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Abstract-This paper begins with a review of the Euler relation for the polyhedra and presents 
the corresponding Schläfli relation in n, the polygonality, and p, the connectivity of the 
polyhedra. The use of the Schläfli symbols to organize the mapping of the polyhedra and its 
extension into the 2D and 3D networks is described. The topological form index, represented by l, 
is introduced and is defined as the ratio of the polygonality, n, to the connectivity, p, in a 
structure. Next a discussion is given of establishing a conventional metric of length in order to 
compare topological properties of the polyhedra and networks in 2D and 3D. A fundamental 
structural metric is assumed for the polyhedra. The metric for the polyhedra is, in turn, used to 
establish a metric for tilings in the Euclidean plane. The metrics for the polyhedra and 2D plane 
are used to establish a metric for networks in 3D. Once the metrics have been established, a 
conjecture is introduced that the area of the elementary polygonal circuit in the polyhedra and 2D 
and 3D networks is proportional to the topological form index, l, for these structures. Data of the 
form indices and the corresponding elementary polygonal circuit areas, for a selection of 
polyhedra and 2D and 3D networks, is tabulated and the results of a least squares regression 
analysis of the data plotted in a Cartesian space are reported. From the regression analysis it is 
seen that a quadratic in l successfully correlates the topological form indices with the 
corresponding elementary polygonal circuit area data of the polyhedra and 2D and 3D networks. 
A brief discussion of the evident rigorousness of the Schläfli indices over all the polyhedra and 
2D and 3D networks, based upon the correlation of the topological form index with elementary 
polygonal circuit area, and the suggestion that an Euler-Schläfli relation for the 2D and 3D 
networks in terms of the Schläfli indices is possible, concludes the paper. 
 
 
 

1.  Introduction 
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Euler's relation between the number of vertices, V, edges, E, and faces, F, of 

convex polyhedra was developed in the middle of the 18th century [1] and its 

discovery marks the origin of the discipline of topology [2]. This relation is shown 

in Equation 1 below: 

 

(1)     V - E + F = 2 

 

From this equation it is said that the Euler characteristic for the sphere is 2. This 

simply, and elegantly, means that any division of a sphere into vertices, edges and 

faces will have that combination so specified in Equation 1. It happens that the 

convex polyhedra, with all their inherent symmetry and internal beauty, are the 

idealized divisions of the sphere into the topology suggested first by Euler in his 

1758 paper [1]. 

 Some time after this, in a paper due to Schläfli, [3] the identities shown in 

Equation 2 and Equation 3 were discovered: 

 

(2)     nF = 2E 

 

(3)     pV = 2E 

 

Schläfli identified the polygonality of convex polyhedra; or any division of the 

sphere into vertices, edges and faces, as the averaged number of sides of the 

polygonal faces in the object. He determined the relation shown in 2, that the 

averaged polygonality in the object, n, multiplied by its number of faces, F, is 

equal to twice its number of edges, E. Because each edge, E, is shared by two 

faces (i.e. adjacent faces share a common edge) this relationship is rigorous. 
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 Similarly in 3 we see the Schläfli relation between the connectivity of 

convex polyhedra, p, and the number of vertices, V, and edges, E. The 

connectivity, p, is identified as the averaged number of edges meeting at each 

vertex of a polyhedron. Because each of the edges terminates at two vertices, one 

can see that this Schläfli relation is rigorous. One speaks of averaged numbers for 

n and p, because unless the polyhedron is regular (meaning all faces are identical 

polygons) there are differing numbers of edges to each polygonal face and/or 

differing numbers of edges meeting at each polygonal vertex. One can therefore 

identify the semi-regular polyhedra, these are the Archimedean (polyhedra with 

more than one type of polygonal face) and Catalan (polyhedra with more than one 

type of polygonal vertex) polyhedra [4]. There are, in addition, innumerable 

irregular polyhedra, these are polyhedra in which there is more than one type of 

polygonal face and more than one type of polygonal vertex. Some of the irregular 

polyhedra have been reported as recently as 2001. 

 Schläfli substituted Equations 2 and 3 into the Euler relation, as shown in 

Equation 4, to obtain a relation between V, E and F; known as the primary 

topological indices; and n and p; known as the secondary topological indices. 

