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Abstract

A molecular (n,m)-graph G is a connected simple graph with n vertices, m edges and vertex
degrees not exceeding 4. If d(v) denotes the degree of the vertex v , then the zeroth-order
general Randić index 0Rα of the graph G is defined as

∑
v∈V (G)

d(v)α , where α is a pertinently

chosen real number. We characterize, for any α , the molecular (n,m)-graphs with smallest
and greatest 0Rα .
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1 Introduction

The Randić (or connectivity) index was introduced by Randić in 1975 and is defined

as [25]

R = R(G) =
∑

uv∈E(G)

(d(u) d(v))−1/2

where d(u) denotes the degree of the vertex u of the graph G , and E(G) is the edge set

of G . Randić himself demonstrated [25] that this index is well correlated with a variety

of physico–chemical properties of various classes of organic compounds. Eventually, this

structure–descriptor became one of the most popular topological indices to which two

books [15, 17], several reviews [7, 24, 26] and countless research papers are devoted.

Like other successful structure–descriptors, the Randić index received considerable

attention also from mathematical chemists and mathematicians. In particular, bounds

for R and graphs extremal with regard to R were extensively studied [1, 2, 4, 8, 9, 10,

11, 12].

In 1998 Bollobás and Erdös [3] generalized R(G) by replacing the exponent −1/2

by an arbitrary real number α . This graph invariant is called the general Randić index

and will be denoted by Rα = Rα(G) . Li and Yang [20] studied Rα for general n-vertex

graphs, obtained lower and upper bounds for it, and characterized the corresponding

extremal graphs. Later Hu, Li and Yuan [13, 14] determined the trees extremal with

regard to Rα , whereas Li, Wang and Wei [19] gave lower and upper bounds for Rα of

molecular (n,m)-graphs. Other mathematical studies of the general Randić index are

found in [5, 6].

The zeroth-order Randić index, conceived by Kier and Hall [16], is

0R = 0R(G) =
∑

v∈V (G)

d(v)−1/2

Eventually, Li and Zheng [22] defined the zeroth-order general Randić index of a graph

G as

0Rα = 0Rα(G) =
∑

v∈V (G)

d(v)α
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for any real number α .

Pavlović determined the graphs with maximum 0R-index [23]. Li et al. [18] inves-

tigated the same problem for the topological index M1(G) , one of the Zagreb indices,

that is defined as M1(G) =
∑

v∈V (G)

d(v)2 . (Evidently, M1 ≡ 0Rα for α = +2 .) They

obtained sufficient and necessary conditions under which (n,m)-graphs have minimum

M1 , and a necessary condition for an (n,m)-graph having maximum M1(G) . Li and

Zhao [21] characterized trees with the first three smallest and largest zeroth-order gen-

eral Randić index, with the exponent α being equal to k , −k , 1/k , and −1/k , where

k ≥ 2 is an integer.

In this paper we investigate the zeroth-order general Randić index of molecular

(n,m)-graphs, i. e., connected simple graphs with n vertices, m edges and maximum

vertex degree at most 4. We characterize the molecular (n,m)-graphs with extremal

(maximum or minimum) zeroth-order general Randić index.

First we need to introduce some notation.

Denote by D(G) = [d1, d2, · · · , dn] the degree sequence of the graph G , where di

stands the degree of the i-th vertex of G , and d1 ≥ d2 ≥ · · · ≥ dn .

If there is a graph G , such that di ≥ dj + 2 , let G′ be the graph obtained from G

by replacing the pair (di, dj) by the pair (di − 1, dj + 1) . In other words, if D(G) =

[d1, d2, · · · , di−1, di, di+1, · · · , dj−1, dj, dj+1, · · · , dn] , then D(G′) = [d1, d2, · · · , di−1, di−
1, di+1, · · · , dj−1, dj + 1, dj+1, · · · , dn] .

Note that if α = 0 then 0Rα(G) = n , and if α = 1 then 0Rα(G) = 2m . Therefore,

in the following we always assume that α 6= 0, 1 .

Lemma 1.1 For the two graphs G and G′ , specified above, we have

(i) 0Rα(G) > 0Rα(G′) for α < 0 or α > 1

(ii) 0Rα(G) < 0Rα(G′) for 0 < α < 1 .
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Proof. Since 0Rα(G) =
∑

v∈V (G)

d(v)α , we have

0Rα(G)− 0Rα(G′) = dα
i + dα

j − (di − 1)α − (dj + 1)α

= [dα
i − (di − 1)α]− [

(dj + 1)α − dα
j

]

= α
(
ξα−1
1 − ξα−1

2

)

where ξ1 ∈ (di − 1, di) , and ξ2 ∈ (dj, dj + 1) . So, by di ≥ dj + 2 , we have ξ1 > ξ2 .

