On the extremal energies of trees with a given maximum degree*

Wenshui Lin ^a, Xiaofeng Guo ^{a,†}, Haohong Li ^b

^a School of Mathematical Sciences, Xiamen University, Xiamen Fujian 361005, P. R. China

^b Department of Chemistry, Fuzhou University, Fuzhou Fujian 350002, P. R. China

(Received July 6, 2004)

Abstract

The energy of a graph is defined as the sum of the absolute values of all eigenvalues of the graph. Let \mathcal{T}_n denote the set of trees with n vertices. When $n \ge 6$, for a given integer $\Delta \in [3, n-2]$, we characterize the tree in \mathcal{T}_n with maximum degree Δ and maximal energy. Furthermore, for $\lceil \frac{n+1}{3} \rceil \le \Delta(T) \le n-2$ and $n \ge 7$, the tree in \mathcal{T}_n with maximum degree Δ and minimal energy is also determined.

^{*} The research is supported by National Natural Science Foundation of China.

[†] Corresponding author. E-mail address: xfguo@xmu.edu.cn

1. Introduction

In the present paper we consider graphs without loops and multiple edges. Let G be such a graph with n vertices. A k-matching of G is a set of k independent edges in G, $k = 1, 2, \dots, \lfloor n/2 \rfloor$. And m(G, k) will denote the number of k-matchings of G. It is both consistent and convenient to define m(G, 0) = 1, and m(G, k) = 0 for $k > \lfloor n/2 \rfloor$.

Let G be a graph with vertex set $\{v_1, v_2, \cdots, v_n\}$. Its adjacency matrix $A(G) = (a_{ij})$ is defined to be the $n \times n$ matrix (a_{ij}) , where $a_{ij} = 1$ if v_i is adjacent to v_j , and $a_{ij} = 0$ otherwise. The characteristic polynomial of G is just $\phi(G) = \det(xI - A(G))$, where I denote the identity matrix of order n. The n roots of the equation $\phi(G) = 0$, denoted by $\lambda_1, \lambda_2, \cdots, \lambda_n$, are called the eigenvalues of graph G.

In chemistry the (experimentally determined) heats of formation of conjugated hydrocarbons are closely related to the total π -electron energy. And the calculation of the total energy of all π -electrons in conjugated hydrocarbons can be reduced to (within the framework of HMO approximation [15]) that of

$$E(G) = |\lambda_1| + |\lambda_2| + \cdots + |\lambda_n|$$
.

If the characteristic polynomial of the graph G is $\phi(G) = \sum_{i=0}^{n} a_i x^{n-i}$, then E(G) can be expressed in terms of the Coulson integral [15] as

$$E(G) = \frac{1}{\pi} \int_{-\infty}^{+\infty} x^{-2} \ln\left[\left(\sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^{j} a_{2j} x^{2j}\right)^{2} + \left(\sum_{i=0}^{\lfloor n/2 \rfloor} (-1)^{j} a_{2j+1} x^{2j+1}\right)^{2}\right] dx.$$

Furthermore it is well known [2] that if T is a tree with n vertices then

$$\phi(T) = \sum_{i=0}^{\lfloor n/2 \rfloor} (-1)^k m(T,k) x^{n-2k} . \text{ Hence}$$

$$E(T) = \frac{2}{\pi} \int_0^{+\infty} x^{-2} \ln \left[\sum_{k=0}^{\lfloor n/2 \rfloor} m(T,k) x^{2k} \right] dx . \tag{*}$$

It is easily seen that E(T) is a strictly monotonously increasing function of all matching numbers $m(T,k), k=0,1,\cdots,\lfloor \frac{n}{2}\rfloor$. Based on this fact Gutman [4] introduced a quasi-ordering relation " \succeq " (i.e. reflexive and transitive relation) on the set of all forests (acyclic graphs) with n vertices: if T_1 and T_2 are two forests with n vertices, then $T_1\succeq T_2 \Leftrightarrow m(T_1,k)\geq m(T_2,k)$ for all $k=0,1,\cdots,\lfloor n/2\rfloor$. If $T_1\succeq T_2$ and there exists j such that $m(T_1,j)>m(T_2,j)$, then we write $T_1\succ T_2$. If $T_1\succeq T_2$ ($T_1\succ T_2$), we also write $T_2\preceq T_1$ (resp. $T_2\prec T_1$). Hence by (*) we have $T_1\succeq T_2\Rightarrow E(T_1)\geq E(T_2)$ and $T_1\succ T_2\Rightarrow E(T_1)>E(T_2)$.

This quasi-ordering has been successfully applied in the study of the extremal values of energy over a significant class of graphs (see [3, 4, 5, 6-15]). In [4] Gutman determined the tree in \mathcal{T}_n with the maximal energy, namely, the path P_n . Furthermore, he obtained the following result.

Lemma 1.1 [4]. Let T be a tree in $\mathcal{T}_n \setminus \{X_n, Y_n, Z_n, W_n\}$. If $n \ge 5$, then $E(X_n) < E(Y_n) < E(Z_n) < E(W_n) \le E(T)$.

