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Abstract

The present series is devoted to a diagrammatical introduction to the USCI (unit-subdu-
ced-cycle-index) approach developed by Fujita (S. Fujita, “Symmetry and Combinatorial
Enumeration in Chemistry”, Springer-Verlag, 1991). In Part 1 of this series, intramolecular
stereochemistry is discussed by emphasizing orbits as sets of symmetry-equivalent objects.
In particular, concurrent appearance of orbits of various kinds in a molecule is discussed
diagrammatically, where any orbits are shown to be controlled by three kinds of sphericity
indices (ad , cd , and bd) correlated to coset representations (CRs). Derivation of molecules
of given symmetries is discussed in terms of concurrent desymmetrization of orbits, where
USCI-CFs (unit subduced cycle indices with chirality fittingness) are obtained diagrammat-
ically as products of sphericity indices. The concurrent behaviors of orbits are explained
by using a regular body, the positions of which are segmented in terms of segmentation
patterns so as to give segmented regular bodies. Such segments are studied as models of
ligands or proligands so that segmented regular bodies can be regarded as models of three-
dimensional molecules (stereoisomers). The segmented regular bodies are used to generate



CRs and to derive subductions of CRs diagrammatically. The generality of the procedure
is confirmed so as to be capable of generating the subduction table, the USCI-CF table, the
USCI table, and the mark table of D2d-point group, which have been alternatively obtained
and used in the Fujita’s USCI approach. Diagrammatical correspondence between seg-
ments and cosets are examined in detail so that the relationship between subduction of CRs
and double cosets is clearly demonstrated. Several terms (e.g., regular bodies, segments,
segmentation patterns, tansformulas, and assemblies of transformulas) are introduced in
order to give succinct but strict foundations to the present diagramatical approach. It is
concluded that any symmetrical properties appear in regular bodies.

1 Introduction
Stereoisomerism among molecules (intermolecular stereochemistry) and stereochemistry in
molecule (intramolecular stereochemistry) are intimately related to each other, as implied by
the parallelism of their terminology:

1. The word “stereoisomer” or “stereoisomeric” for the stereoisomerism has two meanings.
Thus, two stereoisomers are different in their geometrical configuration, while they are
equivalent because they have the same connectivities between the atoms involved. The
word “enantiomer” (subcategory of “stereoisomer”) also has two meanings. Thus, (two)
enantiomers are different in their geometrical configuration, while they are equivalent (su-
perposable) by reflection (or rotoreflection strictly). For example, a tetrahedral molecule
Cabcd (a, b, c, and d: atoms of different types) and its enantiomer are regarded as be-
ing different or being equivalent according to distinct viewpoints of discussions. Organic
chemists tend to put emphasis on “difference” but not on “equivalence” in their discus-
sions on stereoisomerism.

2. On the other hand, the word “enantiotopic” for the intramolecular stereochemistry has
two meanings. Thus, two enantiotopic sites are different in their geometrical configura-
tion, while they are equivalent (superposable) by reflection (or rotoreflection strictly). For
example, the two a’s in a tetrahedral molecule Ca2bc are enantiotopic so that they are re-
garded as being different on the action of chiral reagents or as being equivalent because of
reflective superposability. The word “stereoheterotopic” that was proposed to correspond
to the word “stereoisomeric” [1] obviously puts emphasis on “difference”. The lack of
the standpoint “equivalence” in the conventional usage of the word “stereoheterotopic”
has given a narrow prospect to organic chemists.

The conventional descriptive stereochemistry is deficient in a common theoretical framework
for comprehending the parallelism between the intermolecular stereochemistry and the in-
tramolecular one. In fact, most textbooks for organic [2, 3] and inorganic stereochemistry [4]
have dealt with the items enumerated above in a rather separate manner. Although Mislow et al.
pointed out the importance of local chirality [5, 6], their discussions have not been concerned
with such a common theoretical framework.

Moreover, the conventional chemical combinatorics based on Pólya’s theorem [7, 8] regards
chemical compounds as graphs, not as three-dimensional (3D) chemical structures, so that it is
incapable of counting stereoisomers properly, as pointed out in recent articles [9, 10]. Thus, the
conventional chemical combinatorics cannot be successfully combined with the conventional
descriptive stereochemistry because of the lack of such a common theoretical framework.

- 252 -



As found in the preceding paragraphs, the common theoretical framework to be developed
should first comprehend the two aspects, i.e., the “difference” and the “equivalence”. Second,
it should integrate the two fields, i.e., the intramolecular stereochemistry and the stereoiso-
merism. Third, it should harmonize the two disciplines, i.e., the descriptive stereochemistry
(the intramolecular stereochemistry and the stereoisomerism) and the chemical combinatorics.

Fujita has proposed the concept of sphericity derived from coset representations (CRs) as
a key concept for constructing the common theoretical framework [11], which is now referred
to as the USCI (unit-subduced-cycle-index) approach [12]. Mathematically speaking, the USCI
approach has accomplished the integration of point-group theory and permutation-group theory
as well as the integration of linear-representation theory and permutation-representation theory
in terms of the key concept sphericity, as discussed in a previous article [13]. Because the point-
group theory and the linear-representation theory are concerned with continuous objects while
the permutation-group theory and permutation-representation theory deal with discrete objects,
the USCI approach provides us with a tool for discussing continuous objects and discrete objects
in a common framework.1 The concept has been successfully applied to various stereochemical
problems, as summarized in recent account papers [15, 16].

The original proposal of the sphericity concept [11, 12], however, has been based on a
mathematical definition of CRs so that it may cause some sense of bias or rejection to organic
chemists. In fact, this situation was pointed out by Mead in his book review [17] on Fujita’s
monograph on the USCI approach [12]: “Although the book is in principle self-contained,
containing some introductory chapters on the fundamentals of group theory, it is really aimed
at readers who already acquainted at least with the basic concepts of group theory and who
are willing to think mathematically.” and “This book is not easy going, but the reader who
makes the necessary effort will be rewarded by the acquisition of some powerful tools and deep
insights. If the coming generation of chemists becomes as familiar with mark tables and their
uses as the present generation is with character tables, much of the credit will go to Fujita and
the present book”. Recently, the situation and related barriers to Fujita’s USCI approach were
again referred to as an “organic chemistry paradox” in the “Era of Fujita” by El-Basil in his
review reported in this journal [18].2

To avoid the difficult situation, a more intuitive definition of the concept has recently been
developed by Fujita [21, 22], where a minimum set of knowledge on group theory is required.
By following the intuitive definition, the importance of orbits and sphericity indices and that
of local symmetries appearing in subductions of coset representations have been discussed for
introductory courses of stereochemistry [23, 24]. Remaining tasks that should be pursued in the
present series of articles are to demonstrate the effectiveness of the intuitive definition by using
illustrative examples and to confirm the compatibility with the mathematical definition.

1It should be noted that the term “orbit” in the title of this article is different from the term “orbital” used in
quantum chemistry. According to the present context, the term “orbit” is concerned with discrete objects, while
the term “orbital” is concerned with continuous objects. Mark tables for specifying “orbits” and character tables
for specifying “orbitals” have been integrated by means of the concept of markaracter tables proposed by Fujita
[14], where the term “markaracter” has been coined by combining “mark” and “character”.

2I (Fujita) underwent academic training as a synthetic organic chemist and I am an organic chemist, as I have
recently published monographs entitled “Computer-Oriented Representation of Organic Reactions” [19] and “Or-
ganic Chemistry of Photography” [20]. Hence, the difficult situation has long given me a sense of frustration.
Although most fundamental items of the sphericity concept have been already described in a general and some-
what mathematical fashion in my previous monograph “Symmetry and Combinatorial Enumeration in Chemistry”
[12], I believe that the present article would be permissible to be published since it involves some additional
viewpoints with illustrative examples for comprehending the concept.
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The present article (Part 1) is devoted to “intramolecular stereochemistry” (stereochemistry
in molecule), where the concept of sphericity works well in molecule. On the other hand, Part
2 will deal with “intermolecular stereochemistry” (stereoisomerism among molecules), where
the concept also works well among molecules. Part 3 will demonstrate that the integration of
the two aspects (Part 1 and Part 2) gives a basis of chemical combinatorics.

2 Orbits and Sphericities
The subjects of this section have once been discussed in a previous educational article [23],
where methane derivatives have been used as examples. Here, they are restated by using allene
derivatives because the allene derivatives will be adopted as common examples throughout the
present series.

2.1 Intuitive Definitions
Any objects (e.g., atoms and bonds) in a molecule can be categorized into sets of equivalent
objects. Such sets are called orbits or equivalence classes, where the number of members is
called the size of the orbit. For example, the four hydrogen atoms in an allene molecule of
D2d-symmetry (1 or 2) are equivalent to give a four-membered orbit, the two terminal carbon
atoms on the C=C=C axis are equivalent to give a two-membered orbit, and the central carbon
constructs a one-membered orbit.
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Figure 1: Convention for drawing allene derivatives

According to Fujita’s method [21], an orbit has its sphericity, so that the orbit is classified
into a homospheric, enantiospheric, or hemispheric one, as cited in Table 1. The symbol �
represents an achiral object of such an orbit as a result of the definition of the term “homo-
spheric” shown in Table 1. The symbols

��and
��represent chiral objects in agreement with the

definitions of the terms “enantiospheric” and “hemispheric” shown in Table 1. The large circles
for the terms “homospheric” and “enantiospheric” represent achiral molecules, while the large
semicircle for the term “hemispheric” represents a chiral molecule.

Objects accommodated in an orbit are governed by the sphericity of the orbit, where the
mode of accommodation is called “chirality fittingness”, as collected in Table 2 [21]. The
chirality/chirality of an object collected in Table 2 is determined in isolation. It should be noted
that even an achiral object in isolation is restricted to be chiral if it is accommodated in an
enantiospheric or hemispheric orbit.

In order to characterize the sphericity and the size of an orbit, a sphericity index is defined
as ad for a homospheric orbit, cd for an enantiospheric orbit, and bd for a hemispheric orbit,
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Table 1: Sphericity of an orbit [21]
sphericity orbit model definition

homospheric ��
�	��

Among rotoreflections that fix an orbit in an
achiral molecule, there exists a rotoreflection
that fixes an object ( �) in the orbit.

enantiospheric

��
�	����

����
Among rotoreflections that fix an orbit in an
achiral molecule, there exists no rotoreflection
that fixes an object (

��or
��) in the orbit.∗

hemispheric

�
�

���� There exist no rotoreflections that fix an orbit in
a chiral molecule.

∗An object in an enantiospheric orbit may be achiral or chiral in isolation. Even an
achiral object in isolation is restricted to be chiral in molecule when accommodated
in the enantiospheric orbit.

where the subscript d represents the size of the orbit (Table 2).

Table 2: Sphericity Indices and Chirality Fittingness [21]
sphericity sphericity chirality fittingness

index (allowed objects)∗

homospheric ad achiral objects
enantiospheric cd achiral objects and chiral objects∗∗

hemispheric bd achiral objects and chiral objects

∗The chirality/achirality is determined in isolation.
∗∗Achiral objects in an enantiospheric orbit are divided into two halves.
A d-membered enantiospheric orbit can accommodate d/2 of chiral ob-
jects and d/2 of their enantiomeric objects.

As discussed in the preceding paragraphs, the sphericity of an orbit and related matters are
examined stepwise as follows [21]:

1. Find equivalent objects to construct an orbit.

2. Test the sphericity of the orbit according to the criteria listed in Table 1.

3. Assign a sphericity index according to the method listed in Table 2.

4. Confirm the chirality fittingness of each object according to Table 2.

Following this stepwise procedure, any objects in a molecule can be examined with respect to
whether they are related symmetrically to each other.
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2.2 Sphericities of Orbits in Allene Derivatives
Any objects can be selected as the members of an orbit so that orbits of various types appear
concurrently, as shown in Table 3 for an allene molecule (1). Table 3 summarizes orbit sizes,
sphericities, sphericity indices, and related properties of the orbits involved in 1. For example,
one (H(1)) of the four hydrogens on the allene molecule (1) is immobile on the action of a
reflection operator due to the mirror plane containing H(1)—C—H(3). Hence, the corresponding
4-membered orbit is homospheric in the light of the criterion shown in Table 1, so that the
sphericity index a4 is assigned to the orbit.

On the other hand, any one of the four diagonal edges, i.e., H(1) · · ·H(2), H(2) · · ·H(3), H(3) · · ·H(4),
and H(4) · · ·H(1), is not fixed by rotoreflections specified in the criteria listed in Table 1. Hence,
the corresponding 4-membered orbit is concluded to be enantiospheric, so that the sphericity in-
dex c4 is assigned to the orbit. In contrast, any one of the two horizontal edges, i.e., H(1) · · ·H(3)

and H(2) · · ·H(4), is fixed by a rotoreflection (the mirror plane containing H(1)—C—H(3)). Ac-
cording to the criteria listed in Table 1, the corresponding 2-membered orbit is concluded to be
homospheric, so that the sphericity index a2 is assigned to the orbit.

The USCI-CF (unit-subduced-cycle-index with chirality fittingness) row of Table 3 lists a
product of sphericity indices when two or more orbits of different or the same kinds are involved
in the molecule; in the present case, each USCI-CF is equal to the sphericity index because there
is a single orbit with respect to one kind of objects. The USCI (unit-subduced-cycle-index) row
lists a product of sphericity indices without chirality fittingness, where the sphericity indices
ad , cd , and bd are replaced by a single dummy variable sd .

Table 3: Orbits, sphericity indices, and coset representations in an allene molecule (1).
object type vertex diagonal horizontal terminal valence angle

(bond) edge edge carbon (plane)
objects H atoms e.g., e.g., *C=C=C* ��H—C—H
in allene (C–H bonds) H(1) · · ·H(2) H(1) · · ·H(3) (�H—C—H)

orbit size 4 4 2 2 2
sphericity homospheric enantiospheric homospheric homospheric homospheric
sphericity a4 c4 a2 a2 a2
index (SI)

USCI-CF a4 c4 a2 a2 a2

USCI s4 s4 s2 s2 s2

2.3 Sphericity Indices During Desymmetrization
Let us consider the desymmetrization of the allene molecule 1 into a fluoroallene molecule
(3), which belongs to Cs (Fig. 2). This desymmetrization concurrently influences the above-
described objects in the allene molecule (Table 3), as shown in Table 4.

