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Abstract

The m-connectivity index mχα(G) of an organic molecule whose molecular graph is G is
the sum of the weights (di1di2 ...dim+1)

α, where i1−i2− ...−im+1 runs over all paths of length
m in G and di denotes the degree of vertex vi. We find upper bounds for mχα(G) when
m ≥ 1 and α ≥ −1 (α 6= 0) using the eigenvalues of the Laplacian matrix of an associated
weighted graph.

1 Introduction

The connectivity index of an organic molecule whose molecular graph is G is defined (see [4]

[11]) as
1χα(G) =

∑
u,v

(d(u)d(v))α

where d(u) denotes the degree of the vertex u of the molecular graph G, where the summation

goes over all pairs of adjacent vertices of G and where α (α 6= 0) is a pertinently chosen

exponent. In 1975, Randić introduced the respective structure-descriptor in [11] for α = −1
2

(which he called the branching index, and is now also called the Randić index) in his study of

alkanes. The Randić index has been closely correlated with many chemical properties (see [7]).

However, other choices of α were also considered, and the exponent α was treated (see [2, 3, 13])

as an adjustable parameter, chosen so as to optimize the correlation between 1χα and some

selected class of organic compounds. In particular, when ordering isomeric alkanes with regard

to their connectivity indices one needs to take into account that there exist pairs of isomers

whose 1χα-values coincide for all α (α 6= 0) (see [5]).

Let G = (V, E) be a simple graph with vertex set {v1, v2, · · · , vn}. For any two vertices

vi, vj ∈ V (G) with i < j, we will use the symbol i− j to denote the edge vivj . For vi ∈ V , the

degree of vi, written by di, is the number of edges incident with vi.
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For an integer m ≥ 1, the m-connectivity index is defined as

mχα(G) =
∑

i1−i2−···−im+1

(di1di2 · · · dim+1)
α

where i1 − i2 − · · · − im+1 runs over all paths (that is, is 6= it for 1 ≤ s < t ≤ m + 1) of length

m of G.

The higher connectivity indices are of great interest in molecular graph theory ([8], [14]) and

some of their mathematical properties have been reported in [1], [10] and [12].

Let A(G) be the adjacency matrix of G and D(G) = diag(d1, d2, . . . , dn) be the diagonal

matrix of vertex degrees. The Laplacian matrix of G is L(G) = D(G)−A(G). Clearly, L(G) is

a real symmetric matrix. From this fact and Geršgorin’s Theorem, it follows that its eigenvalues

are nonnegative real numbers. The largest eigenvalue of a matrix M is denoted by λ1(M),

while for a graph G, we will use λi(G) to denote λi(L(G)), i = 1, 2, . . . , n and assume that

λ1(G) ≥ λ2(G) ≥ · · · ≥ λn−1(G) ≥ λn(G) = 0.

The purpose of this work is to find upper bounds for the values of m-connectivity index of

a graph.

2 The 1-connectivity index of weighted graphs

Let G = (V, E, ω) be a weighted simple graph which has assigned a certain weight ω(i, j) for

each pair vi, vj of vertices. The weights are usually non-negativity real numbers and they must

satisfy the following conditions:

(1) ω(i, j) = ω(j, i), vi, vj ∈ V (G,ω), and

(2) ω(i, j) 6= 0, if and only if vi and vj are adjacent in (G,ω).

Let ωi denote the degree of vi ∈ V (G,ω), that is, ωi =
∑

j ω(i, j). We call (G,ω) a s-regular

weighted graph if ωi = s for 1 ≤ i ≤ n. The Laplacian matrix L(G,ω) of (G,ω) is a n×n matrix

with entries

Li,j =





ωi if i = j

−ω(i, j) if i− j

0 else.

Then L(G,ω) is still a real symmetric matrix and

xT L(G,ω)x =
∑

i−j

ω(i, j)(xi − xj)2,

where x is a vector. From this fact and Geršgorin’s Theorem, it follows that its eigenvalues

are nonnegative real numbers and they will also be denoted by λ1(G,ω) ≥ · · · ≥ λn−1(G,ω) ≥
λn(G,ω) ≥ 0. Obviously, λn(G,ω) = 0 and a corresponding eigenvector is e = (1, 1, · · · , 1)T .
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Since L(G,ω) is symmetric, by the Rayleigh-Ritz Theorem (see for example [6]), we have

λn−1(G,ω) = inf
x⊥e,x 6=0

xT L(G,ω)x
xT x

(1)

and

λ1(G,ω) = sup
x 6=0

xT L(G,ω)x
xT x

. (2)

The m-connectivity index of the weighted graph (G,ω) is defined as

mχα(G,ω) =
∑

i1−i2−···−im+1

ω(i1, i2) · · ·ω(im, im+1)(ωi1ωi2 · · ·ωim+1)
α

where i1 − i2 − · · · − im+1 runs over all paths of length m of (G,ω).