In Lemma 1.1, X_n is the star $K_{1,n-1}$, Y_n is the graph obtained by attaching a pendant vertex to a pendant vertex of $K_{1,n-2}$, Z_n by attaching two pendant vertex to a pendant vertex of $K_{1,n-3}$, W_n by attaching a P_2 to a pendant vertex of $K_{1,n-3}$. Fig.1 shows the trees X_9,Y_9,Z_9 and W_9 .

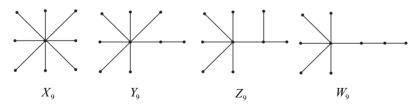


Fig 1. The trees X_9, Y_9, Z_9 and W_9 .

In this paper we use the quasi-ordering to determine the trees with a given

maximum degree and extremal energies. For a given integer $\Delta \in [3, n-2]$ and $n \ge 6$, the tree in \mathcal{T}_n with maximum degree Δ and maximal energy is given. Furthermore, for $\left\lceil \frac{n+1}{3} \right\rceil \le \Delta(T) \le n-2$ and $n \ge 7$, the tree in \mathcal{T}_n with maximum degree Δ and minimal energy is also determined.

2. Preliminaries

First we need the following notations.

The vertices of the path P_n will be labeled by v_1, v_2, \dots, v_n so that v_i and v_{i+1} are adjacent.

Let G and H be two graphs whose vertex sets are disjoint. If v is a vertex of G and w a vertex of H, then G(v,w)H is the graph obtained by identifying the vertices v and w. In particular, the graph $P_n(v_r,v)G$ is obtained by identifying the vertex v_r of P_n with the vertex v of G.

Let u and v be two vertices of the graph G. Then G(u,v)(a,b) denotes the graph obtained from G by attaching a pendant vertices to the vertex u and by attaching b additional pendant vertices to the vertex v.

Two vertices u and v of the graph G are called equivalent if the subgraphs G-u and G-v are isomorphic.

With the above notations, Gutman and Zhang [1] have shown the following results.

Lemma 2.1 [1]. If v is an arbitrary vertex of the graph G, then for n = 4k + i, $i \in \{-1,0,1,2\}, k \ge 1$, $P_n(v_1,v)G \succ P_n(v_3,v)G \succ \cdots \succ P_n(v_{2k+1},v)G$ $\succ P_n(v_{2k},v)G \succ P_n(v_{2k-2},v)G \succ \cdots \succ P_n(v_2,v)G$.

Lemma 2.2 [1]. If the vertices u and v of the graph G are equivalent, then

 $G(u,v)(0,n) \prec G(u,v)(1,n-1) \prec \cdots \prec G(u,v)(|n/2|,n-|n/2|)$.

Definition 2.1. We call the transformation from $G_1 = P_n(v_r, v)G$ to $P_n(v_1, v)G$, where $r \ge 2$ and $n \ge 3$, the α_1 -transformation of G_1 .

Definition 2.2. We call the transformation from $G_1 = P_n(v_r, v)G$ to $P_n(v_3, v)G$, where $r \neq 1,3$ and $n \geq 6$, the α_3 -transformation of G_1 .

Definition 2.3. We call the transformation from $G_1 = G(u,v)(a,b)$ to G(u,v)(a-1,b+1) the β -transformation of G_1 , and the transformation from $G_1 = G(u,v)(a,b)$ to G(u,v)(0,n) the β '-transformation of G_1 , where $1 \le a \le b$, and u,v are equivalent in G.

By Lemmas 2.1 and 2.2, the following results are immediate.

Corollary 2.1. If G_0 can be obtained from G by one step of α_1 - or α_3 -transformation, then $G_0 \succ G$.

Corollary 2.2. If G_0 can be obtained from G by one step of β - or β '-transformation, then $G_0 \prec G$.

Definition 2.4. Let T be a tree in T_n , and $n \ge 3$. Let e = uv be a nonpendant edge of T, and let T_1 and T_2 be the two components of T - e, $u \in T_1$, $v \in T_2$. T_0 is the tree obtained from T in the following way.

- (1) Contract the edge e = uv (i.e. identify u of T_1 with v of T_2).
- (2) Attach a pendant vertex to the vertex u = (v).

The procedures (1) and (2) are called [16] the edge-growing transformation of T (on edge e = uv), or e.g.t of T (on edge e = uv) for short.

Lemma 2.3. Let T be a tree in \mathcal{T}_n with at least a nonpendant edge, and $n \ge 3$. If T_0 can be obtained from T by one step of e.g.t (on edge e = uv), then $T > T_0$ and $E(T) > E(T_0)$.

Proof. On one hand, each k-matching of T_0 corresponds a k-matching of T, $k = 0, 1, \dots, \lfloor n/2 \rfloor$, thus $m(T, k) \ge m(T_0, k)$ and $T \ge T_0$. On the other hand, since e = uv is a nonpendant edge of T, we can find a vertex adjacent to u (resp. v) in T_1 (resp. in T_2), say u_1 (resp. v_1). Then $\{u_1u, vv_1\}$ is a 2-matching of T, but not one of T_0 , so $m(T, 2) > m(T_0, 2)$. Hence $T > T_0$, and $E(T) > E(T_0)$.

Lemma 2.4 [1]. If e = uv is an edge of G, then for all $k \ge 1$, m(G,k) = m(G-u-v,k-1) + m(G-e,k).

The lemmas and corollaries above are often used to determine the quasi-order between two trees in the remainder of this paper.

