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Abstract

The Merrifield–Simmons index σ(G) of a (molecular) graph G is defined as the

number of subsets of the vertex set, in which no two vertices are adjacent in G , i. e.,

the number of independent–vertex sets of G . Let T (n, k) be the set of trees with n

vertices and with diameter k . The unique tree with the largest σ-value in T (n, k) is

determined. We also determine all trees T of order n , for which 2n−2 ≤ σ(T ) ≤ 2n−1 .

1Research supported by the National Science Foundation of China and the Science Foundation
of the State Education Ministry of China.



INTRODUCTION

A topological index is a map from the set of chemical compounds represented by

molecular graphs to the set of real numbers. Many topological indices are closely

correlated with some physico–chemical characteristics of the underlying compounds.

The Merrifield–Simmons index σ [1–3] is one of the topological indices whose math-

ematical properties were studied in some detail [4–19] whereas its applicability for

QSPR and QSAR was examined to a much lesser extent; in [2] it was shown that σ

is correlated with the boiling points.

Given a molecular graph G , the Merrifield–Simmons index σ = σ(G) is defined as

the number of subsets of V (G) in which no two vertices are adjacent i. e., in graph–

theoretical terminology, the number of independent–vertex sets of G , including the

empty set. For example, for the 4-membered cycle C4 with vertex set V (C4) =

{v1, v2, v3, v4} , such that vi and vi+1 , i = 1, 2, 3 , as well as v1 and v4 are adjacent,

the independent–vertex subsets are: ∅ , {v1} , {v2} , {v3} , {v4} , {v1, v3} , {v2, v4} ,

and thus, σ(C4) = 7 . For the path Pn , σ(Pn) is equal to the Fibonacci number2

Fn+1 . This is perhaps why some authors [6] called σ the “Fibonacci number” of the

graph. For further details on σ see the book [2], the papers [4–19] and the references

cited therein.

All graphs considered here are finite and simple. Undefined notation and termi-

nology will conform to those in [20]. For a graph G with the set of vertices V (G) and

u ∈ V (G) , by NG(u) we denote the set of all neighbors of u in G . For u, v ∈ V (G) ,

d(u, v) denotes the distance between u and v in G , which is the length of the shortest

path between u and v . We denote by d(G) the diameter of G , which is defined as

d(G) = max{d(u, v) |u, v ∈ V (G)} . By G ∪ H is denoted the disjoint union of two

graphs G and H , and by mH the disjoint union of m copies of H .

Let T be a tree with n = n(T ) vertices. By T (n) is denoted the set of all trees

with n vertices and by T (n, k) the set of all trees with n vertices and diameter k .

In this paper we investigate the Merrifield–Simmons index of trees. We charac-

terize the unique tree in T (n, k) with the largest σ-value, as well as the trees whose

2Recall that Fn = Fn−1 + Fn−2 with initial conditions F0 = 1 and F1 = 1 .
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σ-values lie between 2n−2 and 2n−1 . From [17] we know that these results may have

potential use in combinatorial chemistry.

The interval in which the σ-values of trees vary is determined by:

Lemma 1 [2, 6, 17]. Let T ∈ T (n) . Then Fn+1 ≤ σ(T ) ≤ 2n−1 + 1 . In addition,

σ(T ) = Fn+1 if and only if T ∼= Pn whereas σ(T ) = 2n−1 + 1 if and only if T ∼= Sn ,

where Pn and Sn are the n-vertex path and star, respectively.

The graphs shown in Fig. 1 are frequently used throughout this paper. Their

construction and the parameters on which they depend are evident from Fig. 1 and

will not be formally defined.
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Figure 1. Trees considered in this work, the parameters on which they depend,

and the labelling of their vertices.

PRELIMINARIES

Lemma 2 [2, 17]. Let G be a graph with k components G1, G2, . . . , Gk . Then

σ(G) =
k∏

i=1

σ(Gi) .

Lemma 3 [2, 17]. For v ∈ V (G) ,

σ(G) = σ(G− v) + σ(G− v −NG(v)) .
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From Lemmas 2 and 3, we can easily get the following:

Lemma 4. For two positive integers n1 and n2 ,

σ(Sn1,n2) = 2n1+n2 + 2n1 + 2n2 .

