ISSN 0340 - 6253

LOWER BOUNDS FOR THE RANDIĆ INDEX R_{-1} OF TREES

Hongfeng Lu and Bo Zhou¹

Department of Mathematics, South China Normal University, Guangzhou 510631, P. R. China

(Received September 10, 2004)

Abstract

The Randić index $R_{-1} = R_{-1}(G)$ of a graph G is defined as the sum of the weights $(d_G(u)d_G(v))^{-1}$ of all edges uv of G, where $d_G(u)$ denotes the degree of vertex u. In this paper we give a sharp lower bound for the Randić index R_{-1} of trees with given order and the number of pending vertices, and determine the trees of order $n \geq 6$ with second-minimal, third-minimal and fourth-minimal Randić indices R_{-1} .

INTRODUCTION

Let G be a simple graph. The general Randić index (or connectivity index) of G is defined as

$$R_{\alpha} = R_{\alpha}(G) = \sum_{uv} (d_G(u)d_G(v))^{\alpha}$$

where $d_G(u)$, or simply d(u), denotes the degree of vertex u, α is an arbitrary real number, and the summation goes over all edges of G. Two special cases $\alpha = -1, -1/2$ were introduced by Randić [1] in 1975 in his reasearch on molecular structures. Results on $R_{-1/2}$ can be found in [2–7]. Clark and Moon [8] proved that for a tree T

¹Corresponding author. E-mail: zhoubo@scnu.edu.cn

with $n \geq 2$ vertices, $1 \leq R_{-1}(T) \leq (5n+8)/18$ with the former equality if and only if T the star S_n , where S_n is the n-vertex tree with maximum degree n-1. Hence the tree with minimal Randić index R_{-1} is S_n . Rautenbach [9] gave an upper bound for R_{-1} of trees with maximum degree 3. Recently, Li and Yang [10] obtained a lower bound for R_{-1} of chemical trees.

In this paper we give a lower bound for R_{-1} of trees with given order and the number of pending vertices, and determine the extremal graph. The trees of order $n \geq 6$ with second-minimal, third-minimal and fourth-minimal Randić indices R_{-1} are determined.

MAIN RESULTS

A comet is a tree composed of a star and an appended path. For any positive integer n and n_1 with $2 \le n_1 \le n - 1$, we denote by $T(n, n_1)$ the comet of order n with n_1 pending vertices, i.e., a tree formed by a path P_{n-n_1} of which one end vertex coincides with a pending vertex of a star of order $n_1 + 1$ (see Figure 1).

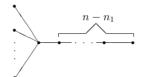


Figure 1. $T(n, n_1)$

We use the techniques in [2]. First we give the following lemma.

Lemma 1. Let $e = v_1v_2$ be an edge of a tree T of order n with $n_1 \le n-2$ pending vertices. If $d(v_1) = 1$ and $d(v_2) \ge 2$, then

$$R_{-1}(T) - R_{-1}(T - v_1) \ge \frac{1}{2n_1(n_1 - 1)}$$
 (1)

with equality if and only if T is a comet and v_2 has maximum degree.

Proof. Denote by E_2 the sum of the weights of the edges, other than e, incident with v_2 in T. So by the definition of R_{-1} ,

$$R_{-1}(T) - R_{-1}(T - v_1) = \frac{1}{d(v_2)} - \frac{E_2}{d(v_2) - 1}.$$
 (2)

Since $n_1 \leq n-2$, T is not a star. So at least one vertex adjacent to v_2 has a degree no less than 2. Thus

$$E_2 \le \frac{1}{2d(v_2)} + (d(v_2) - 2)\frac{1}{d(v_2)} = 1 - \frac{3}{2d(v_2)}$$
 (3)

with equality if and only if all the vertices adjacent to v_2 are pending vertices except one, say v_3 , with $d(v_3) = 2$.