Now we introduce the graph invariant k as

k =
n∑

i=1

ω2α
i − (

∑n
i=1 ωα

i )2

n
.

By the Cauchy-Schwarz inequality, k ≥ 0 and k = 0 if and only if ωi = ωj for 1 ≤ i, j ≤ n.

In full analogy to a result earlier proven in [9] for non-weighted graphs, we have the following

result.

Theorem 2.1. Let G = (V, E, ω) be a weighted simple graph. Then

1
2

n∑

i=1

ω2α+1
i − κ

2
λ1(G,ω) ≤ 1χα(G,ω) ≤ 1

2

n∑

i=1

ω2α+1
i − κ

2
λn−1(G,ω), (3)

where κ is a graph invariant defined as above. Moreover 1χα(G,ω) = 1
2

∑n
i=1 ω2α+1

i (κ = 0), if

and only if (G,ω) is regular.

Let G be a simple graph with n vertices. We assign a certain weight ω(i, j) to the edge of

G such that ω(i, j) = 1 for all i− j. Then di = ωi for i = 1, 2, · · · , n. Thus by Theorem 2.1, we

obtain the following result.

Theorem 2.2 [9]. Let G be a simple graph with vertices v1, v2, · · · , vn. Then

1
2

n∑

i=1

d2α+1
i − κ

2
λ1(G) ≤ 1χα(G) ≤ 1

2

n∑

i=1

d2α+1
i − κ

2
λn−1(G),

where κ is a graph invariant defined as κ =
∑n

i=1 d2α
i − (

∑n

i=1
dα

i )2

n . Moreover 1χα(G) =
1
2

∑n
i=1 d2α+1

i (κ = 0), if and only if G is regular.

3 Upper bounds for m-connectivity index of simple graphs

In this section, we will consider m-connectivity index of a graph for m ≥ 1 and α ≥ −1, α 6= 0.

The idea of the construction of the following weighted graph comes from [1].
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(1) Let G be a simple graph with vertices v1, v2, · · · , vn (n = |V (G)|) and di be the degree

of vi. We assume that every connected component of G has at least two vertices. We want

to find bounds for mχα(G), m ≥ 1. For m ≥ 1, we introduce a weighted graph G(m) =

(V (m), E(m), ω(m)) in the following way: the vertices of G(m) are those of the vertices in G; there

is an edge i− j in G(m) if there is a path i = i1 − i2 − · · · − im+1 = j in G; ω(1)(i, j) = 1 and

ω(m)(i, j) =
∑

i=i1−i2−...−im+1=j

(di2 ...dim)α m ≥ 2,

where the sum runs over all paths in G of length m between i and j. Obviously |V (G(m))| = n.

Let ω
(m)
i be the degree of a vertex vi in the weighted graph G(m), that is,

ω
(m)
i =

∑

vivj∈E(m)

ω(m)(i, j).

Then we have the following lemma.

Lemma 3.1. For 1 ≤ i ≤ n and α ≥ −1 (α 6= 0), we have

δm−1di ≤ ω
(m)
i ≤ 4m−1di, (4)

where ∆ = (dmax − 1)dα
max for dmax = max{di : 1 ≤ i ≤ n} and δ = (dmin − 1)dα

min for

dmin = min{di : 2 ≤ di}.

Proof. If m = 1, then G(m) = G, ω
(1)
i = di and (4) holds obviously. So we may assume

that m ≥ 2. By definition,

ω
(m)
i =

∑

vivj∈E(m)

ω(m)(i, j) =
∑

j

∑

i=i1−i2−...−im+1=j

(di2 ...dim)α

=
∑

im

∑

i=i1−i2−...−im

(di2 ...dim−1)
αdα

im(dim − 1),

the last equality due to the fact that there are dim − 1 choices for vj = vim+1 once the path

i = i1 − i2 − ... − im is fixed. Obviously, dij ≥ 2 for 2 ≤ j ≤ m. Since δ ≤ dα
x(dx − 1) ≤ ∆ for

any vertices with dx ≥ 2 and α ≥ −1, then

δω
(m−1)
i ≤ ω

(m)
i ≤ ω

(m−1)
i ∆

and the result follows by induction.

