph S4 by subdividing

one edge n− 4 times, where n is a positive integer.

Theorem 3.5. Let T ∈ T 2m+2,m (m ≥ 2). Then

wα(T ) ≥ φ2(m) (8)

and equality in (8) holds for every particular value of α, α > 0, if and only if T ∼= S2m+2
4 .

Proof. Note that if T ∼= S2m+2
4 (m ≥ 2), then the equality in (8) holds clearly.

Now we prove if T ∈ T 2m+2,m (m ≥ 2), then (8) holds and the equality in (8) holds only if

T ∼= S2m+2
4 .

If m = 2, then there are only three trees, T3, T4 and S6
4 (shown in Fig. 3), of order 2m+ 2

with an m-matching. Then wα(T3)−wα(S6
4) = 2 · 3α + 9α − 6α − 4α − 2α > 0 by Lemma 2.9 (ii)

and wα(T4)−wα(S6
4) = 2 · 4α + 8α − 2 · 3α − 6α > 0. Thus the theorem holds clearly for m = 2.
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r
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��
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Fig. 3

We now suppose that m ≥ 3 and proceed by induction on m. By Lemma 2.3, T has an

m-matching M and a pendant vertex v such that M does not saturate v. Let uv ∈ E(T ) with

d(u) = t ≥ 2. Denote N(u) ∩ PV = {v1, · · · , vr−1, vr = v} and N(u) \ PV = {x1, · · · , xt−r}.
Then all d(xj) = dj ≥ 2.

We consider the following two cases.

Case 1. t = 2.

In this case, there is a unique vertex w 6= v such that uw ∈ E(T ). Denote N(w) ∩ PV =

{u1, · · · , up} and N(w) \ PV = {y1, · · · , ys−p = u}. Then all d(yj) = qj ≥ 2.

Let T ′ = T − v − u. Then T ′ ∈ T 2m,m−1. By the induction, we have

wα(T ) = wα(T ′) + 2α + 2α · sα + p · [sα − (s− 1)α] +
s−p−1∑

i=1

qα
i · [sα − (s− 1)α]

≥ wα(T ′) + 2α + 2α · sα + p · [sα − (s− 1)α] + (s− p− 1) · 2α · [sα − (s− 1)α]

≥ φ2(m− 1) + 2α + 2α · sα

+p · [sα − (s− 1)α] + (s− p− 1) · 2α · [sα − (s− 1)α]
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= φ2(m)− 2 · 4α + 2α + 2αsα

+p · [sα − (s− 1)α] + (s− p− 1) · 2α · [sα − (s− 1)α]. (9)

Subcase 1.1. p = 0.

Let g(x) := xα+1. Then, by (9), Lemma 2.7 (i) and s ≥ 2, we have

wα(T ) ≥ φ2(m) + 2α · {[g(s)− g(s− 1)]− [g(2)− g(1)]} ≥ φ2(m).

In order for the equality to hold, all inequalities in the above argument should be equalities.

Thus we have wα(T ′) = φ2(m − 1), s = 2, p = 0 and q1 = 2. By the induction hypothesis,

T ′ ∼= S2m
4 . Then it is easy to see that T ∼= S2m+2

4 .

Subcase 1.2. p = 1.

In this subcase, s ≥ 3. By (9), Lemma 2.5 and Lemma 2.9 (ii), we have

wα(T ) ≥ φ2(m) + 2α − 2 · 4α + sα · [2α · (s− 1) + 1]− (s− 1)α · [2α · (s− 2) + 1]

≥ φ2(m) + 2α − 2 · 4α + (2 · 6α + 3α − 4α − 2α)

= φ2(m) + 2 · 6α + 3α − 3 · 4α > φ2(m).

Subcase 1.3. p ≥ 2.

In this subcase, s ≥ 4. By (9), we have

wα(T ) > φ2(m)− 2 · 4α + 2α + 2αsα ≥ φ2(m)− 2 · 4α + 2α + 2α4α > φ2(m).