In order to formulate our results, we need to define three trees: S(n,m,r), where $n=2m+r+1\geq 5$, $m\geq 1$, $r\geq 0$, $m+r\geq 3$; Y(n,m,r), where n=2m+r+1, $n\geq 8$, $m\geq 2$, $r\geq 3$; and D(n,p,q) ($n\geq 4$, $p\geq q\geq 1$, p+q=n-2) as following: S(n,m,r) is obtained from the star $K_{1,m+r}$ by attaching one pendant vertex to each of m pendant vertices of $K_{1,m+r}$. Y(n,m,r) is obtained from the path P_{r+1} by attaching m P_2 to one end vertex of P_{r+1} . D(n,p,q) is obtained from the star $K_{1,p+1}$ by attaching q pendant vertices to one pendant vertex of $K_{1,n+1}$. The three trees are shown in Fig.2.

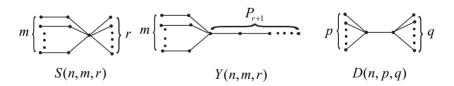


Fig.2. The trees S(n,m,r), Y(n,m,r) and D(n,p,q).

For S(n, m, r), Hou has shown the following result [17].

Lemma 2.5 [17]. Let T be a tree in \mathcal{T}_n with m-matchings (i.e. m(T,m) > 0).

Then $T \succeq S(n, m-1, n-2m+1)$ with the equality iff $T \cong S(n, m-1, n-2m+1)$.

Let $\overline{\mathcal{T}}_n^{\Delta} = \{T \in \mathcal{T}_n \mid T \text{ consists of } \Delta \text{ paths with a common end vertex}\}$, $\Delta = 3, 4, \dots, n-1$. Then $S(n, n-\Delta-1, 2\Delta-n+1)$ and $Y(n, \Delta-1, n-2\Delta+1)$ are both in $\overline{\mathcal{T}}_n^{\Delta}$, and $P_n \notin \overline{\mathcal{T}}_n^{\Delta}$. Obviously, if $T \in \overline{\mathcal{T}}_n^{\Delta}$, then T has exact one vertex of degree more than 2. We call the vertex of degree $\Delta(>2)$ the root of T, and call each of the Δ paths a pendant path of T (rooting at the root).

We also let $T_{r,s,t}^2$ and $T_{p,q,l,m}^3$ be the two trees shown in Fig. 3, where $r,s \ge 1$, $t \ge 0$ and $p,q \ge 0$, $l,m \ge 1$.

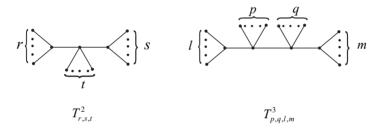


Fig 3. The trees $T_{r,s,t}^2$ and $T_{p,q,l,m}^3$.

3. Main results

We first determine the tree with a given maximum degree and maximal energy.

Theorem 3.1. Let T be a tree in \mathcal{T}_n and $n \ge 4$. Then $T \le T_1^*(n, \Delta)$ and $E(T) \le E(T_1^*(n, \Delta))$, with the equalities iff $T \cong T_1^*(n, \Delta)$, where $T_1^*(n, \Delta) = S(n, n - \Delta - 1, 2\Delta - n + 1)$ if $3 \le \lfloor \frac{n}{2} \rfloor \le \Delta(T) \le n - 2$, $T_1^*(n, \Delta) = Y(n, \Delta - 1, n - 2\Delta + 1)$ if $3 \le \Delta(T) < \lfloor \frac{n}{2} \rfloor$, and $T_1^*(n, \Delta) = P_n$ if $\Delta(T) = 2$.

Proof. If $\Delta(T) = 2$, then $T \cong P_n = T_1^*(n, \Delta)$, and the conclusion holds. So we suppose $\Delta(T) \ge 3$ hereafter. If $T \notin \overline{T}_n^{\Delta}$, then T can be transformed into a tree

 $T' \in \overline{\mathcal{T}}_n^{\Delta}$ by carrying out α_1 -transformation repeatedly. Thus $T \prec T'$ by Corollary 2.1. So it is sufficient to show that for any tree $\overline{T} \in \overline{\mathcal{T}}_n^{\Delta}$ and $\overline{T} \neq T_1^*(n,\Delta)$, $\overline{T} \prec T_1^*(n,\Delta)$.

We distinguish the following two cases.

Case 1. $\Delta(\overline{T}) = \Delta(T) \ge \lfloor n/2 \rfloor \ge 3$. Since $\overline{T} \ne T_1^*(n,\Delta) = S(n,n-\Delta-1,2\Delta-n+1)$, then \overline{T} has at least a pendant path with not less than 4 vertices. Moreover, there must exist at least a pendant path P_2 in \overline{T} . (Otherwise the number of vertices of \overline{T} is $n \ge 2\Delta + 2 \ge 2\lfloor n/2 \rfloor + 2 > n$, a contradiction.) So \overline{T} can be transformed into $T_1^*(n,\Delta)$ by repeatedly carrying out α_3 -transformation, and $\overline{T} \prec T_1^*(n,\Delta)$ by Corollary 2.1.