 

(4)    
1
n     -  

1
2     +  

1
p     =  

1
E    

 

This latter Schläfli relation is important from the perspective of the Schläfli 

symbols (n, p) that can be identified for any structure. All polyhedra have 

rigorously determined values of n and p, just like they have rigorously determined 

values of V, E and F. The ordered pair thus formed of n and p, the polyhedral 

Schläfli symbol, represents a location in a Cartesian-like space, called a Schläfli 

space, in which the polyhedral object can be mapped. 
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 The beginnings of this topological mapping for the regular polyhedra have 

been shown elsewhere [3(m)]. The map is outlined, as a Cartesian-like space, by 

increasing connectivity, p, running as an axis from left to right, and by increasing 

polygonality, n, running as an axis from top to bottom of the map. The five regular 

polyhedra are called the Platonic solids for their role as elements in Plato's 

philosophical treatise known as the Timeas [4]. The Platonic solid with the highest 

topology is the tetrahedron (meaning it has 4 equivalent faces) with the Schläfli 

symbol (3, 3). It marks the origin of this map. Similarly, there is the cube (4, 3), 

and the pentagonal dodecahedron (5, 3), lining the column underneath the 

tetrahedron. To the right of (3, 3), are the octahedron (3, 4) and the icosahedron (3, 

5). One can immediately see the power of the Schläfli relation as an organizing 

principle in its usefulness as a mapping tool for determining the identity and 

relative location of all of the various polyhedra. One could extend this mapping to 

include the semi-regular and irregular polyhedra as well. The Archimedean 

polyhedra have fractional polygonalities, n; the Catalan polyhedra have fractional 

connectivities, p; and the irregular polyhedra have both fractional polygonality and 

fractional connectivity. 

 In the 1950's Wells began his enumerative work on 2- and 3-dimensional 

networks and novel crystal structures [3(a)]. He labeled his novel networks with 

the Schläfli symbols (n, p) to identify them. For while he did not determine a 

Schläfli-like relation for crystal structures (that is collections of vertices, edges and 

faces filling 3-dimensional space, and not constrained to the surface of a sphere) 

he nonetheless discovered that both the polygonality, n, and the connectivity, p, 

could be rigorously calculated within the unit of pattern of extended structures in 

both 2- and 3-dimensions [3(m)]. He concluded that the topology map for the 

polyhedra could be extended in Schläfli-space (the space of n and p) by a simple 

augmentation of the ordered pairs of numbers (n, p), the Schläfli symbols, to the 
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right of those for the polyhedra. Such an augmentation of this topology map 

involved moving into frontier that included the 2-dimensional tesselations, like the 

regular 2D extended structures of the honeycomb net (6, 3), the square net (4, 4), 

and the closest packed net (3, 6); and also the semi-regular and irregular tilings of 

the Euclidean plane; on into the territory of the 3-dimensional networks. The 

extension of the topology map, due to Wells, has been shown elsewhere [5]. Note 

that to the right of the 2D networks, the frontier of the 3-dimensional nets, the 

Schläfli symbol (n, p) may represent more than one way of filling space with a 

network of the specified topology. 

 Early on, work by Wells involved the enumeration of the regular networks, 

that is networks in which the polygonality of circuits in the net is a uniform 

number, and the connectivity of the vertices in the networks is a uniform number. 

Such networks, represent structures with some of the highest topologies possible. 

This work included such topologies as that represented by the Schläfli symbol (7, 

3) in which the polygonality of the circuits in the network, n, is uniform at 7, and 

the connectivity of the vertices in the network is uniform at 3 [3]. In this work, 

according to Wells, he was attempting to extend the topology map from the index 

(5, 3), the polyhedron called the pentagonal dodecahedron, to (6, 3), the 2D 

tesselation which is known as the honeycomb net, onto (7, 3) which represents a 

continuation of this sequence into 3-dimensional space. He eventually determined 

4 distinct structures that possessed the Schläfli symbol (7, 3). He did other similar 

elegant work on 3D networks of topology (8, 3), (9, 3), (10, 3) and (12, 3) [3]. 

Later on, Wells turned to networks whose topology was reduced, these were the 

semi-regular and irregular 3D networks, [3] as well as continuing his research on 

regular networks.  