Lemma 5. Suppose that n1 ≥ n2 ≥ · · · ≥ nt ≥ 0 and m =
t∑

i=1
ni . Then

σ(Uk(n1, n2, . . . , nt)) = 2k
t∏

i=1

(2ni + 1) + 2m (1)

σ(Uk(n1, n2, . . . , ni+1, . . . , nj−1, . . . , nt)) > σ(Uk(n1, n2, . . . , ni, . . . , nj, . . . , nt)) (2)

and if 2k−1 3t−1 > 2m , then

σ(Uk(m− t + 1,

t−1︷ ︸︸ ︷
1, . . . , 1)) > σ(Uk−1((m− t + 2,

t−1︷ ︸︸ ︷
1, . . . , 1)) (3)

otherwise,

σ(Uk(m− t + 1,

t−1︷ ︸︸ ︷
1, . . . , 1)) ≤ σ(Uk−1((m− t + 2,

t−1︷ ︸︸ ︷
1, . . . , 1)) . (4)

Proof. Eq. (1): From Lemmas 2 and 3 we have

σ(Uk(n1, n2, . . . , nt)) = 2k
t∏

i=1

σ(Sni+1) + 2m = 2k
t∏

i=1

(2ni + 1) + 2m .

Eq. (2): Since ni ≥ nj , we have (2ni+1 +1)(2nj−1 +1) > (2ni +1)(2nj +1) . Then,

from (1) we get (2).

Eqs. (3) and (4): From (1) we have that

σ(Uk(m− t + 1,

t−1︷ ︸︸ ︷
1, . . . , 1)) = 2k (2m−t+1 + 1) 3t−1 + 2m

and

σ(Uk−1(m− t + 2,

t−1︷ ︸︸ ︷
1, . . . , 1)) = 2k−1 (2m−t+2 + 1) 3t−1 + 2m+1 .

Thus,

σ(Uk(m− t + 1,

t−1︷ ︸︸ ︷
1, . . . , 1))− σ(Uk−1(m− t + 2,

t−1︷ ︸︸ ︷
1, . . . , 1)) = 2k−13t−1 − 2m.

Obviously, (3) and (4) hold. 2
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In a similar manner as Lemma 5, we prove:

Lemma 6. For all n1 ≥ 2 and n2 ≥ 2 ,

σ(Pn1,n2) = 2n2 Fn1 + Fn1−1 (5)

σ(Pn1,n2) > σ(Pn1+1,n2−1) . (6)

Lemma 7. If n ≥ 7 , then

σ(P4,n−6,2) = 2n−3 + 2n−4 + 2n−5 + 9 .

If n1 ≥ 1 , n2 ≥ 1 , and n1 + n2 = n− 5 , then

σ(Sn1,n2,2) = 2n−3 + 2n−5 + 2n2+2 + 2n2 + 2n1+1 + 2n1

and

σ(Sn1,n2,2) ≤ σ(S1,n−6,2) = 2n−3 + 2n−4 + 2n−5 + 2n−6 + 6

for all n1 ≥ 1 and n2 ≥ 1 .

THE MAIN RESULTS

Lemma 8. If T ∈ T (n, n − 1) , then σ(T ) ≤ 4 Fn−2 + Fn−3 . Equality holds if and

only if T ∼= Pn−2,2 .

Proof. Since T ∈ T (n, n − 1) , we have d(T ) = n − 1 . Then, T must be a tree

obtained from P2 and Pn−1 by identifying one vertex in P2 with one vertex of Pn−1

of degree 2. Assume that Pn−1 = u1, u2, . . . , un−1 and that T is the tree obtained

from Pn−1 by adding a pendent edge at the vertex uk , where 2 ≤ k ≤ n − 2 . From

Lemmas 1, 2, and 3, we have

σ(T ) = σ(Pn−1) + σ(Pk−1)σ(Pn−k−1) = Fn + Fk Fn−k .

Based on a result from [6], if 2 ≤ k ≤ n−2 , then Fk Fn−k ≤ F2 Fn−2 and the equality

holds if and only if k = 2 . This completes the proof. 2

Theorem 1. If T ∈ T (n, k) , then σ(T ) ≤ 2n−k+1 Fk−1 +Fk−2 . Equality holds if and

only if T ∼= Pk,n−k .
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Proof. Since T ∈ T (n, k) , we have that d(T ) = k and n ≥ k + 1 . We prove the

theorem by double induction on k and n .

From Lemmas 1 and 4 follows that the theorem is true for k = 2, 3 and n(T ) ≥ 4 .