Case 2. $\Delta(\overline{T}) = \Delta(T) < \lfloor n/2 \rfloor$. Since $\overline{T} \neq T_1^*(n,\Delta) = Y(n,\Delta-1,n-2\Delta+1)$, then either \overline{T} has at least two different pendant paths with not less than 4 vertices, or \overline{T} has at most one pendant paths with not less than 4 vertices and at least a pendant path P_2 . If \overline{T} is the former case, then \overline{T} can be transformed into a tree \overline{T} with only one pendant path with not less than 4 vertices by carrying out α_3 -transformation repeatedly. Hence $\overline{T} \prec \overline{T}$ by Corollary 2.1. If $\overline{T} \cong T_1^*(n,\Delta) = Y(n,\Delta-1,n-2\Delta+1)$, then the result holds; otherwise, \overline{T} is the latter case. Thus it remains to show that $\overline{T} \prec T_1^*(n,\Delta)$, where \overline{T} has at most one pendant path with not less than 4 vertices and at least a pendant path P_2 . Then \overline{T} must have at least one pendant path with not less than 5 vertices. Otherwise, \overline{T} has at most one pendant path with 4 vertices and at least one pendant path P_2 . Then, if P_2 is odd, $P_3 = \frac{1}{2} \left[\frac{n}{2} \right] < \frac{1}{2} < \frac{n}{2}$, a contradiction; if P_3 is even, $P_3 = \frac{1}{2} \left[\frac{n}{2} \right] < \frac{1}{2} < \frac{n}{2}$, a contradiction; if P_3 is even, $P_3 = \frac{1}{2} \left[\frac{n}{2} \right] < \frac{1}{2} < \frac{n}{2} < \frac{1}{2} < \frac{1}{2$

reasoning, \overline{T}^n can be transformated into $T_1^*(n,\Delta) = Y(n,\Delta-1,n-2\Delta+1)$ by repeatedly carrying out α_3 -transformations. Hence $\overline{T}^n \prec T_1^*(n,\Delta)$ by Corollary 2.1.

The proof is thus completed.

Noting that, for each Δ , $2 \le \Delta \le n-2$, $T_1^*(n,\Delta+1)$ can be transformed into $T_1^*(n,\Delta)$ by exact one step of α_1 -transformation, we have $T_1^*(n,\Delta+1) \prec T_1^*(n,\Delta)$ by Corollary 2.1, and the next result follows from Theorem 3.1 immediately.

П

Corollary 3.1. Let T be a tree in \mathcal{T}_n and $n \ge 5$. If $\Delta(T) \ge l \ge 3$, then $T \le T_1^*(n,l)$, with the equality iff $T \cong T_1^*(n,l)$.

Furthermore we can obtain the following interesting result.

Corollary 3.2. Let T_1 and T_2 be two trees in T_n , and $n \ge 4$. If T_1 has m-matchings and $\Delta(T_2) \ge n - m$, then $T_1 \ge T_2$, with the equality iff $T_1 \cong T_2 \cong S(n, m-1, n-2m+1)$.

Proof. Immediate from Lemma 2.5 and Corollary 3.1. □

Now we consider the tree with a given maximum degree and minimal energy.

Theorem 3.2. Let T be a tree in \mathcal{T}_n , and $n \ge 7$. If $\left\lceil \frac{n+1}{3} \right\rceil \le \Delta(T) \le n-2$, then $T \succeq \mathcal{T}_2^*(n,\Delta)$ and $E(T) \ge E(\mathcal{T}_2^*(n,\Delta))$, with the equalities iff $T \cong \mathcal{T}_2^*(n,\Delta)$, where $\mathcal{T}_2^*(n,\Delta) = D(n,\Delta-1,n-\Delta-1)$ if $\left\lceil \frac{n}{2} \right\rceil \le \Delta(T) \le n-2$, and $\mathcal{T}_2^*(n,\Delta) = \mathcal{T}_{\Delta-1,\Delta-1,n-2\Delta-1}^2$ if $\left\lceil \frac{n+1}{3} \right\rceil \le \Delta(T) \le \left\lceil \frac{n}{2} \right\rceil - 1$.

It is easy to see that, if $3 \le \lceil \frac{n}{2} \rceil \le \Delta \le n-2$, T can be transformed into $T_2^*(n,\Delta)$ by carrying out e.g.t and β -transformation repeatedly, so $T \ge T_2^*(n,\Delta)$ with the equality iff $T \cong T_2^*(n,\Delta)$ by Lemma 2.3 and Corollary 2.2. However, in order to prove the conclusion of Theorem 3.2 for $\lceil \frac{n+1}{3} \rceil \le \Delta(T) \le \lceil \frac{n}{2} \rceil - 1$, we need more

preparations.

Lemma 3.1. Let T be a tree in \mathcal{T}_n with maximum degree Δ , where $\left\lceil \frac{n+1}{3} \right\rceil \leq \Delta(T) \leq \left\lceil \frac{n}{2} \right\rceil - 1$, and $n \geq 7$. If $T = T_{r,s,l}^2$ or $T = T_{p,q,l,m}^3$, then $T \succeq T_2^*(n,\Delta) = T_{\Delta-1,\Delta-1,n-2,\Delta-1}^2$, with the equality iff $T \cong T_2^*(n,\Delta)$.

Proof. We prove the result by the following three cases.