 For the present discussion, the theme is to establish a relation between these 

topological Schläfli indices, introduced and described above, and the elementary 
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polygonal circuit area in a structure, labelled area(n, p), (whether it be a 

polyhedron, a 2D tesselation or a 3D network). The reasons for choosing 

elementary polygonal circuit area to establish a geometrical-topological 

correlation in structures will be discussed more fully below in connection with the 

concept of a structural metric. It has been discovered, in the present work, that one 

can formulate a topological index derived from n and p that in fact, correlates with 

the elementary polygonal circuit area of structures, to include the polyhedra and 

the 2D and 3D patterns. This new index, first described in 1997 [5], is defined as 

the ratio of the polygonality to the connectivity in a given structure, l. This is 

shown in Equation 5: 

 

(5)     l = 
n
p    

 

Such a topological index of structures is a measure of what is termed the 

compactness of a structure, it is hereafter called the Schläfli topological form 

index. 

2. Identification of a Geometrical Standard 

In order to establish a correlation between a geometrical structural parameter and a 

topological structural parameter, in patterns, it is necessary to define a standard of 

length, called a metric, amongst which all structures in the same class; be they the 

polyhedra or the 2D tesselations or the 3D networks; possess the metric 

commonly. Establishing such a metric of length is essential to identify a property 

correlation across structures in all classes, and it provides an internal consistency 

in the correlation analysis. In this Section, we will postulate a metric for the 

polyhedra, called the Wells polyhedra metric [6], and from which the metric for 

the 2D structures and the metric for the 3D structures are derived.  
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 Before moving on to the discussion of metrics, it is important to clarify why 

the geometrical-topological structural correlation being described in this paper 

involves the structural parameter of elementary polygonal circuit area. In the 

course of this investigation, the problem arose as to how one could establish the 

applicability of the Schläfli symbols to the 2D and 3D networks. As has been 

discussed in the previous Section, Wells found that he could calculate the Schläfli 

indices (n, p) for any 2D or 3D pattern, but the Schläfli relation given in Equation 

4 was not rigorous for these ordered pairs associated with patterns in higher 

dimension than the polyhedra. 

It is the purpose of the present communication to establish a different 

relation involving the Schläfli indices and another property of structures (this 

being the geometrical structural property of elementary polygonal circuit area) in 

order to demonstrate that these topological indices have applicability to the 

analysis of properties of the 2D and 3D networks. This may have importance with 

respect to the eventual formulation of an Euler-Schläfli relation for the 2D and 3D 

structures. In addition, such a study as the present one has as its goal to show the 

reader topological indices of structures have a bearing on, and are related to, 

geometrical properties of structures. 

 In a separate sense, the choice of elementary polygonal circuit area as a 

structural property to establish as a geometrical-topological correlation was made 

on the basis that 2D patterns have polygonal circuit area but, technically, no 

volume, and this structural property of polygonal circuit area is shared with the 

polyhedra and the 3D structures. Also, there are additional reasons, connected with 

the problem of establishing a suitable metric, for not employing structural volume 

in a correlation with topological structural parameters. These will not be discussed 

here. At any event, in the polyhedra and 2D and 3D patterns one can determine, 

even if this involves an averaging process, as in the semi-regular and irregular 
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structures, the elementary polygonal circuit area, labeled as area(n, p), of a 

structure. 

 Turning to the identification of a fundamental geometrical structural 

parameter, a metric of length, in order to provide a basis for a geometrical-

topological correlation, the original work of Euler is considered [1]. Euler 

envisioned the inscription of the polyhedra inside the sphere in order to establish 

the relation shown in Equation 1 in the previous Section. In the interest of 

establishing suitable metrics for the 2D and 3D patterns, we begin with the 

assumption that the polyhedra are inscribed in the unit sphere. Therefore, from the 

center of the sphere, and the corresponding polyhedra, there exist radii, of length 

unity, that point in all directions about the sphere (polyhedra), including into the 

vertices of the various polyhedra. Such an assumption is the basis for the 

calculation of the edge lengths and face areas of the polyhedra, and the results of 

this analysis are later used to establish metrics for the 2D and 3D patterns. 

Therefore, the assumption that the polyhedra are inscribed in the unit sphere is 

called the Wells fundamental polyhedra metric [6]. 