Suppose that the theorem holds for all d(T ) ≤ k − 1 and k ≥ 4 and n(T ) ≥
d(T ) + 2 .

Now for a tree T with d(T ) = k , from Lemma 8 the theorem is true for d(T ) = k

and n(T ) = k+2 . We assume that the theorem holds for d(T ) = k and n(T ) ≤ n−1 .

When d(T ) = k and n(T ) = n , we distinguish the following two cases:

Case 1. There is at least one path u1, u2, u3, . . . , uk, uk+1 in T , such that du2 = 2 or

duk
= 2 . Without loss of generality, assume that du2 = 2 . From Lemma 3 we have

σ(T ) = σ(T − u1) + σ(T − {u1, u2})

and

σ(Pk,n−k) = σ(Pk−1,n−k) + σ(Pk−2,n−k) .

Now, T − u1 and T − {u1, u2} are trees with n − 1 and n − 2 vertices, respectively.

In addition, k − 1 ≤ d(T − u1) ≤ k and k − 2 ≤ d(T − {u1, u2}) ≤ k .

For T − u1 , by the induction hypothesis we have that σ(Pk−1,n−k) ≥ (T − u1)

if d(T − u1) = k − 1 and σ(Pk,n−k−1) ≥ (T − u1) if d(T − u1) = k . Thus, from

Lemma 6 we have that σ(Pk−1,n−k) > σ(Pk,n−k−1) . It is not difficult to show that

σ(Pk−1,n−k) ≥ (T − u1) and that equality holds if and only if T − u1
∼= Pk−1,n−k .

Similarly, for T−{u1, u2} we have σ(Pk−2,n−k) ≥ σ(T−{u1, u2}) , and the equality

holds if and only if T ∼= Pk−2,n−k . Hence, σ(T ) ≤ σ(Pk,n−k) and the equality holds if

only if T ∼= Pk,n−k .

Case 2. du2 ≥ 3 and duk
≥ 3 for each path u1, u2, u3, . . . , uk, uk+1 in T . Suppose

that du2 = r + 1 ≥ 3 . From Lemma 3 we have

σ(T ) = σ(T − u1) + σ(T − {u1, u2})

and

σ(Pk,n−k) = σ(Pk,n−k−1) + 2n−k−1 Fk .
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Now, T−u1 is an (n−1)-vertex tree of diameter k . Then, by the induction hypothesis,

σ(Pk,n−k−1) ≥ σ(T − u1) and the equality holds if and only if Pk,n−k−1
∼= T − u1 . On

the other hand, there is a tree H such that T − {u1, u2} = (r − 1) K1 ∪ H .3 Then

from Lemma 2,

σ(T − {u1, u2}) = 2r−1 σ(H) .

Note that n(H) = n − r − 1 < n and k − 2 ≤ d(H) ≤ k . Hence, by the induction

hypothesis and Lemma 6, we have σ(Pk−2,n−k−r+1) ≥ σ(H) and n − k − r + 1 ≥ 1 .

Thus, n− k ≥ r and we have

σ(T − {u1, u2}) ≤ 2r−1 σ(Pk−2,n−r−k+1) = 2n−k Fk−2 + 2r−1 Fk−3 .

Since 2n−k−1 Fk = 2n−k Fk−2 + 2n−k−1 Fk−3 and n − k ≥ r , we have 2n−k−1 Fk+1 ≥
σ(T − {u1, u2}) and the equality holds if and only if n− k = r . So, we have

σ(Pk,n−k) ≥ σ(T )

and the equality holds if and only if Pk,n−k−1
∼= T − u1 and n − k = r , that is,

T ∼= Pk,n−k . By this the proof of Theorem 1 is completed. 2

Lemma 9. Let T be an n-vertex tree and d(T ) = 4 . Then for n ≥ 10 , σ(T ) ≥ 2n−2

if and only if T ∈ {U1(n− 5, 1) , Un−5(1, 1) , U0(n1, n2) |n1 + n2 = n− 3} .