Case 2. t ≥ 3.

Let T ′ = T − v. Then T ′ ∈ T 2m+1,m. By Theorem 3.4, wα(T ′) ≥ φ1(m). Note that

wα(T ) = wα(T ′) + r · tα − (r − 1) · (t− 1)α +
t−r∑
i=1

dα
i · [tα − (t− 1)α]

≥ φ1(m) + r · tα − (r − 1) · (t− 1)α + (t− r) · 2α · [tα − (t− 1)α]

= φ2(m) + 4α + 2α − 6α − 2 · 3α

+[r + 2α(t− r)]tα − [r − 1 + 2α(t− r)](t− 1)α. (10)

Subcase 2.1. t− r = 1.

By (10) and Lemma 2.6, we get

wα(T ) ≥ φ2(m) + tα · [t− 1 + 2α]− (t− 1)α · [t− 2 + 2α] + 4α + 2α − 6α − 2 · 3α

≥ φ2(m) + 3α · (2 + 2α)− 2α · (1 + 2α) + 4α + 2α − 6α − 2 · 3α = φ2(m).

In order for the equality to hold, all inequalities in the above argument should be equalities.

Thus we have wα(T ′) = φ1(m), t = 3 and r = 2. By the induction hypothesis, T ′ ∼= P2m+1.

Therefore T ∼= S2m+2
4 .
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Subcase 2.2. t− r ≥ 2.

In this subcase, r ≤ t− 2. By (10) and Lemma 2.6, we have

wα(T ) ≥ φ2(m) + (2α − 1) · [tα − (t− 1)α]

+tα · [t− 1 + 2α]− (t− 1)α · [t− 2 + 2α] + 4α + 2α − 6α − 2 · 3α

≥ φ2(m) + (2α − 1) · [tα − (t− 1)α] > φ2(m).

Therefore the proof of Theorem 3.5 is complete.

Let T2m+3,m denote a tree obtained from a path P2m+1 = x1x2 · · ·x2mx2m+1 by attaching a

new pendant edge to x2 and x2m, respectively. T11,4 is shown in Fig. 2.

Theorem 3.6. Let T ∈ T 2m+3,m (m ≥ 2). If α > 0, then

wα(T ) ≥ φ3(m) (11)

and equality in (11) holds for every particular value of α > 0 if and only if T ∼= T2m+3,m.

Proof. Note that if T ∼= T2m+3,m (m ≥ 2), then the equality in (11) holds obviously.

Now we prove if T ∈ T 2m+3,m (m ≥ 2), then (11) holds and the equality in (11) holds only

if T ∼= T2m+3,m.

If m = 2, then there are only four trees, T5, T6, T7 and T7,2 (shown in Fig. 4), of order

2m + 3 with an m-matching. Then wα(T6) − wα(T7,2) = 3 · 4α + 12α − 2 · 3α − 2 · 6α >

3·4α+9α−2·3α−2·6α = 2·(4α−3α)+(2α−3α)2 > 0 and, by Lemma 2.9 (iii), wα(T5)−wα(T7,2) =

2α +4 · 5α +10α− 4 · 3α− 2 · 6α > 0 and wα(T7)−wα(T7,2) = 2α +4 · 4α +8α− 4 · 3α− 2 · 6α > 0.

Thus the theorem holds for m = 2.
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We now suppose that m ≥ 3 and proceed by induction on m. By Lemma 2.3, T has an

m-matching M and a pendant vertex v such that M does not saturate v. Let uv ∈ E(T ) with

d(u) = t. Denote N(u) ∩ PV = {v1, · · · , vr−1, vr = v} and N(u) \ PV = {x1, · · · , xt−r}. Then

all d(xj) = dj ≥ 2. We consider the following two cases.

Case 1. t = 2.