Case 1. $T = T_{r,s,t}^2$. Then either $r = \Delta - 1$ and $s \le \Delta - 1$, $t \le \Delta - 2$, or $t = \Delta - 2$ and $s, r \le \Delta - 1$.

Subcase 1.1. $r = \Delta - 1$. Then $s + t = n - \Delta - 2$. By repeatedly applying Lemma 2.4 $\Delta - 1$ times, we have, for all $k \ge 1$,

 $m(T,k) = (\Delta - 1) \times m(D(n - \Delta, t, s), k - 1) + m(D(n - \Delta + 1, t + 1, s), k)$, and

$$m(T_2^*(n,\Delta),k) = (\Delta-1) \times m(D(n-\Delta,\Delta-1,n-2\Delta-1),k-1) + m(D(n-\Delta+1,\Delta-1,n-2\Delta),k) \ .$$

Moreover by Lemma 2.2, $D(n-\Delta,t,s) \succeq D(n-\Delta,\Delta-1,n-2\Delta-1)$ and

 $D(n-\Delta+1,t+1,s) \succeq D(n-\Delta+1,\Delta-1,n-2\Delta)$, so $m(T,k) \ge m(T_2^*(n,\Delta),k)$, for all $k \ge 1$. Hence $T \succeq T_2^*(n,\Delta)$, with the equality iff $T \cong T_2^*(n,\Delta)$.

Subcase 1.2. $t = \Delta - 2$. Obviously, $r + s \ge \Delta$. Thus T can be transformed into $T_{\Delta-1,n-2\Delta,\Delta-2}^2$ by β -transformation, and by Corollary 2.2 and Subcase 1.1, $T \ge T_{\Delta-1,n-2\Delta,\Delta-2}^2 \ge T_2^*(n,\Delta)$, with the equality iff $T \cong T_{\Delta-1,n-2\Delta,\Delta-2}^2 \cong T_2^*(n,\Delta)$.

Case 2. $T = T_{p,q,l,m}^3$. Then either $l = \Delta - 1$, $p, q \le \Delta - 2$ and $m \le \Delta - 1$, or $p = \Delta - 2$, $q \le \Delta - 2$ and $l, m \le \Delta - 1$.

Subcase 2.1. $l = \Delta - 1$. By repeatedly applying Lemma 2.4 $\Delta - 1$ times, we have, for all $k \ge 1$, $m(T,k) = (\Delta - 1) \times m(T_{p,m,q}^2, k - 1) + m(T_{p+1,m,q}^2, k)$ and $m(T_p^*(n,\Delta),k) = (\Delta - 1) \times m(D(n-\Delta,\Delta-1,n-2\Delta-1),k-1) + m(D(n-\Delta+1,\Delta-1,n-2\Delta),k)$.

If $p+m \ge \Delta-1$, and without loss of generality assuming $p \ge m$, then $T_{p,m,q}^2$ can be transformed into $D(n-\Delta,\Delta-1,n-2\Delta-1)$ by exact $(\Delta-1)-p=\Delta-p-1$ steps

of β -transformation, and followed one step of e.g.t if $p+m \geq \Delta$. So by Corollary 2.2 and 2.3, $T_{p,m,q}^2 \succeq D(n-\Delta,\Delta-1,n-2\Delta-1)$. Otherwise $p+m < \Delta-1$, then $T_{p,m,q}^2$ can be transformed into $D(n-\Delta,p+m,q+1)$ by one step of β '-transformation, so $T_{p,m,q}^2 \succeq D(n-\Delta,p+m,q+1)\succeq D(n-\Delta,\Delta-1,n-2\Delta-1)$ by Corollary 2.2 and Lemma 2.2. Similarly, $T_{p+1,m,q}^2 \succ D(n-\Delta+1,\Delta-1,n-2\Delta)$. Therefore $m(T,k) \geq m(T_2^*(n,\Delta),k)$, and $T \succ T_2^*(n,\Delta)$.

Subcase 2.2. $p = \Delta - 2$. We will show that $T = T_{\Delta - 2,q,l,m}^3 \succeq T' = T_{l-1,q,\Delta - 1,m}^3$, then the case is deduced to Subcase 2.1. It is easy to see that for $k \ge 1$, $m(T,k) = m \times m(T_{l,q,\Delta - 2}^2,k-1) + m(T_{l,q+1,\Delta - 2}^2,k)$, and $m(T',k) = m \times m(T_{\Delta - 1,q,l-1}^2,k-1) + m(T_{\Delta - 1,q+1,l-1}^2,k)$. Similarly, we have, for all $k \ge 2$, $m(T_{l,q,\Delta - 2}^2,k-1) = q \times m(D(l+\Delta,l,\Delta - 2),k-2) + m(D(l+\Delta+1,l,\Delta - 1),k-1)$ and $m(T_{\Delta - 1,q,l-1}^2,k-1) = q \times m(D(l+\Delta,l-1,\Delta - 1),k-2) + m(D(l+\Delta+1,l,\Delta - 1),k-1)$. Noting that $l \le \Delta - 1$, for $k \ge 2$, we have $m(D(l+\Delta,l,\Delta - 2),k-2) \ge m(D(l+\Delta,l-1,\Delta - 1),k-2)$, so $m(T_{l,q,\Delta - 2}^2,k) \ge m(T_{l-1,\Delta - 1,q}^2,k)$. Similarly $m(T_{\Delta - 2,l,q+1}^2,k-1) \ge m(T_{l-1,\Delta - 1,q+1}^2,k-1)$ for all $k \ge 2$. Therefore $m(T,k) \ge m(T',k)$ for all $k \ge 2$, and $T \succeq T'$.