Proof. Since T is a tree with d(T ) = 4 and n(T ) = n , there are integers ni ≥ 1 , i =

1, 2, . . . , t , k ≥ 0 and t ≥ 2 , such that T ∼= Uk(n1, n2, . . . , nt) . Let m =
t∑

i=1
ni . Since

t ≥ 2 , from Lemma 5 we have

σ(Uk(m− t + 1,

t−1︷ ︸︸ ︷
1, . . . , 1)) ≥ σ(Uk(n1, n2, . . . , nt)) (7)

for n1 ≥ n2 ≥ · · · ≥ nt ≥ 1 and

σ(Uk+s(m− t + s,

t−s︷ ︸︸ ︷
1, . . . , 1)) > σ(Uk+l(m− t + l,

t−l︷ ︸︸ ︷
1, . . . , 1)) (8)

3If this would not be the case, then it would be T − {u1, u2} = r1 K1

t⋃
i=1

Hi , such that Hi is a

tree with n(Hi) ≥ 2 and t ≥ 2 , where r1 + t = r . Since d(T ) = k , there would have to be a tree,
say H1 , such that d(H1) = k− 2 and d(Hi) ≥ 1 for i ≥ 2 . Thus we would have d(T ) ≥ k +1 , which
would contradict to the fact d(T ) = k .
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for s > l ≥ 1 . So, from (7) and (8) we have

max{σ(Uk−1(m− 2, 1, 1)) | k + m = n− 4} ≥ σ(Uk(n1, n2, . . . , nt)) (9)

for all t ≥ 3 and n1 ≥ n2 ≥ · · · ≥ nt ≥ 1 .

From (3) it follows that

max {σ(Uk−1(m− 2, 1, 1)) | k + m = n− 4}

= max {σ(U0(n− 6, 1, 1)), σ(Un−7(1, 1, 1))}

= 2n−3 + 2n−4 + 2n−6 + 9 . (10)

For t = 2 ,

σ(Uk(m− 1, 1)) > σ(Uk(m− 2, 2)) > σ(Uk(m− 3, 3) > σ(Uk(m− s, s)) (11)

where k + m = n− 4 and s ≥ 4 . From Lemma 5 and the inequality (11) we infer the

following:]

For k = 0 and n1 + n2 = n− 3 ,

σ(U0(n1, n2)) = 2n−2 + 2n1 + 2n2 + 1 . (12)

For k = 1 and s ≥ 1 ,

σ(U1(n− 5, 1)) > σ(U1(n− 6, 2)) > σ(U1(n− 6− s, s + 2)) . (13)

For k = 2 and s ≥ 1 ,

σ(U2(n− 6, 1)) > σ(U2(n− 6− s, s + 1)) . (14)

For k = n− 5 and s ≥ 1 ,

σ(Un−5(1, 1)) > σ(Un−6(2, 1)) > σ(Un−6−s(1, 2 + s)) . (15)

For k ≥ 3 , s1 ≥ 2 , and s2 ≥ 1 ,

max{σ(U2(n− 6, 1)), σ(Un−6(2, 1))} ≥ σ(Uk(s1, s2)) . (16)
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In addition, by direct calculation we obtain:

σ(U0(n1, n2)) = 2n−2 + 2n1 + 2n2 + 1 (17)

σ(U1(n− 5, 1)) = 2n−2 + 6 (18)

σ(U1(n− 6, 2)) = 2n−3 + 2n−4 + 2n−5 + 10 (19)

σ(U2(n− 6, 1)) = 2n−3 + 2n−4 + 2n−5 + 12 (20)

σ(Un−5(1, 1)) = 2n−2 + 2n−5 + 4 (21)

σ(Un−6(1, 2)) = 2n−3 + 2n−4 + 2n−5 + 2n−6 + 8 (22)

Note that if n ≥ 10 , then 2n−5 > 12 and 2n−6 > 8 . Therefore, from the inequalities

(9)–(16) and Eqs. (17)–(22), we conclude that if d(T ) = 4 , then σ(T ) ≥ 2n−2 if and

only if T ∈ {U1(n− 5, 1) , Un−5(1, 1) , U0(n1, n2) |n1 + n2 = n− 3} . 2

Lemma 10. Let T be an n-vertex tree with d(T ) = k . If there exists a path

u1, u2, . . . , uk+1 such that du2 ≥ 3 and duk
≥ 3 , then σ(T ) ≤ σ(Pk−1,n1,2) , where

n1 = n− k − 1 .

Proof follows by induction on n(T ) . From the condition of the lemma, we know that

n(T ) ≥ k + 3 and the equality holds if and only if T ∼= Pk−1,2,2 . So, the lemma is

true for n(T ) = k + 3 .

Suppose that n(T ) ≥ k +4 and that the lemma holds for all trees with n(T ) < n .