The fluorine atom in the fluoroallene molecule (3) constructs a one-membered orbit, which
is homospheric because a reflection operation fixes the fluorine atom [21]. See the criterion
listed in Table 1. The sphericity index a1 is assigned to this orbit according to Table 2. The
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Figure 2: Desymmetrization of allene into fluoroallene

Table 4: Desymmetrization of orbits for a fluoroallene molecule (3)
object type vertex diagonal horizontal terminal valence angle

(bond) edge edge carbon (plane)
objects F atom e.g., C=C=C* ��F—C—H

in allene (C–F bond) F(1) · · ·H(2) F(1) · · ·H(3) (�F—C—H)
orbit size 1 2 1 1 1
sphericity homospheric enantiospheric homospheric homospheric homospheric
sphericity a1 c2 a1 a1 a1

index (SI)

objects H atom e.g., *C=C=C ��H—C—H
in allene (C–H bond) H(2) · · ·H(3) H(2) · · ·H(4) (�H—C—H)

orbit size 1 2 1 1 1
sphericity homospheric enantiospheric homospheric homospheric homospheric
sphericity a1 c2 a1 a1 a1

index (SI)

objects H atoms
in allene (C–H bonds)

orbit size 2
sphericity enantiospheric
sphericity c2

index (SI)

USCI-CF a2
1c2 c2

2 a2
1 a2

1 a2
1

USCI s2
1s2 s2

2 s2
1 s2

1 s2
1

three hydrogen atoms in the fluoroallene molecule (3) are divided into two orbits, i.e., a one-
membered orbit (H(3)) and a two-membered orbit (H(2) and H(4)). The former is homospheric
so as to be characterized by a1 in a similar way described for the orbit of the fluorine atom. The
latter is enantiospheric, because no rotoreflection fixes anyone of the hydrogen atoms (Table
1). Hence, the orbit is characterized by a sphericity index c2, where the letter c indicates the
enantiosphericity and the subscript 2 represents the size of the orbit (Table 2).

Because the fluoroallene molecule has two one-membered homospheric orbits (F or H, each
a1) and one two-membered enantiospheric orbit (H2, c2), the molecule can be characterized
by the product of such sphericity indices as a2

1c2. The product is called unit subduced cycle
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index with chirality fittingness (USCI-CF). If sphericities are not taken into consideration, a unit
subduced cycle index without chirality fittingness (USCI) can be used, i.e., s2

1s2. The USCI-CFs
collected in Tables 1 and 2 shows that the desymmetrization of allene (1) into fluoroallene (3)
is characterized by the change of USCI-CFs, a4 → a2

1c2.

Exercise 1. Compare the symmetry of fluoroallene (3) with that of 1-chloro-1-fluoroallene (cf.
9 listed in Fig. 3).

On the same line, the objects of other types in the fluoroallene molecule are categorized into
orbits, to which sphericity indices are assigned, as shown in Table 2. Thereby, the corresponding
USCI-CFs and USCIs are calculated (the bottom of Table 2).

As a result, the desymmetrization of allene (1) into fluoroallene (3) shown in Fig. 2 causes
concurrent desymmetrizations of the relevant orbits, which are characterized by comparing the
USCI-CFs (or USCIs) collected in Tables 1 and 2. For example, the desymmetrization a4 →
a2

1c2 for the four vertices as described above, the desymmetrization a4 → c2
2 for the diagonal

edges, the desymmetrization a2 → a2
1 for the horizontal edges, etc. concur during the process

shown in Fig. 2.

2.4 Allene Derivatives Produced by Desymmetrization
As found in the preceding subsection, the desymmetrization of allene (1) of D2d-symmetry into
fluoroallene (3) of Cs-symmetry (Fig. 2), which takes place as the result of the substitution of a
fluorine atom, can be characterized by the change of USCIs for vertices (s4 → s2

1s2) as well as
by the change of USCI-CFs for vertices (a4 → a2

1c2). In general, such changes of USCIs and
of USCI-CFs can be used as probes for testing the existence or nonexistence of desymmetrized
molecules, if they are combined with the group-subgroup relationship [25].

Following the method previously described by Fujita [25], the desymmetrization of allene
(1) is depicted in Fig. 3 in the combination of the group-subgroup relationship of the point
group D2d , where we focus our attention on vertex desymmetrization. This type of diagrams is
here called subduction diagrams. It should be noted that the USCIs and USCI-CFs used in the
present method are obtained intuitively [21, 22], while those used in the original method [25]
were obtained by a mathematical treatment.

Representative molecules for respective symmetries are depicted in Fig. 3, where two sym-
metries linked with a solid line represent a supergroup-subgroup relationship. A USCI listed
below each molecule is marked by a symbol © if the molecule can exist symmetrically and by
a symbol × if the molecule is impossible to exist symmetrically, where we consider the substi-
tution of atoms or achiral ligands (H, X, Y, and Z) only. On the other hand, a mark at the top of
each USCI-CF represents the existence (©) or nonexistence (×) of the corresponding molecule,
where we consider the substitution of chiral ligands (p and p as a pair of enantiomers) and achi-
ral ligands or atoms.

It is worthwhile to examine the cases marked by the symbol × in Fig. 3. For example,
a D2-molecule is not realized within the substitution of atoms or achiral ligands, but can be
realized to give 4 when chiral ligands (p) are permitted. This result is explained by the fact
that the group D2 has the same USCI (s4) as the supergroup D2d has, while the USCI-CF of the
group D2 (b4) is different from that of he supergroup D2d (a4). The same situation holds true
for an S4-molecule (5), where the USCI (s4) is the same as that of 1, while the USCI-CF (c4) is
different from that (a4) of 1.
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Figure 3: Subduction diagram with USCIs and USCI-CFs for testing the existence or nonex-
istence of allene derivatives during vertex substitution. The symbol © shows the existence of
a desymmetrized molecule, while the symbol × shows the nonexistence of a desymmetrized
molecule. Each USCI is concerned with the substitution of atoms or achiral (pro)ligands (H, X,
Y, and Z) only, while each USCI-CF is concerned with the substitution of chiral (pro)ligands (p
and p as a pair of enantiomers) and achiral ones or atoms.
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A C2-molecule (7) exhibits more complicated features because there exist three supergroups
(D2, S4, and C2v), as linked upward with solid lines (Fig. 3). Because the USCI (s2

2) of C2 is the
same as that of 6 of C2v, it is impossible to realize any C2-molecule within the substitution of
atoms and achiral ligands. Because the USCI-CF (b2

2) of C2 is different from all the USCI-CFs
of the supergroups (b4 for D2, c4 for C2v, and a2

2 for C2v), such a molecule as 7 can be realized
by considering chiral ligands (p).

Exercise 2. Construct a subduction diagram of oxirane derivatives (C2v) by following the pro-
cedure described for Fig. 3. See Ref. [25].

Exercise 3. Construct a subduction diagram of cyclopropane derivatives (D3h) by following the
procedure described for Fig. 3. For the point group D3h, see Ref. [26].

2.5 Molecules/Ligands vs. Promolecules/Proligands
For further discussion on stereochemistry and stereoisomerism, the term “ligand” should be
used more rigorously than the conventional usage. In the conventional usage, for example, the
letters a, b, c, and d of a tetrahedral molecule Cabcd or the letters a, b, �+, and �− of a tetrahedral
molecule Cab�+�− have been used to designate atoms, achiral ligands, chiral ligands, or “point
ligands” without rigorous definitions. In particular, the discrimination of “atoms, achiral and
chiral ligands” from “point ligands” has not been well-defined so that nonrigid molecules having
rotatable ligands have not been well treated within the conventional usage of the term.

Fujita has defined proligands as hypothetical ligands that have chirality/achirality only [27].
Then, he has defined a promolecule as a skeleton that accommodates such proligands in its
substitution positions. Thereby, such a promolecule can be regarded as a rigid geometrical
object. According to this formulation, a molecule, even though it is rigid or nonrigid, can be
treated as an object in which the proligands of a promolecule are replaced by ligands.

Note that such a promolecule is regarded as a rigid object and that such ligands are re-
garded as rigid objects. Hence, the problem to be solved is to find requisites for converting
a promolecule into a molecule. The concept of sphericity (Table 1) is shown to be a key
concept during this procedure, because it is applicable both to molecules/ligands and to pro-
molecules/proligands.

Strictly speaking, subduction diagrams (e.g., Fig. 3) discussed in the preceding section have
implicitly based on the concept of proligand. It follows that the point-group symmetries col-
lected in Fig. 3 are concerned with promolecules having proligands.

2.6 Deficient Subgroups
There appear allene derivatives corresponding to all of the subgroups of D2d , when achiral and
chiral ligands are taken into consideration, as shown in Fig. 3. However, this does not hold true
even if we consider molecules of ligancy 4 [22]. In other words, there sometimes appears a case
in which both the USCI and the USCI-CF for a group are equal to the USCI and the USCI-CF for
either one of its supergroups. For example, D2d- and D2-molecules (strictly speaking D2d- and
D2-promolecules [27]) are nonexistent among methane derivatives of Td-symmetry, as shown
in a subduction diagram (Fig. 4). Note that the term “ligands” is here used in the meaning of
“proligands” (structureless objects with chirality/achirality). The nonexistence has been pointed
out in a previous educational report [28] and explained in terms of the corresponding USCIs and
USCI-CFs that have been algebraically calculated [25].
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Figure 4: Subduction diagram with USCIs and USCI-CFs for testing the existence or nonexis-
tence of methane derivatives during vertex substitution [22]. For the symbols, see the caption
of Fig. 3. The USCI-CFs and USCIs for D2d and D2 are taken from Fig. 3 (see the text).

Exercise 4. Construct the subduction diagram (Fig. 4) by following the procedure described for
Fig. 3. See Refs. [25, 22].

In the present paper, we take a non-mathematical approach in which USCIs and USCI-CFs
are obtained non-algebraically. This approach has some apparent difficulties. Because of the
nonexistence of D2d- and D2-derivatives of methane, one finds that the method described in the
preceding subsections is not effective to obtain the USCIs and USCI-CFs of the corresponding
symmetries, so long as the methane skeleton only is taken into consideration. The vacancy
of such USCIs and USCI-CFs can be filled by additionally considering an allene skeleton, the
results of which is shown in Fig. 3. Note that the central carbon atom of the methane skeleton
is replaced conceptually by an allene axis (C=C=C) to give the allene skeleton.
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As shown in Figs. 3 and 4, there are such compensated skeletons as allene and methane to
fill vacant data of subgroups in the case of ligancy 4. However, this approach requires two or
more skeletons, the selection of which is not so easy to be formulated. A more straightforward
and general procedure using a single skeleton is desirable to systematize diagrammatical studies
on molecular symmetry (cf. Section 4).

3 Global and Local Symmetries for Coset Representations
Before we pursue such a more straightforward and general procedure, we have to demonstrate
the relationship between sphericity indices and coset representations. For this purpose, this
section deals with an intuitive approach by starting global and local symmetries, although the
relationship has been already examined mathematically in previous papers [11, 29] and Fujita’s
book [12]. The subjects of this section have introductorily been discussed in a previous edu-
cational article [24], where methane derivatives have been used as examples. For the sake of
convenience for the present series of discussions, they are restated by using the allene deriva-
tives described above.

3.1 Symmetry Operations as Elements of Groups
This section on the point group D2d for an allene skeleton is based on Chapter 2 of Fujita’s book
[12]. An allene skeleton is superposable on itself on the action of symmetry operations shown in
Fig. 5. The left diagram of Fig. 5 shows three two-fold rotations (C2(1), C2(2), and C2(3)) around
symmetry axes, which are perpendicular to one another as designated by vector symbols. The
three two-fold rotations and an identity operation (I) are referred to as “proper rotations”. The
right diagram of Fig. 5 shows rotoreflections, which are two mirror reflections (σd(1) and σd(2))
and four-fold rotation-reflections (S4 and S3

4).3 They are referred to as “improper rotations”.
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Figure 5: Symmetry operations of an allene molecule. Proper rotations are depicted in the left
diagram, while improper rotations (rotoreflections) are depicted in the right diagram.

3The rotoreflection S4 is a combined operation which consists of an anti-clockwise rotation by 90◦ and a
horizontal reflection. The rotoreflection S3

4 is a combined operation which consists of a clockwise rotation by 90◦
and a horizontal reflection.
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The totally eight symmetry operations construct a group:

D2d = {I,C2(3),C2(1),C2(2);σd(1),σd(2),S4,S3
4}, (1)

which is closed with respect to the multiplication of the operations. Among the subsets of the
D2d , there are subsets which are closed by the same multiplication. They are called subgroups:

D2 = {I,C2(3),C2(1),C2(2)} (2)
C2v = {I,C2(3);σd(1),σd(2)} (3)

S4 = {I,C2(3);S4,S3
4} (4)

C2 = {I,C2(3)} (5)

C′
2 = {I,C2(1)}, C′′

2 = {I,C2(2)} (6)

Cs = {I,σd(1)}, C′
s = {I,σd(2)} (7)

C1 = {I}. (8)

Among them, C′
2 and C′′

2 are conjugate to each other, because the corresponding two-fold axes
are superposable by an operator of D2d . This feature is designated by the equation: S−1

4 C′
2S4 =

C′′
2. Similarly, Cs and C′

s are conjugate to each other because the corresponding mirror planes
are superposable by an operator of D2d . This feature is designated by the equation: S−1

4 CsS4 =
C′

s.
By regarding conjugate subgroups as being equivalent, a non-redundant set of subgroups

(SSG) is selected as follows:

SSGD2d
= {C1,C2,C′

2,Cs,S4,C2v,D,D2d}, (9)

which are aligned in an ascending order of their orders (|C1| = 1, |C2| = 2, |C′
2| = 2 , |Cs| = 2,

|S4| = 4, |C2v| = 4, |D| = 4, and |D2d| = 8). Obviously, Fig. 3 is implicitly based on the SSG (eq.
9).

The subgroups of D2d are categorized into two types: chiral subgroups (D, C2 C′
2 (C′′

2),
and C1) that consist of proper rotations only and achiral subgroup (D2d , C2v, S4, Cs (C′′

2) that
consist of proper and improper rotations.

3.2 Orbits and Coset Representations
Table 1 can be sophisticated by using a local symmetry (a subgroup) in place of three types
of fixing operations described in the definition column. Let G be the symmetry of a molecule
having an orbit of objects, where the group G is called the global symmetry. In addition to a
rotoreflection used in the definitions of Table 1, there are a set of operations that fixes (stabilizes)
an object at issue. The set of operations constructs a group (H), which is called the local
symmetry of the orbit. Mathematically (group-theoretically) speaking, the local symmetry H is
referred to as a stabilizer.

The global symmetry G and the local symmetry H are combined by a coset decomposition,
which produces a permutation representation called a coset representation (CR). The symbol
G(/H) has been coined to designate such a CR for the sake of simplicity [11, 12]. As a result,
we can say that the orbit is governed by the CR G(/H). The correspondence between the orbit
and the CR G(/H) allows us to refer to the orbit as a G(/H)-orbit.

As discussed in the preceding paragraphs, a CR can be obtained stepwise as follows:
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Table 5: Coset Representation (G(/H)) and Sphericity Indices [11]
global local sphericity sphericity index

symmetry (G) symmetry (H) (where d = |G|/|H|)
achiral achiral homospheric ad

achiral chiral enantiospheric cd

chiral chiral hemispheric bd

1. Find the global symmetry G of a molecule.

2. Find equivalent objects to construct an orbit.

3. Find the local symmetry H of the orbit.

4. Assign the corresponding CR G(/H) by combining the global symmetry and the local
symmetry.

Following this stepwise procedure, any objects in a molecule can be examined with respect to
whether they are related symmetrically to each other. It should be emphasized that the present
approach uses the symbol G(/H) without calculating the concrete form, whereas the original
USCI approach calculated the concrete form of the CR [11, 12].