By (2), (3) and the fact $d(v_2) \leq n_1$, we have

$$\begin{split} R_{-1}(T) - R_{-1}(T - v_1) & \geq \frac{1}{d(v_2)} - \frac{1}{d(v_2) - 1} \frac{2d(v_2) - 3}{2d(v_2)} \\ & = \frac{1}{2d(v_2)(d(v_2) - 1)} \geq \frac{1}{2n_1(n_1 - 1)} \,. \end{split}$$

This proves (1). From the above argument, the equality in (1) holds if and only if all the vertices adjacent to v_2 are pending vertices except v_3 with $d(v_3) = 2$ and $d(v_2) = n_1$, i.e., T is a comet and v_2 has maximum degree n_1 . \square

We now give a lower bound for R_{-1} of trees with given order and the number of pending vertices. The *n*-vertex path P_n is a tree with maximum degree 2.

Theorem 2. Let T be a tree of order n > 3, with n_1 pending vertices. If $n_1 \le n - 2$, then

$$R_{-1}(T) \ge 1 - \frac{1}{2n_1} + \frac{n - n_1}{4}$$
 (4)

with equality if and only if T is the comet $T(n, n_1)$.

Proof. If T is the comet $T(n, n_1)$, it is easy to see that $R_{-1}(T)$ is equal to the right-hand side of (4).

We apply induction on n. Since $n_1 \le n-2$, T is not the star S_n . It can be readily checked that (4) holds when n=4,5, since these trees are P_4, P_5 and T(5,3), which are all comets. So we assume that $n \ge 6$ and that the result holds for all smaller values of n.

Let v_1v_2 be a pending edge of T (with $d(v_1) = 1$). There are two cases by discussing the degree of v_2 .

Case 1: $d(v_2) = 2$. We denote $v_3 \neq v_1$ the other vertex adjacent to v_2 . Since $n \geq 6$, we have $d(v_3) \geq 2$, and then

$$R_{-1}(T) - R_{-1}(T - v_1) = \frac{1}{2} - \frac{1}{2d(v_3)} \ge \frac{1}{4}$$
 (5)

with equality if and only if $d(v_3) = 2$. As $d(v_2) = 2$, the tree $T - v_1$ has n_1 pending vertices and n - 1 vertices. In the case of $n_1 = n - 2$, the tree $T - v_1$ is a star, so T is a comet and we can stop the induction here. If $n_1 \leq (n - 1) - 2$, by the induction hypothesis,

$$R_{-1}(T - v_1) \ge 1 - \frac{1}{2n_1} + \frac{n - 1 - n_1}{4}$$
 (6)

with equality if and only if $T - v_1$ is the comet $T(n-1, n_1)$. So by (5) and (6)

$$R_{-1}(T) \ge 1 - \frac{1}{2n_1} + \frac{n - n_1}{4}$$

with equality if and only if $T - v_1$ is the comet $T(n - 1, n_1)$ and $d(v_3) = 2$, i.e., T is the comet $T(n, n_1)$.

Case 2: $d(v_2) \ge 3$. The tree $T - v_1$ has $n_1 - 1$ pending vertices and n - 1 vertices. Then, by the induction hypothesis,

$$R_{-1}(T - v_1) \ge 1 - \frac{1}{2(n_1 - 1)} + \frac{n - n_1}{4}$$
 (7)

with equality if and only if $T - v_1$ is the comet $T(n - 1, n_1 - 1)$. By Lemma 1, we have

$$R_{-1}(T) - R_{-1}(T - v_1) \ge \frac{1}{2n_1(n_1 - 1)}$$
 (8)

with equality if and only if T is a comet. Thus, by (7) and (8)

$$R_{-1}(T) \ge 1 - \frac{1}{2n_1} + \frac{n - n_1}{4}$$

with equality if and only if T is the comet $T(n, n_1)$.

Note that the function

$$f(x) = 1 - \frac{1}{2x} + \frac{n-x}{4}$$

is decreasing for $x \geq 2$. Let T be a tree of order n > 3, with n_1 pending vertices. When T is not a star, then $n_1 \leq n - 2$ and by Theorem 2, $R_{-1}(T) \geq f(n-2)$ with equality if and only if T is the comet T(n, n-2). This proves the following.

Corollary 3. Let T be a tree of order $n \geq 4$. If T is not the star S_n , then

$$R_{-1}(T) \ge \frac{3}{2} - \frac{1}{2(n-2)}$$

with equality if and only if T is the comet T(n, n-2).