Let u1, u2, . . . , uk+1 be a path, such that du2 ≥ 3 and duk
≥ 3 . We distinguish the

following two cases:

Case 1. du2 = 3 or duk
= 3 . Suppose that du2 = 3 . From Lemma 2 we have

σ(T ) = σ(T − u1) + σ(T − {u1, u2})

and

σ(Pk−1,n1,2) = σ(Pk,n−k−1) + 2 σ(Pk−2,n−k−1) .

Note that n(T − u1) = n − 1 , d(T − u1) = k , T − {u1, u2} = K1 ∪H , and k − 2 ≤
d(H) ≤ k , where H is a tree. From Theorem 1, σ(T − u1) ≤ σ(Pk,n−k−1) and
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σ(T−{u1, u2}) ≤ 2 σ(Pk−2,n−k−1) , and each equality holds if and only if T ∼= Pk−1,n1,2 .

In view of this, the lemma holds.

Case 2. du2 ≥ 4 and duk
≥ 4 . Let du2 = r ≥ 4 . From Lemma 2 we have

σ(T ) = σ(T − u1) + σ(T − {u1, u2})

and

σ(Pk−1,n1,2) = σ(Pk−1,n1−1,2) + 2n1−1 σ(Pk−2,2) .

Since T −u1 has a path u1, u2, . . . , uk+1 such that du2 = r−1 ≥ 3 and duk
≥ 4 , by the

induction hypothesis, σ(Pk−1,n1−1,2) ≥ σ(T − u1) and the equality holds if and only

if Pk,n−k−1
∼= T − u1 . For T − {u1, u2} , by d(T ) = k we know that there is a tree H

such that T −{u1, u2} = (r− 2) K1 ∪H and k− 2 ≤ d(H) ≤ k . Since n(H) = n− r ,

from Theorem 1 we have

σ(H) ≤ σ(Pk−2,n−k−r+2) = 2n−k−r+2 Fk−2 + Fk−3

where n− k − r + 2 ≥ 0 . Consequently,

σ(T − {u1, u2}) ≤ 2n−k Fk−2 + 2r−2 Fk−3 .

Note that

2n1−1 σ(Pk−2,2) = 2n−k Fk−2 + 2n−k−2 Fk−3 .

Since n− k − 2 ≥ r , we have

σ(T − {u1, u2}) < 2n1−1 σ(Pk−2,2)

which completes the proof. 2

Lemma 11. If T ∈ T (n, 5) \ {P5,n−5} , then σ(T ) ≤ 2n−3 + 2n−4 + 2n−5 + 2n−6 + 6 ,

and the equality holds if and only if T ∼= S1,n−5,2 .

Proof. Since T ∈ T (n, 5) \ {P5,n−5} , we only need to consider the following cases:

Case 1. There is a path u1, u2, u3, u4, u5, u6 , such that du2 ≥ 3 and du5 ≥ 3 . Then,

from Lemmas 7 and 10,

σ(T ) ≤ σ(P4,n−6,2) = 2n−3 + 2n−4 + 2n−5 + 9 .
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Case 2. For each path u1, u2, u3, u4, u5, u6 , we have, du2 = 2 or du5 = 2 . Without

loss of generality, assume, that du2 = 2 . Then, from Lemma 3,

σ(T ) = σ(T − u1) + σ(T − {u1, u2})

and

σ(S1,n−5,2) = σ(P4,n−5) + σ(P4,n−6) .

Note that 4 ≤ d(T − u1) ≤ 5 and 3 ≤ d(T − {u1, u2}) ≤ 5 . From Lemma 8 and

Theorem 1, one concludes that if d(T − {u1, u2}) ≥ 4 , then σ(T − u1) ≤ σ(P4,n−5)

and σ(T − {u1, u2}) ≤ σ(P4,n−6) . Therefore, σ(T ) ≤ σ(S1,n−5,2) and the equality

holds if and only if T ∼= S1,n−5,2 . On the other hand, if d(T − {u1, u2}) = 3 , then

we have d(T − u1) = 4 . Then T ∼= Sn1,n2,2 , where n1 + n2 = n− 6 . From Lemma 7,

σ(T ) ≤ σ(S1,n−5,2) and the equality holds if and only if T ∼= S1,n−5,2 .

This completes the proof. 2

Before stating Theorem 2 we first list a few results that can be obtained by direct

calculation. These cover the case of trees with fewer than 10 vertices.