The sphericity of the orbit is defined alternatively by examining whether the global symme-
try G and the local symmetry H are achiral or chiral, as shown in Table 5. The degree (length)
of the CR is calculated to be |G|/|H|, which is equal to the size of the orbit, i.e., d = |G|/|H|.
Thereby, the corresponding sphericity index is alternatively obtained: ad , cd , or bd , where we
place d = |G|/|H| (Table 5).

The comparison between Table 2 and Table 5 indicates the close relationship between the
sphericity index and the CR. Thus, the sphericity index put a special emphasis on the chiral-
ity/achirality of each object in an orbit, while the CR is concerned with the local symmetry of
each object in an orbit. Because the orbit is controlled by the corresponding global symmetry,
the sphericity and the CR are capable of treating inner structures in a molecule.

Table 6 shows such local symmetries for the orbits collected in Table 3. For example, the
hydrogen at the vertex 1 (Fig. 5) is fixed by the operations of Cs (= {I,σd(1)}) so that the
corresponding orbit (the four hydrogens) is assigned to the local symmetry of Cs. The local
symmetry Cs and the global symmetry D2d are combined by a coset decomposition, which
produces the CR D2d(/Cs). Because both D2d and Cs are achiral, the sphericity of the orbit is
determined to be homospheric. The degree of the CR D2d(/Cs) is calculated to be |Dd|/|Cs| =
8/2 = 4, where |D2d|(= 8) and |Cs|(= 2) represent the orders of the respective groups. Hence,
the sphericity index is calculated to be a4, which is identical with the one collected in Table 3.

On the same line, the other objects shown in Table 3 are correlated to the corresponding
CRs, as collected in Table 6.

3.3 Desymmetrization of Orbits and Subduction of Coset Representa-
tions

The derivation of fluoroallene (3) from 1 is accompanied by the desymmetrization from D2d
to Cs, as shown in Fig. 2. The one-membered orbit of H(3) (or F(1)) has a local symmetry
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Table 6: Orbits and coset representations in an allene molecule (1).
object type vertex diagonal horizontal terminal valence angle

(bond) edge edge carbon (plane)
objects H atoms e.g., e.g., *C=C=C* ��H—C—H
in allene (C–H bonds) H(1) · · ·H(2) H(1) · · ·H(3) (�H—C—H)

local Cs C′
2 C2v C2v C2v

symmetry
CR D2d(/Cs) D2d(/C′

2) D2d(/C2v) D2d(/C2v) D2d(/C2v)
degree |D2d|/|Cs| |D2d|/|C′

2| |D2d|/|C2v| |D2d|/|C2v| |D2d|/|C2v|
of CR = 8/2 = 4 = 8/2 = 4 = 8/4 = 2 = 8/4 = 2 = 8/4 = 2

sphericity homospheric enantiospheric homospheric homospheric homospheric
sphericity a4 c4 a2 a2 a2
index (SI)

USCI-CF a4 c4 a2 a2 a2

USCI s4 s4 s2 s2 s2

Cs so that it is assigned to the CR Cs(/Cs). The two-membered orbit of {H(2),H(4)} has a
local symmetry C1 so that it is assigned to the CR Cs(/C1). This means that the original orbit
D2d(/Cs) is desymmetrized into Cs so as to be divided into two homospheric Cs(/Cs)-orbits
and one enantiospheric Cs(/C1)-orbit. This is represented by the following equation:

D2d(/Cs) ↓ Cs = 2Cs(/Cs)+Cs(/C1), (10)

which is called the subduction of a coset representation. This is listed in the vertex column of
Table 7. The result listed in the right-hand side of eq. 10 corresponds to the USCI-CF (a2

1c2)
listed in Table 4.

It should be noted that the orbit size calculated by |D2d|/|Cs| (= 8/2 = 4) based on the
left-hand side of eq. 10 is equal to the sum calculated by 2|Cs|/|Cs|+ |Cs|/|C1| (= 2× (2/2)+
2/1 = 4) based on the right-hand side. Thus the number of objects is conserved, although this
result is obvious.

Similarly, the other orbits can be characterized by the subductions of CRs:

D2d(/C′
2) ↓ Cs = 2Cs(/C1) (11)

D2d(/C2v) ↓ Cs = 2Cs(/Cs), (12)

which are derived from the data of Table 7. The conservation of the number of objects is also
confirmed by eqs. 11 and 12. In fact, |D2d|/|C′

2| (= 8/2 = 4) based on the left-hand side of
eq. 11 is equal to the sum calculated by 2|Cs|/|C1| (= 2× (2/1) = 4) based on the right-hand
side. Further, |D2d|/|C2v| (= 8/4 = 2) based on the left-hand side of eq. 12 is equal to the sum
calculated by 2|Cs|/|Cs| (= 2× (2/2) = 2) based on the right-hand side.

Whereas subductions of CRs such as eqs. 10—12 can be algebraically calculated for repre-
sentative point groups and collected in Appendix of Fujita’s book [12], the present diagrammat-
ical approach is effective to chemical applications because of its convenience. However, such
vacant data of subgroups as depicted in Fig. 4 still remain as troublesome cases even in the dia-
grammatical approach for obtaining subductions of CRs. It follows that a more straightforward
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Table 7: Desymmetrization of orbits for a fluoroallene molecule
object type vertex diagonal horizontal terminal valence angle

(bond) edge edge carbon (plane)
objects F atom e.g., C=C=C* ��F—C—H
in allene (C–F bond) F(1) · · ·H(2) F(1) · · ·H(3) (�F—C—H)

local Cs C1 Cs Cs Cs
symmetry

CR Cs(/Cs) Cs(/C1) Cs(/Cs) Cs(/Cs) Cs(/Cs)
degree |Cs|/|Cs| |Cs|/|C1| |Cs|/|Cs| |Cs|/|Cs| |Cs|/|Cs|
of CR = 2/2 = 1 = 2/1 = 2 = 2/2 = 1 = 2/2 = 1 = 2/2 = 1

sphericity homospheric enantiospheric homospheric homospheric homospheric
sphericity a1 c2 a1 a1 a1
index (SI)

objects H atom e.g., *C=C=C ��H—C—H
in allene (C–H bond) H(2) · · ·H(3) H(2) · · ·H(4) (�H—C—H)

local Cs C1 Cs Cs Cs
symmetry

CR Cs(/Cs) Cs(/C1) Cs(/Cs) Cs(/Cs) Cs(/Cs)
degree |Cs|/|Cs| |Cs|/|C1| |Cs|/|Cs| |Cs|/|Cs| |Cs|/|Cs|
of CR = 2/2 = 1 = 2/1 = 2 = 2/2 = 1 = 2/2 = 1 = 2/2 = 1

sphericity homospheric enantiospheric homospheric homospheric homospheric
sphericity a1 c2 a1 a1 a1
index (SI)

objects H atoms
in allene (C–H bonds)

local C1
symmetry

CR Cs(/C1)
degree |Cs|/|C1|
of CR = 2/1 = 2

sphericity enantiospheric
sphericity c2
index (SI)

Subduction 2Cs(/Cs) 2Cs(/C1) 2Cs(/Cs) 2Cs(/Cs) 2Cs(/Cs)
of CR +Cs(/C1)

USCI-CF a2
1c2 c2

2 a2
1 a2

1 a2
1

USCI s2
1s2 s2

2 s2
1 s2

1 s2
1
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and general procedure using a single skeleton is again desirable to systematize diagrammatical
studies on molecular symmetry. This is the target of the following sections.

4 Exhaustive Diagrammatical Derivation of Coset Represen-
tations

Whether sphericity indices (cf. Section 2) or subduction of CRs (cf. Section 3) are pursued as
targets, a general procedure should be developed on the basis of a single skeleton, as pointed
out in the last parts of Sections 2 and 3. This section deals with such a general procedure.

4.1 Regular Bodies
The concept of regular body has been proposed in a previous paper [30] and described in a
general and mathematical fashion in Chapter 7 of Fujita’s book [12]. A regular body of G-
symmetry is defined as a skeleton having a G(/C1)-orbit, where C1 represents an identity group,
i.e., C1 = {I}. The corresponding CR G(/C1) is called a regular representation, where the
degree of the CR is equal to |G|/|C1| = |G|.

In contrast to the previous approach for regular bodies [30, 12], the present approach adopts
an intuitive definition of a regular representation, which is regarded as one extreme of CRs
described above. Thus, we select an allene skeleton (11) as a regular body for D2d-symmetry
(Fig. 6), where two cyclopropane units are linked with an allene axis (C=C=C) so as to be
perpendicular to each other. Because this modification does not influence the symmetry of an
allene skeleton, the regular body (11) also belongs to D2d , which is determined to be the global
symmetry of the regular body as a skeleton. Each of the eight positions (vertices) of 11 is fixed
only on the action of C1, which is determined to be the local symmetry.4 Hence, the orbit of the
eight positions (vertices) is concluded to be governed by the regular representation D2d(/C1).
The degree of the regular representation is calculated to be |D2d|/|C1| = 8/1 = 8, which is
equal to the size of the orbit.
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11 12

Figure 6: Regular body for D2d .

The vertices (or objects on the vertices) of the regular body (11) shown in Fig. 6 are num-
bered sequentially and the resulting orbit of vertices (R = {1,2,3,4,5,6,7,8}) is regarded as an
ordered set. Then the vertices of R generate permutations on the action of operations of D2d (eq.

4The vertices of the regular body (11) are regarded as substitution positions when 11 is considered to be a
skeleton. The vertices are governed by the same CR G(/C1) as the objects ( �, �, etc.) accomodated by them.
In particular, the vertices are sometimes equalized to hydrogen atoms on the vertices, because organic chemistry
(especially organic nomeclature) considers the replacement of hydrogens by other atoms. This shift of viewpoints
is permissible since it provides no confusion.
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Figure 7: Permutation Diagram containing transformulas produced by symmetry operations
onto a regular body for D2d . The set of eight positions R = {1,2,3,4,5,6,7,8} constructs an
orbit governed by the regular representation D2d(/C1) in terms of intramolecular stereochem-
istry.

1), as shown in Fig. 7. Such diagrams as Fig. 7 are here called permutation diagrams. For exam-
ple, the action of C2(3) on the R produces another ordered set, i.e., R C2(3)

= {5,6,7,8,1,2,3,4},
as shown in 13. This conversion (11 into 13) is represented by the following permutation:(

1 2 3 4 5 6 7 8
5 6 7 8 1 2 3 4

)
= (1 5)(2 6)(3 7)(4 8), (13)

where the right-hand side is represented as a product of cycles. Such formulas as generated
by the action of symmetry opperations (e.g., 11 by I and 13 by C2(3)) are called here trans-
formulas.5 Thus, the transformation of 11 into every one of the transformulas listed in Fig. 7
generates the following permutations (as products of cycles) for the respective operations:

I ∼
(

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

)
= (1)(2)(3)(4)(5)(6)(7)(8) (14)

C2(3) ∼
(

1 2 3 4 5 6 7 8
5 6 7 8 1 2 3 4

)
= (1 5)(2 6)(3 7)(4 8) (15)

C2(1) ∼
(

1 2 3 4 5 6 7 8
4 3 2 1 8 7 6 5

)
= (1 4)(2 3)(5 8)(6 7) (16)

C2(2) ∼
(

1 2 3 4 5 6 7 8
8 7 6 5 4 3 2 1

)
= (1 8)(2 7)(3 6)(4 5) (17)

σd(1) ∼
(

1 2 3 4 5 6 7 8
2 1 8 7 6 5 4 3

)
= (1 2)(3 8)(4 7)(5 6) (18)

5To denote such formulas generated by permutations, the term “configurations” has been used in Pólya’s book
[8] and in Fujita’s book [12] while the term “homomer sets” has been used in a recent paper [31]. Because the
terms “configuration” and “homomer” have been used in different meanings in chemistry, the term “transformulas”
is coined tentatively in this article.
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σd(2) ∼
(

1 2 3 4 5 6 7 8
6 5 4 3 2 1 8 7

)
= (1 6)(2 5)(3 4)(7 8) (19)

S4 ∼
(

1 2 3 4 5 6 7 8
3 4 5 6 7 8 1 2

)
= (1 3 5 7)(2 4 6 8) (20)

S3
4 ∼

(
1 2 3 4 5 6 7 8
7 8 1 2 3 4 5 6

)
= (1 7 5 3)(2 8 6 4) (21)

where each overbar represents the mirror image of each object.6 The set of the permutations
(eqs. 14—21) is a permutation representation based on the regular body (11) shown in Fig.
6. This permutation representation is characterized by the symbol D2d(/C1) because the local
symmetry is determined to be C1. As discussed generally in Chapter 7 of Fujita’s book [12],
the permutation representation obtained diagrammatically by using the regular body (11) can
be equalized to the corresponding CR which has been algebraically obtained by using a coset
decomposition of D2d by C1. The CR D2d(/C1) as one extreme case is called a regular repre-
sentation. It should be noted that the regular representation can be regarded as a multiplication
table of D2d itself.

Because D2d is achiral and C1 is chiral, a D2d(/C1)-orbit is enantiospheric according to
the criterion of Table 5. This CR corresponds to a sphericity index c8 because of |D2d|/|C1| =
8/1 = 8.

4.2 Segments in Regular Bodies
Any set of objects in a molecule can be further regarded as a secondary object. As a result, the
set of objects and its equivalent sets of objects can construct a orbit of another kind. The latter
orbit has been formulated by the mathematical concept “blocks in a regular body” described in
Ref. [30] and in Chapter 7 of Fujita’s book [12]. This concept is here discussed more intuitively
by using the term segment in a regular body. Whereas the term “blocks” designates any sets of
objects, the term segments is used to designate sets of objects, if any two of such sets can be
so selected as to have no common objects. If such segments have a chemical meaning, they are
called ligands, as discussed in the next subsection.

4.2.1 Orbits of Segments Governed by the CR D2d(/Cs)

For example, let us consider a set of two vertices, e.g., A1 = {1,2}, which is regarded as a
segment, as shown in 20 of Fig. 8. On the action of operations of D2d (eq. 1), the set A1 is
converted into other segments, i.e., A2 = {3,4}, A3 = {5,6}, and A4 = {7,8}. This means
that the segments A1,A2,A3, and A4 are equivalent on the action of D2d so that the set of the
segments A = {A1,A2,A3,A4} is over again regarded as an orbit. Because the segment A1 is
fixed (stabilized) on the action Cs (eq. 7), the local symmetry of the orbit A is determined to be
Cs. Hence, the orbit A is concluded to be governed by the CR D2d(/Cs). It should be noted that
the segments A1 and A3 are fixed on the action Cs (eq. 7), while the segments A2 and A4 are
fixed on the action C′

s (eq. 7). Because Cs and C′
s are conjugate within D2d , they are regarded

as being equivalent in this treatment. Each segment of A is called a Cs-segment because it is
fixed (stabilized) on the action of Cs (or its conjugate subgroup C′

s).