In this case, there is a unique vertex w 6= v such that uw ∈ E(T ). Denote N(w) ∩ PV =

{u1, · · · , up} and N(w) \PV = {y1, · · · , ys−p = u}. Then all d(yj) = qj ≥ 2. Let T ′ = T − v−u.
Then T ′ ∈ T 2m+1,m−1. By the induction, we have

wα(T ) = wα(T ′) + 2α + 2α · sα + p · [sα − (s− 1)α] +
s−p−1∑

i=1

qα
i · [sα − (s− 1)α]
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≥ φ3(m− 1) + 2α + 2α · sα

+p · [sα − (s− 1)α] + (s− p− 1) · 2α · [sα − (s− 1)α]

= φ3(m)− 2 · 4α + 2α + 2αsα

+p · [sα − (s− 1)α] + (s− p− 1) · 2α · [sα − (s− 1)α]. (12)

Let g(x) := xα+1. If p = 0, by (12), Lemma 2.7 (i) and s ≥ 2, then

wα(T ) ≥ φ3(m) + 2α · {[g(s)− g(s− 1)]− [g(2)− g(1)]} ≥ φ3(m).

In order for the equality to hold, all inequalities in the above argument should be equalities.

Thus we have wα(T ′) = φ3(m − 1), s = 2, p = 0 and q1 = 2. By the induction hypothesis,

T ′ ∼= T2m+1,m−1. Since each vertex of degree 1 in T ′ is adjacent to a vertex of degree 3, it is easy

to see the equality does not hold. Otherwise, p ≥ 1. Then the theorem holds by an argument

similar to that in Subcase 1.2 and Subcase 1.3 in the proof of Theorem 3.5.

Case 2. t ≥ 3.

Let T ′ = T − v. Then T ′ ∈ T 2m+2,m. By Theorem 3.5, wα(T ′) ≥ φ2(m). Note that

wα(T ) = wα(T ′) + r · tα − (r − 1) · (t− 1)α +
t−r∑
i=1

dα
i · [tα − (t− 1)α]

≥ φ2(m) + r · tα − (r − 1) · (t− 1)α + (t− r) · 2α · [tα − (t− 1)α]

= φ3(m) + 4α + 2α − 6α − 2 · 3α

+[r + 2α(t− r)]tα − [r − 1 + 2α(t− r)](t− 1)α.

Hence the theorem holds by an argument similar to that in Case 2 in the proof of Theorem 3.5.

Therefore the proof of Theorem 3.6 is complete.

Theorem 3.7. Let T ∈ T n,m (2m+ 3 ≤ n ≤ 3m+ 1). If α > 0, then

wα(T ) ≥ φ(n,m), (13)

where φ(n,m) is defined in Lemma 2.10, and equality in (13) holds for every particular value of

α > 0 if and only if T ∈ T ∗
n,m.

Proof. Note that if T ∈ T ∗
n,m, then the equality in (13) holds by Lemma 2.10.

Now applying induction on n, we prove if T ∈ T n,m, then (13) holds and the equality in

(13) holds only if T ∈ T ∗
n,m.

If n = 2m+3, then the theorem holds by Theorem 3.6 and {T2m+3,m} = T ∗
2m+3,m. Therefore

we assume that n ≥ 2m+ 4 and the result holds for smaller values of n.

By Lemma 2.3, T has an m-matching M and a pendant vertex v such that M does not

saturate v. Let uv ∈ E(T ) with d(u) = t. Denote N(u) ∩ PV = {v1, · · · , vr−1, vr = v} and

N(u) \ PV = {x1, · · · , xt−r}. Then all d(xj) = dj ≥ 2. We consider the following three cases.
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Case 1. d(u) = t ≥ 4.