Then 0Rα(G) > 0Rα(G′) for α < 0 or α > 1 , whereas 0Rα(G) < 0Rα(G′) for 0 < α < 1 .

2 Extremal molecular (n,m)-graphs

Denote by ni the number of vertices of degree i in a molecular (n,m)-graph G .

Then we have

0Rα(G) = n1 + 2α n2 + 3α n3 + 4α n4 (2.1)

Theorem 2.1 Let C∗ be a molecular (n,m)-graph with degree sequence [d1, d2, · · · , dn],

such that |di − dj| ≤ 1 for any i 6= j . Then for α < 0 or α > 1 , C∗ has the minimum

zeroth-order general Randić index among all molecular (n,m)-graphs, whereas for 0 <

α < 1 , C∗ has the maximum zeroth-order general Randić index among all molecular

(n,m)-graphs. Moreover,

0Rα(C∗) =





2 + 2α (n− 2) if m = n− 1

2α (3n− 2m) + 3α (2m− 2n) if n ≤ m ≤ b3n/2c
3α (4n− 2m) + 4α (2m− 3n) if b3n/2c < m ≤ 2n

Proof. We only consider the case 0 < α < 1 , because the proof for the other case is

fully analogous. Let G be a molecular graph and D(G) = [d1, d2, · · · , dn] . If G � C∗ ,

then there must exist a pair (di, dj) such that di ≥ dj + 2 . By Lemma 1.1, the graph

G′ , obtained by replacing the pair (di, dj) by the pair (di − 1, dj + 1) , has a greater

0Rα-value than G . Consequently, G is not a molecular (n,m)-graph with maximum

zeroth-order general Randić index.
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To show the existence, we construct the extremal (n,m)-graph C∗ (with minimum

0Rα for α < 0 or α > 1 , and with maximum 0Rα for 0 < α < 1) by adding edges one

by one. First, we start from a tree. There must be at least two 1-degree vertices in

a tree. By Lemma 1.1, there does not exist any 3-degree vertex, and so the extremal

tree must be the path Pn . Next we add an edge joining the two leaves of the path.

In this way the degrees of all vertices become equal to two, and then we get a cycle.

We continue by adding edges one by one, so as to maximize the number of 3-degree

vertices, until either there remain no 2-degree vertices, or remains exactly one. If more

edges need to be added, then we first connect the 2-degree vertex (if such does exist)

with a non-adjacent 3-degree vertex, and continue by connecting pairs of nonadjacent

3-degree vertices. The construction is shown in Figure 2.1.

Figure 2.1 Constructing molecular graphs with extremal zeroth-order general Randić

index, according to Theorem 2.1.

Theorem 2.2 Let G∗ be a molecular (n,m)-graph with at most one vertex of degree 2

or 3. If one of the following conditions holds:

(I) m = n− 1

(II) m ≥ n ≥ 6 , for n = 6 , m ≥ 10 , and for n = 7 , m 6= 8

then for α < 0 or α > 1 , G∗ has the maximum zeroth-order general Randić index

among all molecular (n, m)-graphs, whereas for 0 < α < 1 , the same graph has the

minimum zeroth-order general Randić index among all molecular (n,m)-graphs. More-

over,

0Rα(G∗) =





(4n− 2m)/3 + 4α (2m− n)/3 if 2m− n ≡ 0 (mod 3)

(4n− 2m− 2)/3 + 2α + 4α (2m− n− 1)/3 if 2m− n ≡ 1 (mod 3)

(4n− 2m− 1)/3 + 3α + 4α (2m− n− 2)/3 if 2m− n ≡ 2 (mod 3)
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Proof. Again, we only consider the case 0 < α < 1 , because the proof for the other

case is similar. Let G′ be a molecular (n,m)-graph and D(G′) = [d1, d2, · · · , dn] . Let

G′ possess two vertices of degree 2 or 3, i. e., let there be a pair (di, dj) , such that

3 ≥ di ≥ dj ≥ 2 . Then by Lemma 1.1, there is a graph G , obtained by replacing the

pair (di, dj) by the pair (di+1, dj−1) , that has a smaller 0Rα-value than G′ . Repeating

the above operation until there is no pair (di, dj) , such that 3 ≥ di ≥ dj ≥ 2 , we arrive

at G∗ with minimum zeroth-order general Randić index. In view of (2.1), for G∗ we

have 



n1 + n2 + n3 + n4 = n

n1 + 2 n2 + 3 n3 + 4 n4 = 2m

n2 + n3 ≤ 1

From the above equations, we have one of the following three options:

(1) n2 = n3 = 0 , implying n1 = (4n − 2m)/3 , n4 = (2m − n)/3 , and 2m − n ≡
0 (mod 3)

(2) n2 = 1 , n3 = 0 , implying n1 = (4n − 2m − 2)/3 , n4 = (2m − n − 1)/3 , and

2m− n ≡ 1 (mod 3)

(3) n2 = 0 , n3 = 1 , implying n1 = (4n − 2m − 1)/3 , n4 = (2m − n − 2)/3 , and

2m− n ≡ 2 (mod 3) .