6The conventional treatments based on permutation representations have not taken account of the mirror images
of objects. This means that the inner structures of objects have been disregarded. In contrast, the present approach
considers the inner structures of objects in the form of sphericities. The overbar shows this approach explicitly.
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Figure 8: Segmentation patterns to generate orbits of Cs-segments in the regular body (11) for
illustrating the CR D2d(/Cs). Each segment encircled by an oval is called a Cs-segment because
it is fixed (stabilized) on the action of Cs (or its conjugate subgroup C′

s.

As shown in the right segmentation pattern (21) of Fig. 8, another orbit of segments gov-
erned by the CR D2d(/Cs) can be considered, i.e., A ′ = {A ′

1,A ′
2,A ′

3,A ′
4}, where we place

A ′
1 = {3,8}, and A ′

2 = {2,5}, A ′
3 = {4,7}. A ′

4 = {1,6}. Note that the segments A ′
1 and A ′

3 are
fixed on the action of Cs (eq. 7), while the segments A ′

2 and A ′
4 are fixed on the action of C′

s
(eq. 7), where Cs and C′

s are conjugate within D2d .
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Figure 9: Permutation diagram containing transformulas generated on the action of the symme-
try operations of D2d onto the set of segments A = {A1,A2,A3,A4} in a regular body. The set
A is an orbit governed by the CR D2d(/Cs). This diagram is regarded as being generated by
the superposition of the segmentation pattern (20) onto Fig. 7.

Suppose that the orbit A = {A1,A2,A3,A4} shown in 20 of Fig. 8 is an ordered set. Then
the segments involved in A generate permutations on the action of operations of D2d (eq. 1), as
shown in Fig. 9. For example, the action of C2(3) on the A produces another ordered set, i.e.,
{A3,A4,A1,A2}, as shown in 22. This process (20 into 22) is expressed by the permutation of
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an ordered set {1,2,3,4} into another set {3,4,1,2} as follows:

(
A1 A2 A3 A4
A3 A4 A1 A2

)
=

(
1 2 3 4
3 4 1 2

)
= (1 3)(2 4), (22)

where the last expression is based on a product of cycles. Thereby, we can obtain the following
permutations (as products of cycles) for the respective operations:

I ∼
(

A1 A2 A3 A4
A1 A2 A3 A4

)
= (1)(2)(3)(4) (23)

C2(3) ∼
(

A1 A2 A3 A4
A3 A4 A1 A2

)
= (1 3)(2 4) (24)

C2(1) ∼
(

A1 A2 A3 A4
A2 A1 A4 A3

)
= (1 2)(3 4) (25)

C2(2) ∼
(

A1 A2 A3 A4
A4 A3 A2 A1

)
= (1 4)(2 3) (26)

σd(1) ∼
(

A1 A2 A3 A4
A1 A4 A3 A2

)
= (1)(2 4)(3) (27)

σd(2) ∼
(

A1 A2 A3 A4
A3 A2 A1 A4

)
= (1 3)(2)(4) (28)

S4 ∼
(

A1 A2 A3 A4
A2 A3 A4 A1

)
= (1 2 3 4) (29)

S3
4 ∼

(
A1 A2 A3 A4
A4 A1 A2 A3

)
= (1 4 3 2), (30)

where each of the products of cycles in the right-hand sides is represented by the subscripts
only and where each overbar represents the mirror image of each segment. The set of the
permutations (eqs. 23—30) is a concrete form of the CR D2d(/Cs). As discussed generally in
Chapter 7 of Fujita’s book [12], the CR obtained diagrammatically by using the Cs-segments
(20) is equivalent to the corresponding CR which has been algebraically obtained by using a
coset decomposition of D2d by Cs.

Because both D2d and Cs are achiral, a D2d(/Cs)-orbit is homospheric according to the
criterion of Table 5. This CR corresponds to a sphericity index a4 because of |D2d|/|Cs|= 8/2 =
4. It should be noted that each segment of A has an inner structure so that the permutations
shown in Fig. 9 (for the CR D2d(/Cs)) occur concurrently with the permutations shown in Fig.
7 (for the CR D2d(/C1)).

Exercise 5. Construct a permutation diagram for the orbit A ′ by using the segmentation pattern
21 (Fig. 8). Then, show permutations corresponding to the orbit A ′. Compare these permuta-
tions with eqs. 23–30.

4.2.2 Orbits of Segments Governed by the CR D2d(/C′
2)

Let us next consider four sets of two vertices, B1 = {2,3}, B2 = {4,5}, B3 = {6,7}, and
B4 = {1,8}, which are regarded as segments, as shown in 29 of Fig. 10. They are equivalent
on the action of operations of D2d (eq. 1) so as to construct an orbit, i.e., B = {B1,B2,B3,B4}.
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Because the segment B1 is fixed (stabilized) on the action C′
2 (eq. 6), the local symmetry of the

orbit B is determined to be C′
2. Thereby, the orbit B is concluded to be governed by the CR

D2d(/C′
2). Strictly speaking, the segments B1 and B3 are fixed on the action C′

2 (eq. 6), while
the segments B2 and B4 are fixed on the action C′′

2 (eq. 6). Because C′
2 and C′′

2 are conjugate
within D2d , they are regarded as being equivalent in this treatment.
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Figure 10: Segmentation patterns to generate orbits of C′
2-segments in the regular body (11) for

illustrating the CR D2d(/C′
2).

The action of each operation of D2d (eq. 1) causes a permutation of the four segments of
B (29). Thereby, we can obtain the following permutations (as products of cycles) for the
respective operations:

I ∼
(

B1 B2 B3 B4
B1 B2 B3 B4

)
= (1)(2)(3)(4) (31)

C2(3) ∼
(

B1 B2 B3 B4
B3 B4 B1 B2

)
= (1 3)(2 4) (32)

C2(1) ∼
(

B1 B2 B3 B4
B1 B4 B3 B2

)
= (1)(2 4)(3) (33)

C2(2) ∼
(

B1 B2 B3 B4
B3 B2 B1 B4

)
= (1 3)(2)(4) (34)

σd(1) ∼
(

B1 B2 B3 B4
B4 B3 B1 B1

)
= (1 4)(2 3) (35)

σd(2) ∼
(

B1 B2 B3 B4
B2 B1 B4 B3

)
= (1 2)(3 4) (36)

S4 ∼
(

B1 B2 B3 B4
B2 B3 B4 B1

)
= (1 2 3 4) (37)

S3
4 ∼

(
B1 B2 B3 B4
B4 B1 B2 B3

)
= (1 4 3 2). (38)

The set of the permutations (eqs. 31—38) is a concrete form of the CR D2d(/C′
2), which is

equivalent to the corresponding CR which has been algebraically obtained by using a coset
decomposition of D2d by C′

2, as discussed generally in Chapter 7 of Fujita’s book [12].
Because D2d is achiral and C′

2 is chiral, a D2d(/C′
2)-orbit is enantiospheric according to

the criterion of Table 5. This CR corresponds to a sphericity index c4 because of |D2d|/|C′
2| =

8/2 = 4.

Exercise 6. Construct a permutation diagram for the orbit B by using the segmentation pattern
29 (Fig. 10). Then, derive the permutations shown in eqs. 31–38.
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The right segmentation pattern (30) of Fig. 10 shows another orbit of segments governed by
the CR D2d(/C′

2), i.e., B ′ = {B ′
1,B

′
2,B

′
3,B

′
4}, where we place B ′

1 = {1,4}, and B ′
2 = {3,6},

B ′
3 = {5,8}. B ′

4 = {2,7}. The segments B ′
1 and B ′

3 are fixed on the action of C′
2 (eq. 6), while

the segments B ′
2 and B ′

4 are fixed on the action of C′′
2 (eq. 6), where C′

2 and C′′
2 are conjugate

within D2d .

Exercise 7. Construct a permutation diagram for the orbit B ′ by using the segmentation pattern
30 (Fig. 10). Then, show permutations corresponding to the orbit B ′. Compare these permuta-
tions with eqs. 31–38.

4.2.3 Orbits of Segments Governed by the CR D2d(/C2)

Similarly, the four sets of two vertices as segments in 31 of Fig. 11, i.e., C 1 = {1,5}, C 2 =
{2,6}, C 3 = {3,7}, and C 4 = {4,8}, are equivalent on the action of operations of D2d (eq.
1) so that they construct an orbit, i.e., C = {C 1,C 2,C 3,C 4}. Because the segment C 1 is fixed
(stabilized) on the action C2 (eq. 5), the local symmetry of the orbit C is determined to be C2.
Thereby, the orbit C is concluded to be governed by the CR D2d(/C2).
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Figure 11: Segmentation pattern to generate an orbit of C2-segments in the regular body (11)
for illustrating the CR D2d(/C2).

The action of each operation of D2d (eq. 1) causes a permutation of the four segments of
C (31). Thereby, we can obtain the following permutations (as products of cycles) for the
respective operations:

I,C2(3) ∼
(

C 1 C 2 C 3 C 4
C 1 C 2 C 3 C 4

)
= (1)(2)(3)(4) (39)

C2(1),C2(2) ∼
(

C 1 C 2 C 3 C 4
C 4 C 3 C 2 C 1

)
= (1 4)(2 3) (40)

σd(1),σd(2) ∼
(

C 1 C 2 C 3 C 4
C 2 C 1 C 4 C 3

)
= (1 2)(3 4) (41)

S4,S3
4 ∼

(
C 1 C 2 C 3 C 4
C 3 C 4 C 1 C 2

)
= (1 3)(2 4) (42)

The set of the permutations (eqs. 39—42) is a concrete form of the CR D2d(/C2), which is
equivalent to the corresponding CR which has been algebraically obtained by using a coset
decomposition of D2d by C2, as discussed generally in Chapter 7 of Fujita’s book [12].

Because D2d is achiral and C2 is chiral, a D2d(/C2)-orbit is enantiospheric according to
the criterion of Table 5. This CR corresponds to a sphericity index c4 because of |D2d|/|C2| =
8/2 = 4.
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Exercise 8. Construct a permutation diagram for the orbit C by using the segmentation pattern
31 (Fig. 11). Then, derive the permutations shown in eqs. 39–42.

4.2.4 Orbits of Segments Governed by the CR D2d(/C2v)

Similarly, the two sets of four vertices as segments in 32 of Fig. 12, i.e., D1 = {1,2,5,6} and
D2 = {3,4,7,8}, are equivalent on the action of operations of D2d (eq. 1) so that they construct
an orbit, i.e., D = {D1,D2}. Because the segment D1 is fixed (stabilized) on the action C2v
(eq. 3), the local symmetry of the orbit D is determined to be C2v. Thereby, the orbit D is
concluded to be governed by the CR D2d(/C2v).
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Figure 12: Segmentation pattern to generate an orbit of C2v-segments in the regular body (11)
for illustrating the CR D2d(/C2v).

The action of each operation of D2d (eq. 1) causes a permutation of the two segments of
D (32). Thereby, we can obtain the following permutations (as products of cycles) for the
respective operations:

I,C2(3) ∼
(

D1 D2
D1 D2

)
= (1)(2) (43)

C2(1),C2(2) ∼
(

D1 D2
D2 D1

)
= (1 2) (44)

σd(1),σd(2) ∼
(

D1 D2
D1 D2

)
= (1)(2) (45)

S4,S3
4 ∼

(
D1 D2
D2 D1

)
= (1 2) (46)

The set of the permutations (eqs. 43—46) is a concrete form of the CR D2d(/C2v), which is
equivalent to the corresponding CR which has been algebraically obtained by using a coset
decomposition of D2d by C2v, as discussed generally in Chapter 7 of Fujita’s book [12].

Because both D2d and C2v is achiral, a D2d(/C2v)-orbit is homospheric according to the
criterion of Table 5. This CR corresponds to a sphericity index a2 because of |D2d|/|C2v| =
8/4 = 2.

Exercise 9. Construct a permutation diagram for the orbit D by using the segmentation pattern
32 (Fig. 12). Then, derive the permutations shown in eqs. 43–46.

4.2.5 Orbits of Segments Governed by the CR D2d(/D2)

Similarly, the two sets of four vertices as segments in 33 of Fig. 13, i.e., E1 = {1,4,5,8} and
E2 = {2,3,6,7}, are equivalent on the action of operations of D2d (eq. 1) so that they construct
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an orbit, i.e., E = {E1,E2}. Because the segment E1 is fixed (stabilized) on the action D2 (eq.
2), the local symmetry of the orbit E is determined to be D2. Thereby, the orbit E is concluded
to be governed by the CR D2d(/D2).
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Figure 13: Segmentation pattern to generate an orbit of D2-segments in the regular body (11)
for illustrating the CR D2d(/D2).

The action of each operation of D2d (eq. 1) causes a permutation of the two segments of
E (33). Thereby, we can obtain the following permutations (as products of cycles) for the
respective operations:

I,C2(3),C2(1),C2(2) ∼
(

E1 E2
E1 E2

)
= (1)(2) (47)

σd(1),σd(2),S4,S3
4 ∼

(
E1 E2
E2 E1

)
= (1 2) (48)

The set of the permutations (eqs. 47 and 48) is a concrete form of the CR D2d(/D2), which
is equivalent to the corresponding CR which has been algebraically obtained by using a coset
decomposition of D2d by D2, as discussed generally in Chapter 7 of Fujita’s book [12].

Because D2d is achiral and D2 is chiral, a D2d(/D2)-orbit is enantiospheric according to
the criterion of Table 5. This CR corresponds to a sphericity index c2 because of |D2d|/|D2| =
8/4 = 2.

Exercise 10. Construct a permutation diagram for the orbit E by using the segmentation pattern
33 (Fig. 13). Then, derive the permutations shown in eqs. 47 and 48.

4.2.6 Orbits of Segments Governed by the CR D2d(/S4)

Similarly, the two sets of four vertices as segments in 34 of Fig. 14, i.e., F 1 = {1,3,5,7} and
F 2 = {2,4,6,8}, are equivalent on the action of operations of D2d (eq. 1) so that they construct
an orbit, i.e., F = {F 1,F 2}. Because the segment F 1 is fixed (stabilized) on the action S4 (eq.
4), the local symmetry of the orbit F is determined to be S4. Thereby, the orbit F is concluded
to be governed by the CR D2d(/S4).

The action of each operation of D2d (eq. 1) causes a permutation of the two segments of
F (34). Thereby, we can obtain the following permutations (as products of cycles) for the
respective operations:
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Figure 14: Segmentation pattern to generate an orbit of S4-segments in the regular body (11)
for illustrating the CR D2d(/S4).

I,C2(3) ∼
(

F 1 F 2
F 1 F 2

)
= (1)(2) (49)

C2(1),C2(2) ∼
(

F 1 F 2
F 2 F 1

)
= (1 2) (50)

σd(1),σd(2) ∼
(

F 1 F 2
F 2 F 1

)
= (1 2) (51)

S4,S3
4 ∼

(
F 1 F 2
F 1 F 2

)
= (1)(2) (52)

The set of the permutations (eqs. 49—52) is a concrete form of the CR D2d(/S4), which is
equivalent to the corresponding CR which has been algebraically obtained by using a coset
decomposition of D2d by S4, as discussed generally in Chapter 7 of Fujita’s book [12].