 The analysis of edge lengths and face areas, to eventually be used in the 

geometrical-topological correlation, begins with the inscription of the regular 

tetrahedron (3, 3) in the unit sphere. It is an easy matter to calculate the 

corresponding edge of this polyhedron, one uses plane geometry and the fact that 

the unit radii pointing into a pair of tetrahedral vertices form a triangle in which 

the obtuse angle is ideal at 109.47°. From this one gets an edge of 
2√2
√3     and a 

corresponding face area of 
2
√3   . Turning next to the cube (4, 3), unit radii 

pointing into adjacent vertices form a right triangle possessing a hypotenuse of 

length 2, comprised of the corresponding face diagonal, leading to an edge length 

of 
2
√3    and a face area of 

4
3   . Turning to the octahedron (3, 4), unit radii pointing 
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to an axial and an equatorial pair of vertices define an isosceles right triangle that 

leads to an octahedral edge of √2 and an octahedral face area of 
√3
2    . 

 The other two regular (Platonic) polyhedra, the pentagonal dodecahedron 

(5, 3) and the triangular icosahedron (3, 5) present less straightforward 

geometrical problems, and they are not essential to further establish the 2D and 3D 

metrics, so their analysis will be left to a separate paper. From the preceding 

paragraph, all the information required for the derivation of the 2D and 3D metrics 

is available, upon positing a few further assumptions. One should bear in mind 

that the metric for the polyhedra is provided through the assumption that they are 

inscribed in the unit sphere. This leads to different edge lengths and different face 

areas in each of the polyhedra, however they share their inscription on the unit 

sphere, which is the metric of length for them. They, in fact, must have different 

face areas, and the following relation holds: area(5, 3) > area(4, 3) > area(3, 3) > 

area(3, 4) > area(3, 5) due to the equation between the form index, l, and the 

elementary polygonal circuit area, called area(n, p), which will be described 

below. 

 To identify the metric for the 2D tesselations one looks to the Schläfli 

indices in 2D and in the polyhedra to see if there are any identical form indices. If 

two structures have the same topological form index, l, they will have the same 

elementary polygonal circuit area, according to the relation assumed to hold for 

structures in the development of this paper. Therefore this relationship, called the 

Wells structural correspondence principle [6], that the identity of the metric in 2D 

structures is based upon, represents a second assumption introduced in this paper. 

The regular square net (4, 4) has a form index of unity, which is the same as the 

form index in the tetrahedron (3, 3). The regular square net (4, 4) has been 

illustrated elsewhere [3(m)]. Therefore, the 2D metric is established as the 

corresponding edge length of the square face of the square net, which has the same 
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face area as the tetrahedron inscribed in the unit sphere. Therefore, the following 

relation, shown in Equation 6, holds: 

 

(6)    area(3, 3) = area(4, 4) = 
2
√3    

 

And the corresponding 2D metric is just the edge of the square in (4, 4), or √
2
√3   .  

 To get the edge metric in 3D we turn to the related morphologies of the 

cube (4, 3), the square net (4, 4) and the primitive cubic net (4, 6), these have been 

discussed and illustrated elsewhere [3(m)]. It is a third assumption, introduced in 

this paper, that structures of related morphologies in different structural classes 

have face areas that are proportional. This is called the Wells morphological 

principle [6]. The cube, with the Schläfli symbol (4, 3), the square net (4, 4), and 

the primitive cubic net (NaCl structure) (4, 6), all share perfectly square faces, as a 

common morphological theme, in their structures. So, on the basis of the 

morphological principle we can write the following proportionality expression 

down: 

 

(7)    
area(4,3)
area(4,4)

    = 
area(4,4)
area(4,6)

     

 

By substitution the unknown in 7, area(4,6) can be solved for as in 8.  

 

(8)   area(4,6) = area(4,4) 
area(4,4)
area(4,3)

    = unity 

 

It is therefore established in this scheme; developed out of the fundamental 

assumptions of inscription of the polyhedra on the unit sphere, the Wells 

polyhedra metric, and the Wells structural correspondence principle described 
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above, and finally the Wells morphological principle, introduced in this paragraph; 

that the metric for all of the 3D networks is unit edge length. This is derived from 

the fact that the primitive cubic net (4, 6) has unit face area and therefore unity for 

its edge lengths. Therefore all the edges of all of the circuits in the 3D nets share 

edge length unity for the purposes of providing a geometrical-topological analysis 

of structures that is internally consistent. 