For any n , from Lemma 1 and Theorem 1 follows that there exists a unique tree

such that 2n−1 ≤ σ(T ) ≤ 2n , which is the star Sn .

For 1 ≤ n ≤ 7 and T ∈ T (n) \ {Sn} , 2n−2 ≤ σ(T ) < 2n−1 .

For n = 8 , if T ∈ {A8 , U1(2, 2) , U2(2, 1) , P4,2,2 , S1,2,2 , U1(3, 1) , U3(1, 1) ,

S(n1, n2) , U0(s1, s2) |n1 + n2 = 6, s1 + s2 = 5} then 26 ≤ σ(T ) < 27 . Otherwise,

25 ≤ σ(T ) < 26 . In the above expression A8 stands for the tree obtained from a path

u1, u2, u3, u4, u5, u6 by adding a pendant edge at each of the vertices u2 and u4 .

For n = 9 , if T ∈ {U3(2, 1) , P5,4 , U1(4, 1) , U4(1, 1) , U0(s1, s2) , Sn1,n2 |n1 + n2 =

7, s1 + s2 = 6} then 27 ≤ σ(T ) < 28 . Otherwise, 26 ≤ σ(T ) < 27 .
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Theorem 2. If T ∈ T (n) and n ≥ 10 , then 2n−2 ≤ σ(T ) ≤ 2n−1 if and only if

T ∈ {P5,n−5 , U1(n− 5, 1) , Un−5(1, 1) , U0(s1, s2) , Sn1,n2 |n1 + n2 = n− 2 , n1 ≥ n2 ≥
1 , s1 + s2 = n− 3 , s1 ≥ s2 ≥ 1} . In addition,

σ(P5,n−5) = 2n−2 + 5

σ(U1(n− 5, 1)) = 2n−2 + 6

σ(Un−5(1, 1)) = 2n−2 + 2n−5 + 4

σ(U0(s1, s2)) = 2n−2 + 2s1 + 2s2 + 1

σ(Sn1,n2) = 2n−2 + 2n1 + 2n2 .

Proof. Let T be a tree with n(T ) ≥ 10 . Then d(T ) ≥ 2 . For d(T ) = 2 , we have

T ∼= Sn and σ(Sn) > 2n−1 .

For any tree T with d(T ) = 3 , from (5) and Lemma 1 we have 2n−2 ≤ σ(T ) ≤
2n−1 .

For any tree T with d(T ) = 4 and n ≥ 10 , from Lemma 9 we know that 2n−2 ≤
σ(T ) ≤ 2n−1 if and only if T ∈ {U1(n− 5, 1) , Un−5(1, 1) , U0(s1, s2) | s1 + s2 = n− 3} .

For any tree T with d(T ) = 5 , σ(P5,n−5) = 2n−2 + 5 . From Theorem 1 and

Lemmas 6 and 11 we know that 2n−2 ≤ σ(T ) ≤ 2n−1 if and only if T ∼= P5,n−5 .

For any tree T with d(T ) ≥ 6 , from Theorem 1 and Lemma 6 we know that

σ(T ) ≤ σ(P6,n−6) = 2n−3 + 2n−4 + 2n−6 + 8 and that equality holds if and only if

T ∼= P6,n−6 .

Theorem 2 follows from the above arguments, Lemma 4, and Eqs. (17)–(22). 2

CONCLUDING REMARKS

Lemma 1 and Theorem 2 imply that there is a single n-vertex tree for which

2n−1+1 ≤ σ(T ) ≤ 2n . For n ≥ 10 the number of n-vertex trees with with the property

2n−2 + 1 ≤ σ(T ) ≤ 2n−1 is exactly n . Above Theorem 2 all trees with fewer than 10

vertices were listed, for which 2n−t + 1 ≤ σ(T ) ≤ 2n−t+1 for any possible integer t .

We denote by T (2t) the set of n-vertex trees T , such that 2n−t + 1 ≤ σ(T ) ≤ 2n−t+1 ,

and denote |T (2t)| by f(t) .

Note that σ(Pn) ≥ 2b(n+2)/2c . Therefore, b(n + 2)/2c ≤ t ≤ n . We have shown

that f(1) = 1 and f(2) = n if n ≥ 10 . An interesting problem would be to determine
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f(t) and T (2t) for any t ∈ [b(n+2)/2c , n] , and for any n , or to find good upper and

lower bounds for f(t) .
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