Because both D2d and S4 is achiral, a D2d(/S4)-orbit is homospheric according to the crite-
rion of Table 5. This CR corresponds to a sphericity index a2 because of |D2d|/|S4| = 8/4 = 2.

Exercise 11. Construct a permutation diagram for the orbit F by using the segmentation pattern
34 (Fig. 14). Then, derive the permutations shown in eqs. 49–52.

4.2.7 Orbit of a Segment Governed by the CR D2d(/D2d)

This is a trivial case. The corresponding segment pattern contains all of the eight positions. i.e.,
G1 = {1,2,3,4,5,6,7,8}. Because all of the symmetry operations of D2d transform G1 into G1
itself (or G1), the following trivial permutations are obtained:

I,C2(3),C2(1),C2(2) ∼
(

G1
G1

)
= (1) (53)

σd(1),σd(2),S4,S3
4 ∼

(
G1
G1

)
= (1) (54)

The set of the permutations (eqs. 53 and 54) is a concrete form of the CR D2d(/D2d). Because
the achiral point group D2d appears as the global and the local symmetry, a D2d(/D2d)-orbit is
homospheric according to the criterion of Table 5. This CR corresponds to a sphericity index
a1 because of |D2d |/|D2d| = 8/8 = 1.

Exercise 12. Show a segmentation pattern for representing the orbit G governed by the CR
D2d(/D2d). Thereby, construct a permutation diagram for the orbit G . Then, derive the permu-
tations shown in eqs. 53 and 54.
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4.2.8 General Procedure for Obtaining CRs

The diagrammatical procedure described in the preceding paragraphs can be generalized to
obtain any CRs. Thus, any CR can be obtained stepwise as follows:

1. Select a regular body for G(/C1). This step is somewhat experiential. By starting from
a known skeleton of G, an appropriate substitution would generate a regular body. For
example, compare the allene skeleton 1 of Fig. 1 with the regular body 11 of Fig. 6.

2. Construct a permutation diagram for G. To accomplish this step, let every symmetry
operations of G act on the regular body to give permuted transformulas, which construct
a permutation diagram such as Fig. 7.

3. Select an orbit of segments in the regular body, where the local symmetry of each seg-
ment is H (a subgroup of G). Concretely speaking, select a segmentation pattern such as
20 shown Fig. 8.

4. Superpose the segmentation pattern onto the permutation diagram. This operation
means that every symmetry operations of G act on the orbit to give permuted transformu-
las, which construct such a diagram as shown in Fig. 9.

5. Compare each resulting transformula with the original one in the resulting diagram
to give a permutation of G(/H). For example, the original transformula 20 is compared
with 22–28 in Fig. 9.

Following this stepwise procedure, any CRs are available systematically in a diagrammatical
way. They have been proved to be identical with the corresponding CRs that are obtained
algebraically [12].

Exercise 13. Show a regular body for the point group Td by starting from adamantane. See Ref.
[32].

Exercise 14. Show another regular body for D2d by examining adamantane-2,6-dione. See Ref.
[16]. This exercise shows another methodology of constructing a regular body of a given sym-
metry, where a skeleton belonging to a supergroup (e.g., adamantane of Td-symmetry) is sub-
duced into another skeleton of the required symmetry (e.g., adamantane-2,6-dione of D2d).
Compare this methodology with the present one based on the derivation of symmetry conser-
vation (e.g., from the allene skeleton of D2d-symmetry (1 in Fig. 1) to the regular body of
D2d-symmetry (11 in Fig. 6)).

5 Mathematical Models into Chemical Structures
Mathematical concepts in their original forms are not always applicable to chemical problems.
Thus, the concept of segments described in Section 4 still remains to be a mathematical model,
although it has been defined intuitively and diagrammatically. This section deals with ligands,
proligands, and atoms as more chemical objects and links them with segments, so that the
concept of CRs based on the concept of segments is restated on the basis of chemical concepts
of ligands etc. This means that the items discussed diagramatically in Sections 2 and 3 are
provided with a mathematical foundation by means of the diagramatical approach described in
Section 4.
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5.1 Ligands as Special Segments
5.1.1 Ligands in a Molecule

By comparing between 1 (Fig. 1) and 20 (Fig. 8), one can find that the orbit of the four hydrogen
atoms in 1 and the orbit of the four segments (A1 to A4) in 20 are both governed by the CR
D2d(/Cs) and that the four carbon atoms in the cyclopropane rings of 20 is also governed
by the same CR D2d(/Cs). It follows that the four combined segments derived from A i (i =
1,2,3,4) and each root carbon atom, i.e., CH(1)H(2) for A1, CH(3)H(4) for A2, CH(5)H(6) for
A3, and CH(7)H(8) for A4, construct an orbit governed by the same CR D2d(/Cs). Because such
combined segments have a chemical meaning, they are called ligands. Although the expression
“chemical meaning” is used as having rather broad connotation, one may consider that the term
“ligand” designates an object consisting of atoms, which is meaningful even when isolated.

Each of the ligands CH2 belongs to the local symmetry Cs, which appears in the CR
D2d(/Cs). The two hydrogen atoms in each ligand CH2 can be considered to construct a sub-
orbit governed by Cs(/C1), if one pay an attention to the ligand. On the other hand, the two
hydrogen atoms in each ligand CH2 are part of the eight hydrogen atoms of 20, which construct
an orbit governed by the CR D2d(/C1). Hence the successive symmetry degradation from D2d
(total symmetry) to C1 (atom or position symmetry) via Cs (ligand symmetry) corresponds to
the combination of the CRs the CR D2d(/Cs) and the CR Cs(/C1) producing the total CR
D2d(/C1). The successive symmetry degradation has been discussed algebraically in Chapter 7
(especially Fig. 7.1) of Fujita’s book [12].

5.1.2 Ligands in Isolation

Although the CH2 ligand belongs to Cs when incorporated in 20 ( Fig. 8), the ligand belongs to
C2v when isolated, where the two hydrogen atoms of the CH2 construct a two-membered orbit
governed by the CR C2v(/Cs). The CH2-ligand of the C2v-symmetry is accommodated in 20 as
a Cs-ligand, where the C2v is restricted to the local symmetry Cs. This process is represented
by the subduction of the CR C2v(/Cs) to Cs as follows:

C2v(/Cs) ↓ Cs = Cs(/C1) (55)

This restriction is here referred to as ligand-symmetry restriction. It should be noted that
C2v(/Cs) in the left-hand side of eq. 55 is homospheric, while Cs(/C1) in the right-hand side
of eq. 55 is enantiospheric.

5.1.3 Rotatable Ligands

The concept of ligand-symmetry restriction is useful to discuss rotatable ligands. Although this
subject has been discussed in previous papers [33, 27] and Chapters 20 and 21 of Fujita’s book
[12], illustrative examples suitable for the present context are useful to comprehend symmetrical
properties during substitution processes.

Suppose that the four hydrogens of 1 are replaced by methyl ligands to produce tetra-
methylallene (35). Although this process is seemingly similar to the case of 5.1.2 in which
the methylene ligands are fixed after accommodated in the molecule (20), the methyl ligands
are not fixed so as to be rotatable after accommodated in the molecule (35).

The symmetry of each methyl belongs to C3v in isolation. After accommodated in 35, it
is controlled by the local symmetry Cs derived from the CR D2d(/Cs). Thereby, the ligand-
symmetry restriction takes place so as to be represented by the subduction of the CR C3v(/Cs)
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Figure 15: Methyl ligands as rotatable ligands in tetramethylallene (left) and its highest attain-
able symmetry (right).

to Cs as follows:

C3v(/Cs) ↓ Cs = Cs(/Cs)+Cs(/C1) (56)

By the free rotation around each C—C bond, the three hydrogen atoms of each methyl ligand
are equivalent.

When such free rotation is restricted, they are fixed and divided into a two-membered orbit
and a one-membered orbit according to eq. 56. This result can be confirmed by a fixed con-
formation having the highest attainable symmetry (36). In the fixed conformer (36), the four
hydrogens with an asterisk constructs a homospheric four-membered orbit governed by the CR
D2d(/Cs), which is derived from D2d(/Cs) (Table 6) and Cs(/Cs) (eq. 56). On the other hand,
the eight hydrogens without an asterisk in 36 construct an enantiospheric eight-membered orbit
governed by the CR D2d(/C1), which is derived from D2d(/Cs) (Table 6) and Cs(/C1) (eq.
56). Note that the D2d(/C1)-orbit in the fixed conformer (36) symmetrically resembles the
D2d(/C1)-orbit in the regular body (11).

Exercise 15. Examine the symmetry of tetramethylmethane (C(CH3)4). Show its highest attain-
able symmetry in a similar way described for Fig. 15. See Ref. [27] and Chapter 21 of Fujita’s
book.

The ligand separation represented by eq. 56 can be explicitly realized by considering hy-
droxymethyl ligands in place of the methyl ligands, as shown in Fig. 16. The two hydrogens of
the hydroxymethyl ligand is governed by the CR Cs(/C1) (eq. 56), while the hydroxy ligand is
governed by the CR Cs(/Cs) (eq. 56).

As for the corresponding fixed conformation having the highest attainable symmetry (38),
the four hydroxy ligands constructs a homospheric four-membered orbit governed by the CR
D2d(/Cs), which is derived from D2d(/Cs) (Table 6) and Cs(/Cs) (eq. 56). On the other hand,
the eight hydrogens in 38 construct an enantiospheric eight-membered orbit governed by the
CR D2d(/C1), which is derived from D2d(/Cs) (Table 6) and Cs(/C1) (eq. 56). Compare 36
and 38 to see the correspondence between asterisked hydrogens and hydroxyl ligands.

Exercise 16. Examine the symmetry of pentaerythritol (C(CH2OH)4). Show its highest attain-
able symmetry in a similar way described for Fig. 16. See Ref. [27] and Chapter 21 of Fujita’s
book.
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Figure 16: Hydroxymethyl ligands as rotatable ligands (left) and its highest attainable symmetry
(right).

Let us next examine the substitution of chiral R- and S-chlorofluoromethyl ligands as shown
in Fig. 17, where R and S-configurations are tentatively determined in terms of the priority Cl
> F > H > null. This substitution gives a molecule 39, which corresponds to 5 of S4-symmetry
as a reference promolecule, if p and p are substituted for R- and S-chlorofluoromethyl ligands.
Each atom (Cl, F, or H) in an isolated chlorofluoromethyl ligand is governed by a respective
CR C1(/C1). Thereby, the four hydrogens (or chlorines or fluorines) in 39 construct a four-
membered orbit governed by S4(/C1).7
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Figure 17: Chlorofluoromethyl ligands as rotatable ligands (left) and its highest attainable sym-
metry (right).

7If we consider the promolecule 1 having D2d(/Cs) as a reference promolecule, the C1-symmetry of an R- or
S-chlorofluoromethyl ligand is mismatched to the local symmetry Cs after accommodation in 39. This means that
the D2d-symmetry of an allene molecule is influenced to be changed into S4. By this desymmetrization, the four
hydrogens (or chlorines or fluorines) in 39 become to construct a four-membered orbit governed by S4(/C1). To
avoid such ambiguity in selecting a reference promolecule, such a reference molecule should be selected so as to
conserve the sphericity in the conversion of a promolecule (5 having an enantiospheric orbit) into a molecule (39
having an enantiospheric orbit) if possible. Note that the conversion of a promolecule (1 having a homospheric
orbit) into a molecule (39 having an enantiospheric orbit) does not conserve the sphericity.
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Exercise 17. Examine the substitution of four R-chlorofluoromethyl ligands (or S-chlorofluoromethyl
ligands) onto the four positions of allene. Compare this case with Fig. 17.

Exercise 18. Examine the symmetry of a methane derivative having two R-chlorofluoromethyl
ligands and two S-chlorofluoromethyl ligands. Show its highest attainable symmetry in a similar
way described for Fig. 17. See Fig. 21.1 of Fujita’s book [12].

5.1.4 Chirality Fittingness and Symmetry Fittingness

Suppose that the four hydrogens of a methane molecule, which belong to a Td(/C3v)-orbit,
are replaced by four hydroxymethyl ligands (CH2OH) of Cs-symmetry. This process generates
pentaerythritol, i.e., C(CH2OH)4, which belongs to D2d at the highest attainable symmetry in
spite of the vacancy at the D2d-symmetry shown in Fig. 4. This is because the Cs-symmetry
of each hydroxymethyl ligand (CH2OH) is mismatched to the local symmetry (C3v) of the
Td(/C3v)-orbit. Thereby, the Td(/C3v)-orbit is converted into a D2d(/Cs)-orbit so that the
latter local symmetry (Cs) becomes suitable for the Cs-symmetry of each hydroxymethyl ligand
(CH2OH).

This kind of desymmetrizations have been discussed in terms of “matched” and “mis-
matched” molecules in a previous paper [27] and Chapter 21 of Fujita’s book [12]. They can be
summarized by a term symmetry fittingness, which is here coined by analogy to chirality fitting-
ness. It should be noted that the concept of symmetry fittingness is concerned with molecules
with ligands, because CRs are used to discuss stereochemistry in molecule. On the other hand,
the concept of chirality fittingness is concerned with promolecules as well as molecules, be-
cause sphericities are used to discuss stereochemistry in molecule (even in promolecule level).

5.2 Atoms and Proligands as Special Segments
An atom can be regarded as an extreme case in which all the objects of a segment coincides
to give a single object. In the USCI approach, strictly speaking, a proligand is regarded as an
extreme case in which all the objects of a segment coincides to give a single object. Then, an
atom is further regarded as a special case of such proligands. Sections 2 and 3 have provided us
with various examples of such extreme cases.

Such extreme cases are sometimes forbidden, as discussed previously in a paper [30] and
Section 7.2 of Fujita’s book [12]. As a result, some CRs are forbidden to specify orbits in
a molecule. Among the CRs of the D2d-symmetry, for example, D2d(/C2) (giving the same
atom as derived by D2d(/C2v)), D2d(/S4) (giving the same atom as derived by D2d(/D2d)), an
D2d(/D2) (giving the same atom as derived by D2d(/D2d)) are forbidden, as summarized in
Appendix C of Fujita’s book [12].

Except such forbidden cases, the remaining CRs, i.e., D2d(/C1), D2d(/Cs), D2d(/C′
2),

D2d(/C2v), and D2d(/D2d), can appear to specify orbits in a molecule. For example, D2d(/Cs)
(the orbit of four hydrogens) and D2d(/C2v) (the orbit of two terminal atoms of the allene axis)
appear, as shown in Table 6. The CR D2d(/D2d) governs a one-membered orbit consisting of
the central atom of the allene axis (C=C∗=C). The CR D2d(/C1) governs an eight-membered
orbit in the regular body (11).