Let $\varepsilon(G)$ denote the number of edges of the graph G. Let $K_{1,\Delta}$ be a star, and $v_1, v_2, \cdots, v_{\Delta}$ its vertices of degree 1. Let H_i be a tree with maximum degree at most Δ , and u_i a vertex of H_i , $i=1,2,\cdots,\Delta$, with degree at most $\Delta-1$. Then $T(n,\Delta;H_1,H_2,\cdots,H_{\Delta})$ will denote the tree $K_{1,\Delta}(v_1,u_1)H_1(v_2,u_2)H_2\cdots(v_{\Delta},u_{\Delta})H_{\Delta}$. Let $\varepsilon_i=\varepsilon(H_i)$, $i=1,2,\cdots,\Delta$. Without loss of generality we assume that $\varepsilon_1\geq\varepsilon_2\geq\cdots\geq\varepsilon_{\Delta}$. When $\varepsilon_i=0$, H_i is an isolated vertex u_i , which will be denoted by K_1 . If H_i is a star K_{1,ε_i} with the center u_i , then we write H_i as C_{ε_i} . (A center of a star is

The proof is thus completed.

the vertex of the star with maximum degree.)

Obviously $T(n, \Delta; H_1, H_2, \dots, H_{\Delta})$ has maximum degree Δ , while every tree in

 \mathcal{T}_n with maximum degree Δ has the form $T(n,\Delta;H_1,H_2,\cdots,H_\Delta)$.

Lemma 3.2. Let $T = T(n, \Delta; H_1, H_2, \dots, H_{\Delta})$ with $\varepsilon_3 > 0$ and $\left\lceil \frac{n+1}{3} \right\rceil \leq \Delta(T) \leq \left\lceil \frac{n-2}{2} \right\rceil$. Then there exists a tree $T' = T(n, \Delta; H_1', C_t, K_1, \dots, K_1)$, where $\varepsilon(H_1') \geq \Delta - 1$, $t = n - \Delta - \varepsilon(H_1') - 1 \leq \Delta - 1$, such that $T \succ T'$.

Proof. If $\varepsilon_1 \leq \Delta - 1$, then $\varepsilon_i \leq \Delta - 1$, $i = 2, 3, \dots, \Delta$. Thus T can be transformed into $T' = T(n, \Delta; C_{\Lambda-1}, C_{n-2\Delta}, K_1, \dots, K_1)$ by a number of e.g.t and β -transformations, so the conclusion holds from Corollary 2.2 and Lemma 2.3. If $\varepsilon_1 \geq \Delta$, then $t = \sum_{i=2}^{\Delta} \varepsilon_i \leq \Delta - 1$. (Otherwise $\varepsilon(T) = n - 1 \geq 3\Delta \geq 3\lceil \frac{n+1}{3} \rceil > n$, a contradiction.) Thus T can be transformed into $T' = T(n, \Delta; H_1, C_i, K_1, \dots, K_1)$ by a number of e.g.t and β -transformations, and so $T \succ T'$.

Now we give the proof of Theorem 3.2.

Proof of Theorem 3.2. We have mentioned that the conclusion holds if $\left\lceil \frac{n-2}{2} \right\rceil + 1 \le \Delta \le n-2$. Now we only deal with the case when $\left\lceil \frac{n+1}{3} \right\rceil \le \Delta(T) \le \left\lceil \frac{n}{2} \right\rceil - 1$ here. By Lemma 3.2, it suffices to show the following statement: for each tree $T = T(n,\Delta; H_1, C_t, K_1, \cdots, K_1)$ with $\varepsilon_1 = \varepsilon(H_1) \ge \Delta - 1$ and $t = n - \Delta - \varepsilon_1 - 1 \le \Delta - 1$, $T \ge T_2^*(n,\Delta) = T_{\Delta-1,\Delta-1,n-2\Delta-1}^2$, with the equality iff $T \cong T_2^*(n,\Delta)$.

If $\varepsilon_1 = \Delta - 1$, then T can be transformed into $T_1 = T_{\Delta - 1, t, \Delta - 2}$ by e.g.t, and the conclusion holds from Lemma 2.3 and 3.1.

Hence assume $\varepsilon_1 \geq \Delta$. Then we can find an edge $e = wu_1$ in H_1 such that the degree of w is more than 1 in H_1 . Let L_1 and L_2 be the two components of $H_1 - e$ such that w is in L_1 (L_2 may be K_1). We complete the proof by induction on $\tau(T)$, the number of nonpendant edges of T. When $\tau = 2$, $T = T_{r,s,t}^2$ for some r, s and t with $\Delta(T) = \Delta$, so the result holds from Lemma 3.1. Assume that the statement is true when $\tau = l - 1$. Now let

 $T = T(n, \Delta; H_1, C_t, K_1, \dots, K_1)$ be a tree with $\tau(T) = l$. We distinguish the following two cases.