In order to show the existence, we construct G∗ by distinguishing the following

cases:

(I) m = n− 1 , i. e., G∗ is a tree.

(I.1) If 2m− n ≡ 0 (mod 3) , we first construct a path with n4 vertices, and then

add n1 pendent vertices, taking care that no vertex gets degree greater than

4.

(I.2) If 2m− n ≡ 1 (mod 3) , we first construct a path with n4 vertices, then add

n1 pendent vertices, taking care that no vertex gets degree greater than 4,

and finally subdivide an edge by inserting to it a vertex of degree 2.

(I.3) If 2m− n ≡ 2 (mod 3) , we first construct a path with n4 + 1 vertices, and

then add n1 pendent vertices, taking care that no vertex gets degree greater

than 4.
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(II) m ≥ n ≥ 6 , for n = 6 and m ≥ 10 , or for n = 7 and m 6= 8 .

In Figure 2.2 we show one of the possible graphs G∗ for n4 ≤ 4 , that is for

b(2m− n)/3c ≤ 4 . For n4 ≥ 5 , we construct G∗ as follows:

(II.1) If 2m− n ≡ 0 (mod 3) , we first construct a 4-regular graph on n4 vertices,

then delete n1/2 edges from it, and then add n1 pendent vertices, taking

care that no vertex gets degree greater than 4.

(II.2) If 2m− n ≡ 1 (mod 3) , we first construct a 4-regular graph on n4 vertices,

then delete n1/2 edges from it, then add n1 pendent vertices, taking care

that no vertex gets degree greater than 4, and finally subdivide an edge

inserting to it a vertex of degree 2.

(II.3) If 2m − n ≡ 2 (mod 3) , we first construct a 4-regular graph on n4 + 1

vertices, then delete (n1 + 1)/2 edges from it, and then add n1 pendent

vertices, taking care that no vertex gets degree greater than 4.

This completes the proof.

Note that Theorem 2.2 holds under the conditions m = n−1 , or n = 6 and m ≥ 10 ,

or n = 7 and m 6= 8 , or m ≥ n ≥ 8 , since for the other pairs of n and m the extremal

degree sequences obtained in Theorem 2.2 are not graphic. It is easy to check that for

n = 1, 2, 3 , and for n ≥ 4 and m =
(

n
2

) − 1 or m =
(

n
2

)
the (n,m)-graph is unique.

For n = 4 and m = 4 , or n = 5 and 5 ≤ m ≤ 8 , or n = 6 and 6 ≤ m ≤ 9 , or

n = 7 and m = 8 we can characterize the extremal graphs by examining all possible

degree sequences. These extremal graphs are depicted in Figure 2.3 (minimum ones

for 0 < α < 1 , maximum ones for α < 0 or α > 1 , except for n = 5 and m = 7 , in

which case (a) is the minimum graph for 0 < α < 1 and maximum graph for α < 0 or

1 < α < 2 , and (b) is the maximum graph for α ≥ 2).
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n=7,   m=7 n=8,   m=8

n=8,   m=9 n=8,   m=10 n=9,   m=9 n=9,   m=10

n=9,   m=11 n=10,   m=10 n=10,   m=11 n=10,   m=12 n=11,   m=11

n=11,   m=12 n=12,   m=12 n=12,   m=13 n=13,   m=13 n=14,   m=14

n=7,   m=9 n=7,   m=10n=6,   m=10

n=8,   m=11

Figure 2.2 Molecular graphs with extremal zeroth-order general Randić index, having

four or fewer vertices of degree 4.
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n=4,   m=4 n=5,   m=6 n=5,   m=8

n=6,   m=6 n=6,   m=7 n=6,   m=8 n=6,   m=9 n=7,   m=8

n=5,   m=7
         (b)

n=5, m=7
       (a)

n=5,   m=5

Figure 2.3 Some graphs with extremal zeroth-order general Randić index; for details

see text.
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[23] L. Pavlović, Maximal value of the zeroth-order Randić index, Discr. Appl. Math.
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