The CR D2d(/C′
2) is not realized as an orbit of atoms (or proligands) if we start from the

present regular body. However, another regular body based on adamantane-2,6-dione can be
considered, where the eight hydrogens at the bridge methylenes constructs a D2d(/C1)-orbit
(cf. Exercise 14). The four methylene carbons at the bridge positions of adamantane-2,6-dione
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construct a four-membered orbit governed by D2d(/C′
2), as has been discussed in Example 10.1

of Fujita’s book [12].

6 Subductive Derivation

6.1 Subductive Derivation Based on a Regular Body
By inspection of Figs. 8 and 10–14, one can find a general method of deriving molecules of
given symmetries. For example, by placing � (in place of �) on the positions of a segment
(e.g., A1) in 20 (Fig. 8), a Cs-molecule 41 can be derived, as shown in Fig. 18. Similarly,
another Cs-molecule 42 (Fig. 18) can be derived by placing � on the positions of a segment
(A ′

1) in 21 (Fig. 8). According to this method, Figs. 10–14 generate molecules of respective
symmetries. This type of derivation extensively discussed in terms of subductive derivation
[32].
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Figure 18: Cs-molecules generated from the regular body (11). Compare these molecules with
the Cs-segments shown in Fig. 8. And compare these molecules with the Cs-molecule shown
in Fig. 3, where the modes of segmentation represented by the symbols H, X, Y, p, and p are
taken into consideration.

It is informative to depict the resulting molecules in a subduction diagram, as shown in Fig.
19. The USCI-CF and the USCI listed below the formula of each molecule indicate the division
of the eight positions to orbits. For example, there emerged four two-membered enantiospheric
orbits (i.e., {1,2}, {3,8} {4,7}, and {5,6}) in 41 (Fig. 18) in agreement with the USCI-CF (i.e.,
c4

2) shown in Fig. 19. The same molecule as 41 is listed in an alternative expression (48) in Fig.
19, which is convenient to explain the relationship between Fig. 19 and Fig. 3 (see 6.2). Of
course, the other one 42 may be depicted as a Cs-molecule in Fig. 19.

Similarly, the division of the positions into orbits occurs in agreement with the USCI-CF
attached to each formula, as shown in Fig. 19.

6.2 Subductive Derivation From Various Viewpoints
The comparison of 41 (Fig. 18) with the Cs-promolecule (9) listed in Fig. 3 provides us with
another view on ligand substitutions. Let us represent ligands in 41 by the symbol C{1,2}, etc.
Then, the ligands C{3,4} and C{7,8} in 41 correspond to the two hydrogen atoms of 9, while
C{1,2} and C{5,6} can be correlated to X and Y, respectively. The symbols H, H, X, and Y are
added in the formula 41 to show this correspondence. The sphericity index c2 is assigned to the
two-membered enantiospheric orbit of ligands C{3,4} and C{7,8} in 41, while a1 is assigned
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Figure 19: Subduction diagram with USCIs and USCI-CFs for testing the existence or nonex-
istence of derivatives during vertex substitution of the regular body (1). The symbol © shows
the existence of a desymmetrized molecule. This subduction diagram is concerned with the CR
D2d(/C1) in agreement with no segmentation.

to each one-membered homospheric orbit of a ligand C{1,2} or C{5,6}. It follows that the
USCI-CF a2

1c2 is assigned to the ligands of 41.
On the other hand, four ligands in the other Cs-molecule (42) can be regarded as proligands

(H, H(X), p, and p), as added in the formula (42), where the ligands C{3,4} and C{7,8} cor-
respond to p and p while C{1,2} and C{5,6} corresponds to H and H (X). Note that the H
and the H(X) belongs respectively to one-membered orbits. The segmentation means that the
sphericity index c2 is assigned to the two-membered enantiospheric orbit of ligands C{3,4} (p)
and C{7,8} (p) in 42, while a1 is assigned to each one-membered homospheric orbit of a ligand
C{1,2} (H) or C{5,6} (H or X). It follows that the USCI-CF a2

1c2 is assigned to the proligands
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of 42.
In summary, the same transformulas are concurrently regarded as being generated by two

modes of substitution.

1. From one viewpoint, the USCI-CF c4
2 should be assigned to 41 (or 42) if the eight posi-

tions of 41 (or 42) are not segmented to ligands. By this viewpoint, there emerged four
two-membered enantiospheric orbits (i.e., {1,2}, {3,8} {4,7}, and {5,6}) in 41 (or 42),
each of which corresponds to the sphericity index c2 so as to give the USCI-CF c4

2.

2. From the other viewpoint in which the eight positions of 41 (or 42) are segmented to
ligands, there appear a one-membered orbit of C{1,2} (for a1), a one-membered orbit of
C{5,6} (for a1), and a two-membered orbit of {C{3,4} and C{7,8}} (for c2) in agreement
with the USCI-CF a2

1c2, as shown in Fig. 18,

The C′
2-molecule (47) depicted in Fig. 19 is derived from 30 (Fig. 10). As shown in Fig. 20,

the molecule (47) is regarded as being generated by substitution of the set of proligands {H, H,
p, and p}, if the ligands C{1,2} and C{3,4} in 47 are symmetrically equalized to two hydro-
gens (as achiral proligands) and the ligands C{5,6} and C{7,8} are symmetrically equalized to
two chiral proligands (p). Because the C′

2 is chiral, the corresponding enantiomer (47) can be
generated by starting also from 30 where the substitution corresponds to the proligand set {H,
H, p, and p}, as shown in Fig. 20.

As shown in Fig. 20, another C′
2-molecule (50) and its enantiomer (50) can be derived from

29 (Fig. 10). Each of the molecules is regarded as being generated by substitution of {H, H, p,
and p} or {H, H, p, and p}.

A further C′
2-molecule (51) and its enantiomer (51) can be derived by combining 29 with

30 (Fig. 10). Both of the molecules are regarded as being generated by substitution of {H, H,
X, and X}.

Again, the same transformulas are concurrently regarded as being generated by two modes
of substitution.

1. If the eight positions of 47 (or 50 or 42) are not segmented to ligands, there emerged four
two-membered enantiospheric orbits (i.e., {2,3}, {1,4} {5,8}, and {6,7}) of 47 (or 50 or
42), which are in agreement with the USCI-CF b4

2. The same situation holds true for the
C′

2-molecule (51).

2. On the other hand, if the modes of segmentation are taken into consideration, the result-
ing ligands C{1,2}, C{3,4}, C{5,6} and C{7,8} in 47 (or 50 or 42) are controlled in
agreement with the common USCI-CF, i.e., a2

1c2. The same situation holds true for the
C′

2-molecule (51).

This type of segmentations is applicable to any of the molecules listed in Fig. 19. Thus, the
procedure of the segmentations shown in Fig. 18 (Cs) and 20 (C′

2) is repeated to every remaining
molecules. This means that the mode of segmentation depicted for 20 (Fig. 8) is superposed
onto each formula listed in Fig. 19. Thereby, we obtain Fig. 21 as a subduction diagram, where
the Cs-molecule (41) shown in Fig. 18 and the C′

2-molecule (47) shown in Fig. 20 appear as
57 and 56, respectively. Because the methodology of superposition is versatile in discussing
symmetry, it is here called segmentation-pattern superposition.

Obviously, Fig. 21 has the same context as Fig. 3, which is concerned with a D2d(/Cs)-
orbit. To show the correspondence clearly, the proligand symbols (H, X, Y, p, and p) are added
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Figure 20: C′
2-molecules generated from the regular body (11). Compare these molecules with

the C′
2-segments shown in Fig. 10.

in Fig. 21. Note that, although the C′
2-molecule (8) shown in Fig. 3 corresponds to 51, Fig. 21

contains an alternative molecule (56) for the sake of consistency between Fig. 21 and Fig. 19
(see also Fig. 20).

The procedure for obtaining the subduction diagram (Fig. 21) from Fig. 19 can be general-
ized easily in terms of segmentation-pattern superposition. For example, the mode of segmen-
tation shown in Fig. 10 (for the C′

2-segment) is superposed onto Fig. 19 to give a subduction di-
agram of a D2d(/C′

2)-orbit. Similarly, Figs. 11 (for the C2-segment), 12 (for the C2v-segment),
13 (for the D2-segment), and 14 (for the S4-segment) can be used to generate subduction dia-
grams corresponding to D2d(/C2), D2d(/C2v), D2d(/D2), and D2d(/S4).

Such subduction diagrams corresponding to CRs contain the modes of desymmetrization,
which are represented by subductions of CRs. The next section will deal with the subduction
diagrams more systematically.

Exercise 19. Following the superposition procedure described above (Fig. 19 + Fig. 8 → Fig.
21), superpose the segmentation pattern shown in Fig. 10 (for the C′

2-segment) onto Fig. 19.
Repeat the superposition procedure by using the following segmentation patterns: Figs. 11
(for the C2-segment), 12 (for the C2v-segment), 13 (for the D2-segment), and 14 (for the S4-
segment).

7 Diagrammatical Derivation of Subductions of CRs
The concept of subductions of CRs has been proposed by Fujita [34] and discussed somewhat
algebraically in Chapter 9 of Fujita’s book [12]. This concept can be alternatively formulated
by using the diagrammatical expressions of a regular body described in Section 4. This is
the target of this section, where the concept of assemblies of transfromulas is introduced to
visualize subduction processes. Thereby, such subduction diagrams as discussed in Section 6
are diagrammatically provided with a mathematical foundation.
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Figure 21: Subduction diagram with USCIs and USCI-CFs for testing the existence or nonexis-
tence of derivatives during segment substitution of the segmented regular body (20). The sym-
bol © shows the existence of a desymmetrized molecule, while × shows non-existence. This
subduction diagram is concerned with the CR D2d(/Cs) according to the mode of segmentation
shown in Fig. 8.

- 286 -



7.1 Subduction of the Regular Representation
First, the subduction of the regular representation is examined diagrammatically as an extreme
case of coset representations. This diagrammatical examination results in an integrated com-
brehension of the segmentation patterns (Section 4) and the subductive derivation (Section 6).

Let us consider the permutations listed in Fig. 7, which correspond to the eight symmetry
operations of D2d (eq. 1). By selecting 11 and 13, the original D2d-symmetry is restricted to
give Cs = {I,σd(1)} (eq. 7), as shown in Fig. 22. This process is called the subduction of a coset
representation and designated by the symbol D2d(/C1) ↓ Cs. The resulting set of transformulas
(11 and 13) is called an assembly of transformulas.
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Figure 22: An assembly of two transformulas for the subduction D2d(/C1) ↓ Cs = 4Cs(/C1).
Thereby, the eight-membered orbit R is divided into four orbits, i.e., R 1 = {1,2}, R 2 = {3,8},
R 3 = {4,7}, and R 4 = {5,6}.
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Figure 23: An assembly of two transformulas for representing an allene molecule generated by
the subduction D2d(/C1) ↓ Cs = 4Cs(/C1). Among the resulting orbits (R 1 = {1,2}, R 2 =
{3,8}, R 3 = {4,7}, and R 4 = {5,6}), the two positions of R 1 occupied placed by different
atoms ( �). The two transformulas (59 and 60) are identical to give a single Cs-molecule (41).

As a result of this symmetry restriction, the original orbit R = {1,2,3,4,5,6,7,8} no longer
maintains its equivalence so that it is divided into several orbits. By the inspection of the
two transformulas in Fig. 22, we can find the generation of four orbits, i.e., R 1 = {1,2},
R 2 = {3,8}, R 3 = {4,7}, and R 4 = {5,6}. This process corresponds to the selection of
I ∼ (1)(2)(3)(4)(5)(6)(7)(8) (eq. 14) and σd(1) ∼ (1 2)(3 8)(4 7)(5 6) (eq. 18), when we re-
member the concrete form of D2d(/C1) (eqs. 14–21).

Because the local symmetry of the object no. 1 in R 1 is determined to be C1 (Fig. 22), the
orbit R 1 is governed by the coset representation Cs(/C1). Obviously, the remaining orbits,
R 2, R 3, and R 4, are also governed by the CR Cs(/C1). This result can be summarized by the
following equation:

D2d(/C1) ↓ Cs = 4Cs(/C1) (57)
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On the same line as an assembly containing the eight transformulas (11–19) shown in Fig. 7 rep-
resents a D2d-molecule (a regular body), the assembly of the transformulas (11 and 13) shown
in Fig. 22 represents a Cs-molecule, which can be regarded as a regular body with multiple
regular represenations, as shown in the right-hand side of eq. 57.

Exercise 20. Select assemblies of transformulas for other subgroups of D2d and get their sub-
duction equations according to the above procedure for obtaining eq. 57 of the subgroup Cs.

The result shown in eq. 57 can be extended to cover any regular representation G(/C1),
giving the following equation:

G(/C1) ↓ Gi =
|G|
|Gi|Gi(/C1), (58)

where Gi is a subgroup of G, as shown in Section 7.1 of Fujita’s book [12].
The subduction process shown in Fig. 22 allows us to generate Cs-transformulas by placing

two atoms of the same kind on each of the resulting orbits (R 1, R 2, R 3, and R 4). For example,
the substitution of R 1 shown in Fig. 22 generates an assembly of transformulas (59 and 60), as
shown in Fig. 23. The resulting transformulas (59 and 60) are identical with each other when the
numbering is disregarded so that the assembly of 59 and 60 indicates the occurrence of a single
Cs-molecule (41) of this type, which has already been studied in Fig. 18. In other words, the
assembly of the two transformulas (59 and 60) characterizes the symmetry of a Cs-molecule.

The result shown in eq. 57 can be generalized to cover any regular representation G(/C1),
giving eq. 58. Hence, the subduction result corresponds to the USCI-CF cm

d (for an achiral G)
or bm

d (for a chiral G), where we place d = |Gi| and m = |G|/|Gi|. The USCI-CFs for D2d(/C1)
are listed in the subduction diagram (Fig. 19).

It should be pointed out that R 1 (or R 4) shown in Fig. 22 is closely related to the segmen-
tation pattern 20 shown in Fig. 8 and that R 2 (or R 3) shown in Fig. 22 is closely related to the
segmentation pattern 21 shown in Fig. 8. This close relationship has been discussed in general
in Chapter 7 of Fujita’s book [12].

7.2 Subduction of CRs
As an example of the subduction of CRs, let us examine the CR D2d(/Cs) diagrammatically.
The transformulas listed in Fig. 9 correspond to the eight symmetry operations of D2d (eq. 1).
In order to restrict the original D2d-symmetry into Cs = {I,σd(1)} (eq. 7), we select 20 and 25,
as shown in Fig. 24. This subduction is designated by the symbol D2d(/Cs) ↓ Cs, if we take
account of the orbit A = {A1,A2,A3,A4}.

By the inspection of 20 and 25, the four-membered orbit A is found to be divided into three
orbits, i.e., two one-membered orbits (Aα = {A1} and Aβ = {A3}) and one two-membered
orbit (Aγ = {A2,A4}). This process corresponds to the selection of I ∼ (1)(2)(3)(4) (eq. 23)
and σd(1) ∼ (1)(2 4)(4) (eq. 27), when we keep in mind the concrete form of D2d(/Cs) (eqs.
23–30).