Case 1. t > 0, i.e. $C_t \neq K_1$.

Subcase 1.1. $\varepsilon(L_1) \le \Delta - 1$ and $\varepsilon(L_2) \le \Delta - 2$. Thus by e.g.t T can be transformed into $T^3_{\Delta - 2, \varepsilon(L_2), t, \varepsilon(L_1)}$, so the statement is true by Lemma 3.1.

Subcase 1.2. $\varepsilon(L_1) \ge \Delta$. Thus $\varepsilon(L_2) + t \le \Delta - 2$. By e.g.t, T can be transformed into \hat{T} so that L_2 becomes $K_{1,\varepsilon(L_2)}$ with the center u_1 . Then $T \succeq \hat{T}$ by Lemma 2.3. Let T_1 be the tree obtained from \hat{T} by moving all the t pendant edges at vertex u_2 to u_1 . By induction hypothesis $T_1 \succeq T_2^*(n,\Delta)$, with the equality iff $T_1 \cong T_2^*(n,\Delta)$, so it remains to show that $\hat{T} \succeq T_1$. Let $m'(L_1,i)$ denote the number of i-matchings of L_1 in which at least one edge is incident with the vertex w, and $m''(L_1,j)$ the number of j-matchings of L_1 which consist of edges not incident with the vertex w. Let $T' = T_{\varepsilon(L_2),t,\Delta-2}^2$ and $T'' = T_{\varepsilon(L_2)+1,t,\Delta-2}^2$. Then for all $k \ge 0$,

$$m(\hat{T},k) = \sum_{i=1}^{k} m'(L_1,i) \times m(T',k-i) + \sum_{j=0}^{k} m''(L_1,j) \times m(T'',k-j).$$

Similarly, $D' = D(\Delta + \varepsilon(L_1) + t + 3, \Delta + 1, \varepsilon(L_2) + t)$ and

$$D"=D(\Delta+\varepsilon(L_2)+t+4,\Delta+1,\varepsilon(L_2)+t+1)\,\big).$$

$$m(T_1,k) = \sum_{i=0}^k m'(L_1,i) \times m(D',k-i) + \sum_{j=0}^k m''(L_1,j) \times m(D'',k-j).$$

Moreover by Lemma 2.2, $T' \succeq D'$ and $T" \succ D"$, so $m(\hat{T}, k) \ge m(T_1, k)$ for all $k \ge 0$. Hence $T \succeq \hat{T} \succ T_1 \succeq T_2^*(n, \Delta)$.

Subcase 1.3. $\varepsilon(L_2) \ge \Delta - 1$. Thus $\varepsilon(L_1) + t \le \Delta - 1$. By e.g.t, T can be transformed into \hat{T} so that L_1 becomes $K_{1,\varepsilon(L_1)}$ with the center w. Let T_1 be the tree obtained from \hat{T} by moving all the $\varepsilon(L_1)$ at vertex w to u_2 . Similar to Subcase 1.2, we have $T > T_1$, and the statement holds.

Case 2. t = 0, i.e. $C_t = K_1$.

Subcase 2.1. $\varepsilon(L_1) \le \Delta - 1$ and $\varepsilon(L_2) \le \Delta - 2$. Thus by e.g.t T can be transformed into $T_{\Delta - 1, \varepsilon(L_1), \varepsilon(L_2)}^2$, and the statement holds by Lemma 3.1.

Subcase 2.2. $\varepsilon(L_1) \ge \Delta$. Thus $\varepsilon_2 \le \Delta - 2$. By e.g.t, T can be transformed into \hat{T} so that L_2 becomes $K_{1,\varepsilon(L_2)}$ with the center u_1 . Let e' = yw be a nonpendant edge with an end vertex y in L_1 . Let I_1 and I_2 be the two components of $L_1 - e'$ such that y is in I_1 (I_2 may be K_1).

Subsubcase 2.2.1. $\varepsilon(I_1) \le \Delta - 1$ and $\varepsilon(I_2) \le \Delta - 2$. Thus by e.g.t \hat{T} can be transformed into $T^3_{\varepsilon(I_2),\varepsilon(I_1),\Delta-1,\varepsilon(I_1)}$, and the statement holds by Lemma 3.1.

Subsubcase 2.2.2. $\varepsilon(I_1) \ge \Delta$. Thus $\varepsilon(I_2) + \varepsilon(L_2) + 1 \le \Delta - 2$. Let T_1 be the tree obtained from \hat{T} by e.g.t on edge $e = wu_1$ and nonpendant edges in L_2 . Then $T \succ T_1 \succeq T_2^*(n,\Delta)$ by Lemma 2.3 and induction hypothesis.

Subsubcase 2.2.3. $\varepsilon(I_2) \ge \Delta - 1$. Thus $\varepsilon(I_1) + \varepsilon(L_2) + 1 \le \Delta - 2$. Let T_1 be the tree obtained from \hat{T} by e.g.t on nonpendant edges in I_1 and then moving all the $\varepsilon(I_1)$ pendant edges at vertex y to u_1 . Similar to Subcase 1.2, we have $\hat{T} \succ T_1$, and the conclusion holds.