Corollary 4. Let T be a tree of order n with $n \ge 6$. Suppose that T is neither the star S_n nor the comet T(n, n-2). Then

$$R_{-1}(T) \ge 1 + \frac{2(n-4)}{3(n-3)}$$

with equality if and only if T is $S_{n,n-4}$ (see Figure 2).

Proof. There are two cases.

Case 1: $n_1 \leq n-3$. By the argument previous to Corollary 3, we have

$$R_{-1}(T) \ge f(n-3) = \frac{7}{4} - \frac{1}{2(n-3)}$$

with equality if and only if T is the comet T(n, n-3).

Case 2: $n_1 = n - 2$. Then T is of the form $S_{n,a}$ with $(n-2)/2 \le a \le n-4$ (see Figure 2). Obviously, $S_{n,n-3}$ is T(n,n-2).

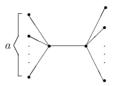


Figure 2. $S_{n,a}$

It is easy to see that

$$R_{-1}(S_{n,a}) = 1 + \frac{a(n-a-2)}{a(n-a-2)+n-1}$$

is decreasing with a when $a \ge (n-2)/2$, and hence

$$R_{-1}(S_{n,n-4}) < R_{-1}(S_{n,n-5}) < \dots < R_{-1}(S_{n,\lceil (n-2)/2 \rceil}) \ (n \ge 8)$$
.

It can be readily checked that

$$R_{-1}(S_{n,n-4}) = 1 + \frac{2(n-4)}{3(n-3)} < R_{-1}(T(n,n-3)).$$

Then by combining Case 1 and 2, the result follows.

Note that $R_{-1}(S_{n,n-5}) < R_{-1}(T(n,n-3))$ if $n \ge 8$. From above argument, we also have the following.

Corollary 5. Let T be a tree of order n with $n \ge 6$. Suppose that T is not the star S_n , the comet T(n, n-2), or $S_{n,n-4}$. Then

$$R_{-1}(T) \ge 1 + \frac{3(n-5)}{4(n-4)}$$

with equality if and only if T is $S_{n,n-5}$ when $n \geq 8$, and

$$R_{-1}(T) \ge \frac{7}{4} - \frac{1}{2(n-3)}$$

with equality if and only if T is the comet T(n, n-3) when n=6,7.

By Corollaries 3, 4 and 5, the trees of order $n \ge 6$ with minimal, second-minimal and third-minimal Randić indices R_{-1} are S_n , T(n, n-2) and $S_{n,n-4}$, respectively, and the trees with minimal-fourth Randić indices R_{-1} are $S_{n,n-5}$ for $n \ge 8$ and T(n, n-3) for n = 6, 7.

Acknowledgement. This work was supported by the National Natural Science Foundation of China (No. 10201009).

References

- M. Randić, On charicrerization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609–6615.
- [2] P. Hansen, H. Mélot, Variable neighborhood search for extremal graphs, 6. Analyzing bounds for the connectivity index, J. Chem. Inf. Comput. Sci. 43 (2003) 1–14.
- [3] G. Caporossi, I. Gutman, P. Hansen, L. Pavlović, Graphs with maximum connectivity index, Comput. Biol. Chem. 27 (2003) 85–90.
- [4] G. Caporossi, I. Gutman, P. Hansen, Variable neighborhood search for extremal graphs IV: Chemical trees with extremal connectivity index, *Comput. Chem.* 23 (1999) 469–477.
- [5] I. Gutman, O. Miljković, G. Caporossi, P. Hansen, Alkanes with small and large Randić connectivity indices, Chem. Phys. Lett. 306 (1999) 366–372.
- [6] O. Araujo, J. A. de la Peña, Some bounds for the connectivity index of a chemical graph, J. Chem. Inf. Comput. Sci. 38 (1998) 827–831.
- [7] B. Bollobás, P. Erdős, Graphs of extremal weights, Ars Combin. 50 (1998) 225–233.
- [8] L. H. Clark, J. W. Moon, On the general Randić index for certain families of trees, Ars Combin. 54 (2000) 223–235.
- [9] D. Rautenbach, A note on trees of maximum weight and restricted degrees, Discrete Math. 271 (2003) 335–342.
- [10] X. Li, Y. Yang, Best lower and upper bounds for the Randić index R_{-1} of chemical trees, MATCH Commun. Math. Comput. Chem. **52** (2004) 147–156.