  

3. Consequences of the Metrics 

A representative sampling of 12 structures has been analyzed topologically and in 

terms of the elementary polygonal face areas of the structures, for use in 

establishing a geometrical-topological correlation. The set includes 3 regular 

polyhedra, the 3 regular 2D tesselations, 3 regular 3D nets, one Archimedean 3D 

net, one Catalan 3D net and one irregular (Wellsean) 3D net. This sampling 

provides a broad base of possible topological varieties of structure from which to 

determine if a correlation exists between the topological form index, l, of Equation 

5, and the elementary polygonal circuit area, labeled area(n, p). Table 1 provides a 

compilation of the data for these 12 structures, note that the metric for the 

polyhedra is inscription on the unit sphere, the resulting edge metric for the 2D 

tesselations is just √
2
√3   , and the edge metric of the 3D networks is just unity. In 

Table 1 ThSi2 (10, 3) [7], diamond (6, 4) [3(m)] and the primitive cubic net (4, 6) 

[3(m)] are the regular structures, and they possess ideal bond angles. The 

Cooperite structure (62/5, 4) [8] is Archimedean, and has ideal tetrahedral angles 

and distorted square planar angles assumed in the calculation of its polygonal 

circuit area. The Waserite structure (8, 3.4285) [9] is Catalan and has ideal bond 

angles, and the glitter structure with the Schläfli index (7, 31/3) [10] is irregular 

and has ideal tetrahedral angles and distorted trigonal planar angles assumed in the 

calculation of its polygonal circuit area. 
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Table 1: Geometrical-Topological Data for 12 Structures 

 

name (n, p) l = n/p area(n,p

) 

ccp network (3, 6) 1/2 1/2 

primitive cubic (4, 6) 2/3 1 

octahedron (3, 4) 3/4 √3/2 

tetrahedron (3, 3) 1 2/√3 

square net (4, 4) 1 2/√3 

cube (4, 3) 11/3 11/3 

diamond (6, 4) 11/2 2/3π 

Cooperite (PtS) (62/5, 4) 13/5 2√2π/3 

honeycomb net (6, 3) 2 3 

glitter (7, 31/3) 2π/3 √
2
√3    π 

Waserite (Pt3O4) (8, 
2
5  eπ) 21/3 √2e 

ThSi2 (10, 3) 31/3 7√3/2 

 

 

 One can see immediately that the form indices, l, and the polygonal circuit 

areas, called area(n, p), are all expressible in closed form as factors of whole 

numbers, fractions, square roots and the mathematical constants π and e. The 

honeycomb network (6, 3), the structure of the graphene sheet, with an edge 

length of √
2
√3   , has a hexagonal face area of 3. The diamond network (6, 4), 

illustrated elsewhere [3(m)], with unity edge length and tetrahedral bond angles, 

has elementary polygonal face area of 
2π
3    . The Waserite network (8, 3.4285), 
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illustrated and discussed previously [9], a Catalan network in 3D, has octagonal 

elementary polygonal circuits in its structure which come out with face area √2e. 

Finally, the glitter network with topological index (7, 31/3), an irregular network 

illustrated elsewhere [10], has a form index, l, of 
2π
3     and an elementary 

polygonal circuit area (weighted average of 6-gon and 8-gon areas) consisting of a 

factor that is the edge metric determined for the 2D tesselations, and the 

mathematical constant π, it is given as √
2
√3    π. 

 The occurrence of closed form numbers, and especially the occurrence of 

the mathematical constants π and e in the computation of some of the polygonal 

circuit areas, is mysterious. Such apparent coincidences are termed Wells 

coincidences [6]. They suggest that the polygonal circuit area of the chair 

hexagons in the diamond lattice, for instance, is just a scaling of π. They suggest 

that the area of the octagonal circuitry in the real Waserite phase, Pt3O4, is just a 

scaling of e. They suggest that the structure of crystalline matter is an 

approximation to Platonic archetypes, that indeed all the polyhedra, 2D 

tesselations and 3D networks; perhaps numbering in the hundreds in terms of 

those observed as pure forms in various structural-types; have an eternal, separate 

existence as Platonic archetypes. The diamond structural-type exists in a perfect 

form as a Platonic archetype, in which its chair substructures possess unity edge 

length and have an area of 
2π
3    , for example. It has not been overlooked in this 

context that the derivation of the metrics in 2D and 3D provided in this paper, 

together with the standard crystallographic description of structures in terms of the 

space group symmetry and the Wyckoff positions of the vertices, and the use of 

elementary plane geometry, provides a geometric construction of the mathematical 

constants π and e that complement the innumerable series and product 

representations of these ubiquitous numbers. 
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4. The Wells Conjecture and Geometrical-Topological Correlation 