Let T ′ = T − v. Then T ′ ∈ T n−1,m and n− 1 ≥ 2m+ 3. By the induction, we have

wα(T ) = wα(T ′) + r · tα − (r − 1) · (t− 1)α +
t−r∑
i=1

dα
i · [tα − (t− 1)α]

≥ wα(T ′) + r · tα − (r − 1) · (t− 1)α + (t− r) · 2α · [tα − (t− 1)α]

≥ φ(n− 1,m) + r · tα − (r − 1) · (t− 1)α + (t− r) · 2α · [tα − (t− 1)α]

= φ(n,m)− 3α − 2 · 6α + 2 · 4α

+tα · [r + 2α(t− r)]− (t− 1)α · [r − 1 + 2α(t− r)]

≥ φ(n,m)− 3α − 2 · 6α + 2 · 4α + tα · [t+ 2α − 1]− (t− 1)α · [t+ 2α − 2]

≥ φ(n,m) + 5 · 4α + 8α − 3 · 3α − 3 · 6α > φ(n,m).

The last first and second inequalities follow by Lemma 2.9 (iii) and Lemma 2.6, respectively.

Case 2. d(u) = 2.

In this case, the theorem holds by an argument similar to that in Case 1 in the proof of

Theorem 3.6.

Case 3. d(u) = 3.

Subcase 3.1. r = 1.

In this subcase, N(u)\{v} = {x1, x2}. Let T ′ = T−v. Then T ′ ∈ T n−1,m and n−1 ≥ 2m+3.

Thus by the induction, we have

wα(T ) = wα(T ′) + 3α + (3α − 2α) · (dα
1 + dα

2 )

≥ φ(n− 1,m) + 3α + (3α − 2α)2α+1 = φ(n,m)

and the equality holds only if d1 = d2 = 2 and wα(T ′) = φ(n − 1,m). By the induction

hypothesis, T ′ ∈ T ∗
n−1,m. Thus there is a vertex u′ ∈ V (T ′) such that |N(u′) ∩ PV | = 2. we

replace u with u′. Then, in this subcase, theorem holds by an argument similar to that in the

next subcase.

Subcase 3.2. r = 2.

In this subcase, N(u) ∩ PV = {v1, v2}. Let P = u0u1 · · ·ul (u = u0, x1 = u1) be an internal

chain of T with d(ul) = d ≥ 3, where l ≥ 1. Let |N(ul) ∩ PV | = q. We consider the following

three subcases.

Subcase 3.2.1. l = 1.

Let T ′ = T − {v1, v2, u}. Then T ′ ∈ T n−3,m−1 and n− 3 ≥ 2(m− 1) + 3. Thus we have

wα(T ) = wα(T ′) + 2 · 3α + 3αdα + q[dα − (d− 1)α]

+
∑

z∈N(u1)\(PV ∪{u})
(d(z))α[dα − (d− 1)α]
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≥ φ(n− 3,m− 1) + 2 · 3α + 3αdα

+q[dα − (d− 1)α] + (d− q − 1) · 2α · [dα − (d− 1)α]

= φ(n,m) + 3α − 2 · 6α + 3αdα + q[dα − (d− 1)α]

+(d− q − 1) · 2α · [dα − (d− 1)α]. (14)

If d ≥ 4, by (14), then

wα(T ) > φ(n,m) + 3α − 2 · 6α + 12α = φ(n,m) + 3α · (2α − 1)2 > φ(n,m).

If d = 3, then q ≤ 1. If q = 0, by (14) and Lemma 2.9 (ii), then

wα(T ) ≥ φ(n,m) + 3α + 9α − 2 · 4α > φ(n,m).

Otherwise, if q = 1, by (14) and Lemma 2.9 (ii), then

wα(T ) ≥ φ(n,m) + 9α + 2 · 3α − 6α − 2α − 4α > φ(n,m).

Subcase 3.2.2. l = 2h (h ≥ 1).