Because the local symmetry of the object A1 in Aα (or A3 in Aβ) is determined to be Cs
(Fig. 24), the orbit Aα (or Aβ) is governed by the CR Cs(/Cs). The orbit Aγ is determined to
be governed by the CR Cs(/C1), since the local symmetry is found to be C1. These results can
be summarized by the following equation:

D2d(/Cs) ↓ Cs = 2Cs(/Cs)+Cs(/C1) (59)
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Figure 24: An assembly of two transformulas for the subduction D2d(/Cs) ↓ Cs = 2Cs(/Cs) +
Cs(/C1). Thereby, the four-membered orbit A is divided into two one-membered orbits (i.e.,
Aα = {A1} and Aβ = {A3}) and one two-membered orbit (i.e., Aγ = {A2,A4}).
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Figure 25: An assembly of two transformulas for an allene derivative generated by the subduc-
tion D2d(/Cs) ↓ Cs = 2Cs(/Cs) + Cs(/C1). Thereby, the four-membered orbit A is divided into
two one-membered orbits (i.e., Aα = {A1} and Aβ = {A3}) and one two-membered orbit (i.e.,
Aγ = {A2,A4}).

The subduction process shown in Fig. 24 allows us to generate Cs-transformulas. For ex-
ample, the substitution of A1 shown in Fig. 25 generates 61 and 62, as shown in Fig. 23. The
resulting transformulas (61 and 62) are identical with each other when the numbering is dis-
regarded so that they indicate the occurrence of a single Cs-molecule (47 or 57) of this type,
which has already been studied in Figs. 20 and 21. In other words, the assembly of the two
transformulas (61 and 62) represents a Cs-molecule.

From the eight transformulas listed in Fig. 9, the transformulas corresponding to each of the
subgroups (eqs. 1 to 8) are selected to give the counterpart of Fig. 24 (for Cs). By the inspection
of the transformulas appearing in the counterpart transformulas for the subgroup, we can find
the mode of division of the original D2d(/Cs)-orbit. Thereby, the corresponding subduction is
calculated in a similar way to obtain eq. 59. Thereby, we obtain the following subductions of
CRs:

Subduction Result USCI-CF USCI Mark
D2d(/Cs) ↓ D2d = D2d(/Cs) a4 s4 0 (60)
D2d(/Cs) ↓ D2 = D2(/C1) b4 s4 0 (61)

D2d(/Cs) ↓ C2v = C2v(/Cs)+C2v(/C′
s) a2

2 s2
2 0 (62)
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D2d(/Cs) ↓ S4 = S4(/C1) c4 s4 0 (63)
D2d(/Cs) ↓ Cs = 2Cs(/Cs)+Cs(/C1) a2

1c2 s2
1s2 2 (64)

D2d(/Cs) ↓ C2 = 2C2(/C1) b2
2 s2

2 0 (65)
D2d(/Cs) ↓ C′

2 = 2C′
2(/C1) b2

2 s2
2 0 (66)

D2d(/Cs) ↓ C1 = 4C1(/C1) b4
1 s4

1 4 (67)

The results shown in eqs. 60–67 correspond to the subduction diagram shown in Fig. 21, al-
though it contains USCI-CFs (and USCIs) only.

To obtain eq. 59 diagrammatically, Fig. 24 is used as a key, which is based on the concept
of segmentation-pattern superposition. Note that Fig. 24 is obtained from Fig. 9, which is in
turn regarded as the superposition of the transformula 20 (Fig. 8) onto Fig. 7. Similarly, in
order to obtain the counterparts of Fig. 24 for the subduction of other CRs, the transformula
20 (Fig. 8) for D2d(/Cs) ↓ Cs is replaced by 29 (Fig. 10) for D2d(/C′

2) ↓ Cs, 31 (Fig. 11)
for D2d(/C2) ↓ Cs, 32 (Fig. 12) for D2d(/C2v) ↓ Cs, 33 (Fig. 13) for D2d(/D2) ↓ Cs, and 34
(Fig. 14) for D2d(/S4) ↓ Cs. Thereby, respective segmentation-pattern superpositions give the
following results diagrammatically:

Subduction Result USCI-CF USCI Mark
D2d(/C′

2) ↓ Cs = 2Cs(/C1) c2
2 s2

2 0 (68)
D2d(/C2) ↓ Cs = 2Cs(/C1) c2

2 s2
2 0 (69)

D2d(/C2v) ↓ Cs = 2Cs(/Cs) a2
1 s2

1 2 (70)
D2d(/D2) ↓ Cs = Cs(/C1) c2 s2 0 (71)
D2d(/S4) ↓ Cs = Cs(/C1) c2 s2 0 (72)

Exercise 21. From the transformulas listed in Fig. 7, select transformulas corresponding to each
subgroup (G j, cf. eq. 9) to generate such an assembly as shown Fig. 22. Use a segmentation
pattern for a CR D2d(/Gi) (i.e., 29 (Fig. 10) for D2d(/C′

2), 31 (Fig. 11) for D2d(/C2), 32
(Fig. 12) for D2d(/C2v), 33 (Fig. 13) for D2d(/D2), or 34 (Fig. 14) for D2d(/S4)) in place
of 20 (Fig. 8) for D2d(/Cs). Superpose the segmentation pattern onto the assembly so as to
generate an segmented assembly (e.g., Fig. 24), which gives the subduction represented by the
D2d(/Gi) ↓ G j. For the results, see Table 8.

7.3 Tables for the USCI approach
7.3.1 Subduction Tables

The results obtained in the preceding subsection is summarized as a tabular form called a sub-
duction table, as shown in Table 8, where eqs. 60–67 appear in the D2d(/Cs)-row and eqs.
68–72 appear in the ↓ Cs-column. Similarly, subduction tables for other point groups can be
obtained.

It should be emphasized here that Table 8 has been diagrammatically obtained by follow-
ing the procedure described above. Subduction tables for representative point groups are also
obtained algebraically and collected in the Appendix of Fujita’s book [12].

7.3.2 USCI-CF Tables

The subduction data shown in eqs. 60–67 and eqs. 68–72 can be easily translated into the cor-
responding USCI-CFs, which are products of sphericity indices based on the criteria shown in
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Table 8: Subduction Table for D2d [12]

↓C1 ↓C2 ↓C′
2 ↓Cs ↓S4 ↓C2v ↓D2 ↓D2d

D2d(/C1) 8C1(/C1) 4C2(/C1) 4C′
2(/C1) 4Cs(/C1) 2S4(/C1) 2C2v(/C1) 2D2(/C1) D2d(/C1)

D2d(/C2)* 4C1(/C1) 4C2(/C2) 2C′
2(/C1) 2Cs(/C1) 2S4(/C2) 2C2v(/C2) 2D2(/C2) D2d(/C2)

D2d(/C′
2) 4C1(/C1) 2C2(/C1) C′

2(/C1) 2Cs(/C1) S4(/C1) C2v(/C1) D2(/C′
2) D2d(/C′

2)
+2C′

2(/C′
2) +D2(/C′′

2)
D2d(/Cs) 4C1(/C1) 2C2(/C1) 2C′

2(/C1) Cs(/C1) S4(/C1) C2v(/Cs) D2(/C1) D2d(/Cs)
+2Cs(/Cs) +C2v(/C′

s)
D2d(/S4)* 2C1(/C1) 2C2(/C2) C′

2(/C1) Cs(/C1) 2S4(/S4) C2v(/C2) D2(/C2) D2d(/S4)
D2d(/C2v) 2C1(/C1) 2C2(/C2) C′

2(/C1) 2Cs(/Cs) S4(/C2) 2C2v(/C2v) D2(/C2) D2d(/C2v)
D2d(/D2)* 2C1(/C1) 2C2(/C2) 2C′

2(/C′
2) Cs(/C1) S4(/C2) C2v(/C2) 2D2(/D2) D2d(/D2)

D2d(/D2d) C1(/C1) C2(/C2) C′
2(/C′

2) Cs(/Cs) S4(/S4) C2v(/C2v) D2(/D2) D2d(/D2d)
* Forbidden CR. See Chapter 7 of Fujita’s book [12].

Table 5. Obviously, the whole data collected in the subduction table (Table 8) can be converted
into USCI-CFs, which construct a USCI-CF table, as shown in Table 9.

Table 9: USCI-CF Table for D2d [12]

↓C1 ↓C2 ↓C′
2 ↓Cs ↓S4 ↓C2v ↓D2 ↓D2d

D2d(/C1) b8
1 b4

2 b4
2 c4

2 c2
4 c2

4 b2
4 c8

D2d(/C2) b4
1 b4

1 b2
2 c2

2 c2
2 c2

2 b2
2 c4

D2d(/C′
2) b4

1 b2
2 b2

1b2 c2
2 c4 c4 b2

2 c4

D2d(/Cs) b4
1 b2

2 b2
2 a2

1c2 c4 a2
2 b4 a4

D2d(/S4) b2
1 b2

1 b2 c2 a2
1 c2 b2 a2

D2d(/C2v) b2
1 b2

1 b2 a2
1 c2 a2

1 b2 a2

D2d(/D2) b2
1 b2

1 b2
1 c2 c2 c2 b2

1 c2

D2d(/D2d) b1 b1 b1 a1 a1 a1 b1 a1

∑s
i=1 m ji 1/8 1/8 1/4 1/4 1/4 0 0 0

It is worthy to remember that the USCI-CFs appearing in eqs. 60–67 (and in the D2d(/Cs)-
row of Table 9) have been already discussed in Fig. 3. This means that the USCI-CFs obtained
diagrammatically from Tables 3 and 4 are equivalent to the USCI-CFs obtained diagrammati-
cally from Figs. 9 and 24. In other words, the orbit of the four hydrogen atoms in 1 (Fig. 3) is
symmetrically equivalent to the orbit A = {A1,A2,A3,A4} in Fig. 9.

Such USCI-CF tables for representative point groups are also obtained algebraically and
collected in the Appendix of Fujita’s book [12].

7.3.3 USCI Tables

The USCI-CFs derived from the subduction data (eqs. 60–67 and eqs. 68–72) can be further
translated into the corresponding USCIs, where the sphericity indices of three kinds (ad , cd ,
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and bd) are replaced by a single dummy variable sd . Obviously, the whole data collected in
the USCI-CF table (Table 9) can be converted into USCIs, which construct the USCI table, as
shown in Table 10.

Table 10: USCI Table for D2d [12]

↓C1 ↓C2 ↓C′
2 ↓Cs ↓S4 ↓C2v ↓D2 ↓D2d

D2d(/C1) s8
1 s4

2 s4
2 s4

2 s2
4 s2

4 s2
4 s8

D2d(/C2) s4
1 s4

1 s2
2 s2

2 s2
2 s2

2 s2
2 s4

D2d(/C′
2) s4

1 s2
2 s2

1s2 s2
2 s4 s4 s2

2 s4

D2d(/Cs) s4
1 s2

2 s2
2 s2

1s2 s4 s2
2 s4 s4

D2d(/S4) s2
1 s2

1 s2 s2 s2
1 s2 s2 s2

D2d(/C2v) s2
1 s2

1 s2 s2
1 s2 s2

1 s2 s2

D2d(/D2) s2
1 s2

1 s2
1 s2 s2 s2 s2

1 s2

D2d(/D2d) s1 s1 s1 s1 s1 s1 s1 s1

∑s
i=1 m ji 1/8 1/8 1/4 1/4 1/4 0 0 0

Such USCI tables for representative point groups are also obtained algebraically and col-
lected in the Appendix of Fujita’s book [12].

7.3.4 Mark Tables

The concept of marks, which was originally proposed by Burnside in 1911 [35], has long been
forgotten even in mathematical fields, even though several pioneering works [36, 37] appeared
to describe applications of the concept. The USCI approach described in Fujita’s book [12]
has vitalized the concept of marks, which has been further combined with the concept of CRs.8

Thereby, the USCI approach has developed several new concepts, i.e., sphericities of CRs,
sphericity indices, subduction of CRs, USCIs, USCI-CFs, etc., which have been further used to
develop a new theoretical framework for discussing intramolecular stereochemistry, stereoiso-
merism (intermolecular stereochemistry), and chemical combinatorics.

As found in the preceding paragraph, in the original formulation of the USCI approach,
marks have been obtained by algebraic procedures and collected in the Appendix of Fujita’s
book [12].

Because a mark is the number of fixed elements (objects), such marks can be easily obtained
by starting from the data of USCI-CFs (or USCIs). That is to say, the mark is equal to the sum
of the powers of sphericity indices for one-membered orbits, i.e., a1 and b1 (or s1). For example,
the USCI-CFs data shown in eqs. 60–67 and eqs. 68–72 give the corresponding marks, as shown
in the end of each equation. Obviously, the whole data collected in the USCI-CF table (Table
9) or the USCI table (Table 10) can be converted into marks, which construct a mark table, as
shown in Table 11.

8One of the most essential points of the USCI approach is the explicit recognition of the fact that two or more
mark tables are nested to characterize group-subgroup relationships. This point has been discussed in terms of
subduced mark tables in Chapter 9 of Fujita’s book.
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Table 11: Mark Table for D2d [12]

C1 C2 C′
2 Cs S4 C2v D2 D2d

D2d(/C1) 8 0 0 0 0 0 0 0
D2d(/C2) 4 4 0 0 0 0 0 0
D2d(/C′

2) 4 0 2 0 0 0 0 0
D2d(/Cs) 4 0 0 2 0 0 0 0
D2d(/S4) 2 2 0 0 2 0 0 0

D2d(/C2v) 2 2 0 2 0 2 0 0
D2d(/D2) 2 2 2 0 0 0 2 0
D2d(/D2d) 1 1 1 1 1 1 1 1

7.3.5 Comparison between the Tables

As summarized in Tables 8–11, each orbit is characterized in different ways by the data gen-
erated during symmetry restriction into subgroups, i.e., its subduction data, its USCI-CFs, its
USCIs, and its marks. For example, the D2d(/Cs)-orbit is characterized by the subductions (eqs.
60–67), by the USCI-CFs ({b4

1,b
2
2,b

2
2,a

2
1c2,c4,a2

2,b4,a4}), by the USCIs ({s4
1,s

2
2,s

2
2,s

2
1s2,s4,

s2
2,s4,s4}), and by the marks ({4,0,0,2,0,0,0,0,0}), where these are aligned in an ascending

order of the orders of the subgroups (cf. the D2d(/Cs)-rows of Tables 8–10).
As found easily, subduction tables are more informative than USCI-CF tables because the

former can generate the latter but the reverse procedure is impossible without other information.
The data of global and local symmetries are lost during the process of converting the subduction
tables into the USCI-CF tables. The USCI-CF tables are, in turn, more informative than USCI
tables because the former can generate the latter but the reverse is impossible without other
information. The data of sphericities are lost during the process of converting the USCI-CF
tables into the USCI tables. Moreover, the USCI tables are, in turn, more informative than mark
tables because the former can generate the latter but the reverse is impossible without other
information.9

In the present diagrammatical USCI approach, necessary tables (i.e., subduction tables,
USCI-CF tables, USCI tables, and mark tables) are obtained diagrammatically without con-
sidering concrete forms of CRs. Thus, subduction tables are obtained by comparing a global
symmetry (G) with a local symmetry (H) during desymmetrization processes; USCI-CF tables
are obtained in terms of the criteria listed in Tables 1 and 2 or by extracting necessary data
from subduction tables; and mark tables are obtained by counting fixed objects or by extracting
necessary data from USCI-CF tables.