Subcase 2.3. $\varepsilon(L_2) \ge \Delta - 1$. Then $\varepsilon(L_1) \le \Delta - 2$. By e.g.t, T can be transformed into \hat{T} so that L_1 becomes $K_{1,\varepsilon(L_1)}$ with the center w. Let $e^n = zu_1$ be a nonpendant edge with an end vertex u_1 in H_1 . Let N_1 and N_2 be the two components of $L_2 - e^n$ such that z is in N_1 (N_2 may be K_1).

Subsubcase 2.3.1. $\varepsilon(N_1) \le \Delta - 1$ and $\varepsilon(N_2) \le \Delta - 3$. By e.g.t, \hat{T} can be transformed into T_1 so that N_1 becomes $K_{1,\varepsilon(N_1)}$ with the center z and N_2 becomes $K_{1,\varepsilon(N_2)}$ with the center u_1 . If $s = \varepsilon(L_1) + \varepsilon(N_1) \le \Delta - 1$, then by Lemma 2.2 and Lemma 3.1 we have $T \succeq \hat{T} \succ T_1 \succ T_{\Delta - 1, s, \varepsilon(N_2) + 1} \succeq T_2^*(n, \Delta)$. Otherwise $s \ge \Delta$. Then T_1 can be transformed into $T_2^*(n, \Delta) = T_{\Delta - 1, \Delta - 1, n - 2\Delta - 1}^2$ by exact $\Delta - 1 - \varepsilon(L_1)$

steps of β -transformation and followed a step of e.g.t. on edge $e^n = zu_1$. Hence by Corollary 2.2, Lemma 2.3 and Lemma 3.1, $T > T_2^*(n, \Delta)$.

Subsubcase 2.3.2. $\varepsilon(N_1) \ge \Delta$. Thus $\varepsilon(L_1) + \varepsilon(N_2) \le \Delta - 3$. Let T_1 be the tree obtained from \hat{T} by repeatedly carrying out e.g.t so that N_2 becomes $K_{1,\varepsilon(N_2)}$ with the center u_1 , and followed a step of e.g.t on edge $e = wu_1$. Hence $T \succeq \hat{T} \succ T_1 \succeq T_2^*(n,\Delta)$ by Lemma 2.3 and induction hypothesis.

Subsubcase 2.3.3. $\varepsilon(N_2) \ge \Delta - 2$. Thus $\varepsilon(L_1) + \varepsilon(N_1) \le \Delta - 1$. Let T_1 be the tree obtained from \hat{T} by repeatedly carrying e.g.t such that N_1 becomes $K_{1,\varepsilon(N_1)}$ with the center z, and then moving all the $\varepsilon(N_1)$ pendant edges at vertex z to w (i.e. a step of β '-transformation). Then $T \succeq \hat{T} \succ T_1 \succeq T_2^*(n,\Delta)$ by Corollary 2.2, Lemma 2.3 and induction hypothesis.

The proof is completed.		
-------------------------	--	--

References

- [1] I. Gutman, Fuji Zhang, On the ordering of graphs with respect to their matching numbers, Discrete Appl. Math., 15(1986) 25-33.
- [2] D.M. Cvetkovic, M. Doob, H.Sachs, Spectra of Graphs, Academic Press, New York, 1980.
- [3] I. Gutman, Acyclic conjugated molecules, trees and their energies, J. Math. Chem., 1(1987), 123-143.
- [4] I. Gutman, Acyclic systems with extremal Huckel π -electronic energy, Theoret. Chim. Acta (Berlin), 45(1977), 79-87.
- [5] D. Cvetkovic, M. Doob, I. Gutman and A. Torgasev, Recent Results in the Theory of Graph Spectra (Elsevier, Amsterdam, 1986).

- [6] I. Gutman, Y. Hou, Bipartite unicyclic graphs with greatest energy, MATCH Commun. Math. Comput. Chem., 43(2001), 17-28.
- [7] Y. Hou, Unicyclic graphs with minimal energy, J. Math. Chem., 29(2001). 163-168.
- [8] Y. Hou, Bicyclic graphs with minimal energy, Linear Multilinear Algebra, 49(2002), 347-354.
- [9] Y. Hou, I. Gutman, C.-W. Wou, Unicyclic graphs with maximal energy, Linear Algebra Appl., 356(2002), 27-36.
- [10] H. Li, On minimal energy ordering of acyclic conjugated molecules, J. Math. Chem. 25(1999), 145-169.
- [11] J.Rada, A. Tineo, Polygonal chains with minimal energy, Linear Algebra Appl., 372(2003). 333-344.
- [12] F. Zhang, H. Li, On acyclic conjugated molecules with minimal energies, Discrete Appl. Math., 92(1999), 71-84.
- [13] F. Zhang, Z. Li, L. Wang, Hexagonal chains with minimal total π -energy, Chem. Phys. Lett., 337(2001), 125-130.
- [14] F. Zhang, Z. Li, L. Wang, Hexagonal chains with maximal total π -energy, Chem. Phys. Lett., 337(2001), 131-137.
- [15] I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986, p.135-142.
- [16] G.H. Xu, On the spectral radius of trees with perfect matchings, in: Combinatorics and Graph Theory, World Scientific, Singapore, 1997.
- [17] Y. Hou, On trees with the least energy and a given size of matching, J. Sys. Sci. & Math. Scis., 23(4)(2003,10), 491-494 (in Chinese).