In this subcase, h ≤ m − 2. Let T ′ = T − {v1, v2, u0, · · · , u2h−3, u2h−2}. Then T ′ ∈
T n−2h−1,m−h with n− 2h− 1 ≥ 2(m− h) + 3 and m− h ≥ 2. Thus we have

wα(T ) = wα(T ′) + 2 · 3α + 6α + 4α · (2h− 2) + 2αdα − dα

≥ φ(n− 2h− 1,m− h) + 2 · 3α + 6α + 4α · (2h− 2) + 2αdα − dα

= φ(n,m) + 3α − 6α + (2α − 1) · dα ≥ φ(n,m).

In order for the equality to hold, all inequalities in the above argument should be equalities.

Thus we have wα(T ′) = φ(n− 2h− 1,m− h), r = 2 and d = 3. By the induction hypothesis,

T ′ ∈ T ∗
n−2h−1,m−h. Then it is not difficult to see T ∈ T ∗

n,m.

Subcase 3.2.3. l = 2h+ 1 (h ≥ 1).

In this subcase, h ≤ m − 3 by T having an m-matching and n ≥ 2m + 4. Let T ′ =

T −{v1, v2, u0, · · · , u2h−2, u2h−1}. Then either T ′ ∈ T n−2h−2,m−h−1 or T ′ ∈ T n−2h−2,m−h. Note

that n− 2h− 2 ≥ 2(m− h− 1) + 4.

If T ′ ∈ T n−2h−2,m−h−1, by Lemma 2.9 (ii), then

wα(T ) = wα(T ′) + 2 · 3α + 6α + 4α · (2h− 1) + 2αdα − dα

≥ φ(n− 2h− 2,m− h− 1) + 2 · 3α + 6α + 4α · (2h− 1) + 2αdα − dα

≥ φ(n,m) + 2 · 3α + 6α − 3 · 4α + (2α − 1)dα > φ(n,m).

If T ′ ∈ T n−2h−2,m−h, then every (m − h)-matching of T ′ saturates u2h. Thus N(u2h+1) ∩
PV = ∅. Let T ′′ = T ′ − {u2h}. Then T ′′ ∈ T n−2h−3,m−h−1. We have

wα(T ) = wα(T ′′) + 2 · 3α + 6α + 4α · (2h− 1) + 2αdα
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+
∑

z∈N(u2h+1)\{u2h}
(d(z))α · [dα − (d− 1)α]

≥ φ(n− 2h− 3,m− h− 1) + 2 · 3α + 6α + 4α · (2h− 1)

+2αdα + (d− 1) · 2α[dα − (d− 1)α]

≥ φ(n,m) + 3α − 6α − 4α + 2α[dα+1 − (d− 1)α+1]

≥ φ(n,m) + 3α − 6α − 4α + 2α[3α+1 − 2α+1]

= φ(n,m) + 3α + 2 · 6α − 3 · 4α > φ(n,m).

The last first and second inequalities follow by Lemma 2.9 (ii) and Lemma 2.7 (i), respectively.

Hence the proof of Theorem 3.7 is complete.

4 Remarks

In [7], Hou and Li prove that among trees of order n ≥ 2m with an m-matching, the

maximum spectral radius is obtained uniquely at T 0
n,m. From the theorems in preceding section,

we can see that among trees of order n ≥ 2m with an m-matching, the minimum general Randić

index for −1
2 ≤ α < 0 is obtained uniquely at T 0

n,m. We do not know whether there are other

classes of graphs such that in each of these classes the graph with maximum spectral radius has

the minimum general Randić index for −1
2 ≤ α < 0. Thus we would like to propose naturally

the following question: Given a class of graphs G , G0 ∈ G and ρ(G) ≤ ρ(G0) for every G ∈ G ,

where ρ(G) is the spectral radius, is it true that wα(G) ≥ wα(G0) for every particular value of

α, −1
2 ≤ α < 0, and each G ∈ G ?

Also, it may be of interest to give sharp bound of wα(T ) for α < −1
2 when T ∈ T n,m.
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Combin. 54(2000) 223-235.

- 479 -



[5] C. Delorme, O. Favaron and D. Rautenbach, On the Randić index, Discrete Math.
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