Data from Table 1 has been mapped to a graph in which the topological form 

index, l, is plotted along the horizontal axis, and the elementary polygonal circuit 

area is plotted along the vertical axis, for the set of structures. Such an empirical 

plot will be shown completely in a separate publication. The data, consisting of the 

geometrical-topological information on the 12 structures given in the previous 

Section, was fit to a quadratic function in l. Least squares regression analysis of 

the data showed a reliability factor of 0.976 (a perfect correlation has a reliability 

factor of 1.00). The geometrical-topological correlation equation is shown below: 

 

(9)    area(n, p) = A l2 + B l + C 

 

The parameters in Equation 9 are given as A = 0.16208, B = 1.3543 and C = -

0.21606, these parameters will shift slightly as more geometrical-topological data 

for the polyhedra, 2D tesselations and 3D networks is obtained and plotted. It is 

not clear to the author whether the assumptions introduced earlier in the paper, 

have biased the data towards exhibiting a correlation. Also, it is possible, under the 

assumptions introduced earlier in the paper, to calculate the parameters in 

Equation 9 from a set of three simultaneous equations and this direction will be 

looked into in a separate paper. 

 The presence of the very strong correlation between the topological form 

index for structures and their elementary polygonal circuit area suggests a 

mathematical conjecture called the Wells conjecture [6]. It is stated below: 

 

The elementary polygonal circuit area of a structure, be it a polyhedron, a 2D 

tesselation or a 3D network, under a suitable metric, is proportional to a function 
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of the topological form index l, which is the ratio of the structure's polygonality, n, 

to the structure's connectivity, p. 

 

There is no proof of the Wells conjecture presently. It appears that such a proof, if 

one exists, will be very tenuous and difficult to elucidate, as the correlation 

described above is only approximate. For example, the data points for the cube, 

represented by (4, 3), the primitive cubic net (4, 6) and the Cooperite net (62/5, 4) 

show fairly substantial deviations from Equation 9. 

 The presence of this strong geometrical-topological correlation is quite 

surprising in that one would not have expected topological parameters, like n and 

p, which are pure numbers, to be related to a geometrical property of the structure 

like elementary polygonal circuit area, which would seem to have a purely 

empirical value for a given arbitrary network. This empirical correlation is also 

fundamental from the point of view of the Schläfli symbols as it shows there is a 

degree of rigor, evidenced by the strong reliability index of the functional fit of the 

data, in the Schläfli symbols for the 2D and 3D structures. This latter result 

suggests it may be possible to formulate an Euler-Schläfli relation, using n and p 

in some functional form, to predict the number of edges occurring in the units of 

pattern of 2D and 3D structures. 

 Next, we state a note on compactness. Earlier it was thought by the author 

that the topological form index, l, was a measure of the density of the network. 

Density is a measure of the number of vertices in a metric of volume of a structure, 

at this juncture it is not clear that l correlates with density. In fact empirical 

evidence from hexagonite and the expanded hexagonites [11] suggests strongly 

that l is not a measure of density. It is suggested here that the term compactness be 

used with reference to l, compactness is a measure of how tightly connected 

together the circuitry in a net is, it is a measure of the compactness of area which 
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is occupied by matter in the structure. Low l correlates with low elementary 

polygonal circuit area and high compactness, and vice versa. 

 Finally, it is important to point out the significance of Equation 9 in terms 

of the space of all possible networks. Equation 9 represents a set of points through 

the space of all possible networks and it identifies those networks with a given set 

of coordinates in the space (area(n, p), l) that are potentially realizable in 

Euclidean 3-D space as actual networks. One could propose a network with a 

value of (n, p), its associated Schlaefli symbol, and use Equation 9 to calculate the 

associated value of area(n, p) and the topological form index, l, and locate that 

point in the space represented by the graph of Equation 9. If in fact such a point 

doesn’t fall on the curve given by Equation 9, then the proposed network will not 

be able to be realized in practice in crystallography. Therefore Equation 9 

represents all the potential crystal structures that may be realized in model 

building or in actual crystallography. 
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