(2) The connectivity index 1χα(G(m), ω(m)) of the weighted graph G(m) = (V (m), E(m), ω(m))

and the m-connectivity index mχα(G) of G are related in the following simple way.

Lemma 3.2.

mχα(G)δ2α(m−1) ≤ 1χα(G(m), ω(m)) ≤ mχα(G)∆2α(m−1), α > 0; (5)

mχα(G)∆2α(m−1) ≤ 1χα(G(m), ω(m)) ≤ mχα(G)δ2α(m−1), −1 ≤ α < 0. (6)
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Proof. By definition

1χα(G(m), ω(m)) =
∑

i−j

ω(m)(i, j)(ω(m)
i ω

(m)
j )α

=
∑

i=i1−i2−...−im+1=j


ω

(m)
i ω

(m)
j

didj




α

(di1di2 ...dimdim+1)
α

where the last sum runs over all paths i = i1 − i2 − ... − im+1 = j of length m in G. The

inequalities follow from Lemma 3.1.

The following is the main result of the paper.

Theorem 3.3. Let G be a simple graph with vertices v1, v2, · · · , vn. Let dmax be the maximal

value of di (1 ≤ i ≤ n), 4 = (dmax − 1)dα
max, dmin = min{di : 2 ≤ di} and δ = (dmin − 1)dα

min.

Then
mχα(G) ≤ ∆(m−1)(2α+1)

2δ2α(m−1)

n∑

i=1

d2α+1
i α > 0, (7)

mχα(G) ≤ ∆m−1

2

n∑

i=1

d2α+1
i − 1

2
≤ α < 0. (8)

and
mχα(G) ≤ δ(m−1)(2α+1)

2∆2α(m−1)

n∑

i=1

d2α+1
i − 1 ≤ α ≤ −1

2
. (9)

Proof. We define G(m) = (V (m), E(m), ω(m)) as above. By (3), we have

1χα(G(m), ω(m)) ≤ 1
2

n∑

i=1

(ω(m)
i )2α+1 − κ

2
λn−1(G(m), ω(m))

≤ 1
2

n∑

i=1

(ω(m)
i )2α+1.

If α > 0, then by Lemmas 3.1 and 3.2, we have that

mχα(G) ≤ 1
δ2α(m−1)

(1χα(G(m), ω(m)))

≤ 1
2δ2α(m−1)

n∑

i=1

(ω(m)
i )2α+1

≤ ∆(m−1)(2α+1)

2δ2α(m−1)

n∑

i=1

d2α+1
i .

If −1
2 ≤ α < 0, then 2α + 1 ≥ 0. Thus, by Lemmas 3.1 and 3.2, we have that

mχα(G) ≤ 1
∆2α(m−1)

(1χα(G(m), ω(m)))

≤ 1
2∆2α(m−1)

n∑

i=1

(ω(m)
i )2α+1

≤ ∆m−1

2

n∑

i=1

d2α+1
i .
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If −1 ≤ α ≤ −1
2 , then 2α + 1 ≤ 0. Thus by Lemmas 3.1 and 3.2, we have that

mχα(G) ≤ 1
∆2α(m−1)

(1χα(G(m), ω(m)))

≤ 1
2∆2α(m−1)

n∑

i=1

(ω(m)
i )2α+1

≤ δ(m−1)(2α+1)

2∆2α(m−1)

n∑

i=1

d2α+1
i .

In particular, if α = −1
2 , then we have the following corollary by Theorem 3.3.

Corollary 3.4. [1] Let G be a simple graph with vertices v1, v2, · · · , vn. Let dmax be the

maximal value of di (1 ≤ i ≤ n) and ∆′ = (dmax − 1)/
√

dmax. Then

mχ− 1
2
(G) ≤ n(∆′)m−1

2
.

If m = 1, then we have the following corollary by Theorem 3.3.

Corollary 3.5. Let G be a simple graph with vertices v1, v2, · · · , vn. Then

1χα(G) ≤ 1
2

n∑

i=1

d2α+1
i .
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