7.3.6 Mathematical vs. Diagrammatical Approach

In the original formulation of Fujita’s USCI approach [12], the mark tables of a group G and
its subgroup H are used to obtain subduction tables and USCI-CF tables, where concrete forms

9The other information necessary to reversely generate subduction data is concerned with the mark tables of
subgroups. The nested nature of these mark tables is a foundation of Fujita’s USCI approach (cf. Chapter 9 of
Fujita’s book [12]).
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of CRs are taken into consideration to count fixed objects. This mathematical feature would be
a reason to bring about ”an organic chemistry paradox”. However, the USCI approach has, in
fact, applied the resulting tables to diagrammatical studies on intra- and intermolecular stereo-
chemistries, although the details of the diagrammatical studies have not always been described
in Fujita’s book [12]. Hence, such diagrammatical data as omitted for the sake of compactness
of the book would be still valuable if they are systematized to support graduate students and
their teachers. Thus, the present diagrammatical approach is an explicit version of the diagram-
matical methodology that has been implicitly involved in the original algebraic USCI approach.

Although the diagrammatical USCI approach is sufficient and useful to chemical applica-
tions, the original algebraic USCI approach is necessary to more detailed discussions on stere-
ochemistry. Hence, the diagrammatical USCI approach should be correlated to the algebraic
USCI approach in a more explicit fashion. The next section is devoted to this task.

8 Diagrammatical Correspondence Between Segments and
Cosets

As discussed in Chapter 5 of Fujita’s book [12], the essence of the USCI approach can be stated:
“Each orbit is governed by a coset representation (CR)”. This statement will be confirmed dia-
grammatically in this section.

8.1 Diagrammatical Correspondence Between Positions of a Regular Body
and Symmetry Operations

Although the subject at issue has been described in a previous paper [38], it will be treated more
diagrammatically from a viewpoint of concurrent controls of CRs.

Let us first study the regular representation D2d(/C1) as an extreme case of CRs. The eight
positions of a regular body of D2d is related to the symmetry operations of D2d in one-to-one
correspondence:

R = { 1, 2, 3, 4, 5, 6, 7, 8 }
� � � � � � � �

D2d = { I, σd(1), S4, C2(1), C2(3), σd(2), S3
4, C2(2) }

(73)

For example, because the position 1 (↔ I) is moved to the position 5 by C2(3), the position 5
is regarded as corresponding to the symmetry operation C2(3). This procedure is repeated to
cover all of the symmetry operations of D2d (eq. 1). Thereby, the correspondence (eq. 73) is
diagrammatically represented by the transformula 63 shown in Fig. 26.10

By keeping the correspondence (eq. 73) in mind, we find that the operation of C2(3) onto the
transformula 63 gives another transformula 64. Because this operation is essentially equivalent
to the one onto 11 (Fig. 7), the same permutation as represented by eq. 15 is assigned to the
operation C2(3). Moreover, the correspondence represented by eq. 73 generates a permutation
of symmetry operations according to the multiplication of symmetry operations. Thereby, we
obtain the following correspondence:

10In general, the numbering of symmetry operations can be selected arbitrarily in eq. 73. In this case, how-
ever, it is determined in one-to-one fashion because the numbering of positions has already been fixed and the
correspondence I ↔ 1 is presumed.
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Figure 26: Diagrammatical correspondence between symmetry operations and the positions of
the regular body of D2d (63), generating the regular representation (D2d(/C1)).
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Figure 27: Diagrammatical correspondence between the set of cosets (D2d/Cs) and the set
the Cs-segments (A = {A1,A2,A3,A4}) in the regular body of D2d (71), generating the CR
D2d(/Cs). This diagram is generated by superposing Fig. 8 onto Fig. 26.
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C2(3) ∼
(

I σd(1) S4 C2(1) C2(3) σd(2) S3
4 C2(2)

C2(3) σd(2) S3
4 C2(2) I σd(1) S4 C2(1)

)

∼
(

1 2 3 4 5 6 7 8
5 6 7 8 1 2 3 4

)
= (1 5)(2 6)(3 7)(4 8) (74)

which is a permutation involved in D2d(/C1) defined mathematically [12]. Similarly, every
symmetry operations onto 63 generate the transformulas 63–70, which correspond to the per-
mutations listed in eqs. 14–21.

8.2 Diagrammatical Correspondence Between Segments of a Regular Body
and Cosets

The symmetry operations of D2d are categorized into cosets, which are generated by the coset
decomposition of D2d by a subgroup (e.g., Cs) as follows:

D2d = ICs +C2(3)Cs +C2(1)Cs +C2(2)Cs (75)

= {I,σd(1)}︸ ︷︷ ︸
M 1

+{C2(3),σd(2)}︸ ︷︷ ︸
M 3

+{C2(1),S4}︸ ︷︷ ︸
M 2

+{C2(2),S
3
4}︸ ︷︷ ︸

M 4

(76)

Let us regard these cosets as an ordered set:

D2d/Cs = {M 1,M 2,M 3,M 4} (77)

The ordered set D2d/Cs gives the CR D2d(/Cs) as a permutation representation. This is a
mathematical formulation which the USCI approach relies on [12].

The mathematical formulation of CRs can be correlated to the diagrammatical formulation
described above. Let us superpose the segmentation pattern shown in Fig. 8 onto Fig. 26. Then,
we can obtain Fig. 27, which is essentially equivalent to Fig. 9. By inspection of 71 in Fig. 27,
we have the following correspondence between the orbit of segments A and the set of cosets
D2d/Cs:

A = { A1, A2, A3, A4 }
{1,2} {3,4} {5,6} {7,8}
� � � �

{I,σd(1)} {S4,C2(1)} {C2(3),σd(2)} {S3
4,C2(2)}

D2d/Cs = { M 1, M 2, M 3, M 4 }

(78)

The operation of C2(3) onto the transformula 71 gives another transformula 72 by taking
account of the correspondence (eq. 78). Because this operation is essentially equivalent to the
one onto 20 (Fig. 9), the same permutation as represented by eq. 24 is assigned to the operation
C2(3). Moreover, the correspondence represented by eq. 78 generates a permutation of the set
of cosets (D2d/Cs). Thereby, we obtain the following correspondence:

C2(3) ∼
(

A1 A2 A3 A4
A3 A4 A1 A2

)

∼
(

M 1 M 2 M 3 M 4
M 3 M 4 M 1 M 2

)

∼
(

1 2 3 4
3 4 1 2

)
= (1 3)(2 4), (79)
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which is a permutation involved in D2d(/Cs) defined mathematically [12]. Similarly, every
symmetry operations onto 71 generate the transformulas 71–78, which correspond to the per-
mutations listed in eqs. 23–30.

The importance of eqs. 78 and 79 cannot be overstated although it has a simple form. Thus,
the orbit A (the orbit of segments) corresponds to the orbit D2d/Cs (the orbit of cosets) in
one-to-one fashion so that both the orbits of different kinds are concurrently governed by the
CR D2d(/Cs). This feature has been discussed in general and mathematically in Chapter 7 of
Fujita’s book (especially see Fig. 7.1) [12]. Because eq. 79 is accompanied by a diagrammatical
expression (Fig. 27), the correspondence provides us with versatile tools for comprehending
intramolecular stereochemistry, i.e., the tools developed by the USCI approach [12].

The procedure described above for the superposition of Fig. 8 onto Fig. 26 (for Cs-segments)
can be generally applied to the other modes of segmentation. In place of Fig. 8, we superpose
Fig. 10 (for C′

2-segments), Fig. 11 (for C2-segments), Fig. 12 (for C2v-segments), Fig. 13 (for
D2-segments), or Fig. 14 (for S4-segments) onto Fig. 26 so as to obtain the corresponding
diagrammatical expression similar to Fig. 27. The exercises concerning the other modes of
segmentation challenge the reader to comprehend the importance of the concurrent features of
CRs.

8.3 Subduction of CRs and Double Cosets
The relationship between subduction of coset representations and double cosets has been dis-
cussed in general [39]. When the group G is decomposed into the following double coset
decomposition:

G = G jg′1Gi +G jg′2Gi + · · ·G jg′r′Gi, (80)

where the transversal is placed as follows:

ϒ = {g′1,g
′
2, . . . ,g

′
r′} (81)

Then, Theorem 2 of Ref. [39] teaches us as follows:

G(/Gi) ↓ G j = ∑
g∈ϒ

G j(/gGig−1 ∩G j) (82)

Note that gGig−1 which is conjugate to Gi is the stabilizer of the coset gGi. The integer
|G j|/|gGig−1 ∩G j| derived from the right-hand side of eq. 82 represents the number of cosets
in the double coset G jgGi (g ∈ ϒ). This means that several cosets gGi are fused under the
action of G j into a double coset to satisfy eq. 82. This process of fusion can be modelled by the
concept of doubly-colored graphs, as shown in a previous paper [31].

This process of fusion can be alternatively explained by the superposition of the segmenta-
tion pattern described above. For example, by selecting 63 and 67 according to the subgroup
Cs, Fig. 28 is obtained to represent the subduction D2d(/C1) ↓ Cs diagrammatically. The com-
parison between 63 and 67 shows that this subduction divides the eight positions into four
two-membered orbits, i.e., {1,2}, {3,8}, {4,7}, and {5,6}. By inspection of 63 or 67, these
sets correspond to the following sets of (left) cosets: {I,σd(1)} {S4,C2(2)} {C2(1),S3

4}, and
{C2(3),σd(2)}.

The symmetry operations of D2d are categorized into (right) cosets, which are generated
by the (right) coset decomposition of D2d by a subgroup (e.g., Cs). Strictly speaking, the
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Figure 28: An Assembly of transformulas for representing the subduction D2d(/C1) ↓ Cs =
4Cs(/C1).

subduction is concerned with a double coset decomposition as follows:11

D2d = CsIC1 +CsC2(2)C1 +CsC2(1)C1 +CsC2(3)C1

= {I,σd(1)}︸ ︷︷ ︸
{1,2}

+{S4,C2(2)}︸ ︷︷ ︸
{3,8}

+{C2(1),S
3
4}︸ ︷︷ ︸

{4,7}

+{C2(3),σd(2)}︸ ︷︷ ︸
{5,6}

(83)

Because of gC1g−1 ∩Cs = C1, eq. 82 for this case is obtained as follows:

D2d(/C1) ↓ Cs = 4Cs(/C1), (84)

which is a special case of eq. 58, although the derivation method of this equation is different
from that of eq. 58.

By selecting 71 and 75 according to the subgroup Cs, Fig. 29 is obtained to represent the
subduction D2d(/Cs) ↓ Cs diagrammatically. This diagram is essentially equivalent to Fig. 24
except the correspondence between the positions and the symmetry operations of D2d . The
comparison between 71 and 75 shows that this subduction divides the set of segments (A =
{A1,A2,A3,A4}) into three orbits, i.e., {A1}, {A2,A4}, and {A3}. By inspection of 71 or 75,
these sets correspond to the following sets: {I,σd(1)} (stabilizer: Cs),

{{S4,C2(1)},{S3
4,C2(2)}

}
(stabilizer: C−1

2(2)CsC2(2) = C′
s), and {C2(3),σd(2)} (stabilizer: C−1

2(3)CsC2(3) = Cs). Following the
general treatment described in [39], the resulting sets correspond to the double coset decompo-
sition represented by the following equation:

D2d = CsICs +CsC2(1)Cs +CsC2(3)Cs

= {I,σd(1)}︸ ︷︷ ︸
{1,2}

+
{{C2(1),S4},{S3

4,C2(2)}
}

︸ ︷︷ ︸
{{3,4},{7,8}}

+{C2(3),σd(2)}︸ ︷︷ ︸
{5,6}

(85)

Because the corresponding stabilizers are calculated to be Cs and C′
s as shown above, the local

symmetries appearing in eq. 82 are determined to be Cs ∩Cs = Cs and C′
s ∩Cs = C1. Hence,

eq. 82 for this case is obtained as follows:

D2d(/Cs) ↓ Cs = 2Cs(/Cs)+Cs(/C1) (86)

This is identical with eq. 59, which is obtained by the subduction of CRs.
11By inspection of a double coset G jgGi contained in eq. 82, one can find that a (left) coset gGi is concerned

with Gi-segments. On the other hand, G j is concerned with the precess of subduction (e.g., Cs of eq. 83) as well
as with the process of constructing assemblies of transfomulas (see Part 2). According to this methodology, each
transformula of Fig. 26 corresponds to each of the (left) cosets represented by D2d = IC1 +C2(3)C1 + · · ·+S4C1.
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Figure 29: An assembly of transformulas for representing the subduction D2d(/Cs) ↓ Cs =
2Cs(/Cs)+Cs(/C1).

9 Conclusions
The versatility of Fujita’s USCI approach (S. Fujita, “Symmetry and Combinatorial Enumer-
ation in Chemistry”, Springer-Verlag, 1991) is demonstrated diagrammatically on the basis of
orbits as sets of symmetry-equivalent objects. By emphasizing the concurrent appearance and
desymmetrization of various orbits, the following items are studied diagrammatically:

1. Any orbits are shown to be controlled by three kinds of sphericity indices (ad , cd , and bd)
correlated to coset representations (CRs).

2. Derivation of molecules of given symmetries is discussed in terms of USCI-CFs (unit
subduced cycle indices with chirality fittingness), which are obtained diagrammatically
as products of sphericity indices.

3. The concurrent behaviors of orbits are explained by using a regular body, the positions of
which are segmented in terms of segmentation patterns so as to give segmented regular
bodies.

4. Such segments are studied as models of ligands or proligands so that segmented regular
bodies can be regarded as models of three-dimensional molecules (stereoisomers).

5. The segmented regular bodies are used to generate CRs and to derive subductions of CRs
diagrammatically.

6. The generality of the diagrammatical procedure is confirmed to generate the subduction
table, the USCI-CF table, the USCI table, and the mark table of D2d-point group.

7. Diagrammatical correspondence between segments and cosets are examined in detail so
that the relationship between subduction of CRs and double Cosets is clearly demon-
strated.

It is concluded that any symmetrical properties appear in regular bodies. The present paper has
demonstrated an explicit and diagrammatical way of revealing stereochemical information con-
cealed in regular bodies through the concepts of coset representations and sphericities. Thereby,
Fujita’s USCI approach has been provided with succinct but strict foundations for comprehend-
ing intramolecular stereochemistry diagrammatically.
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