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Abstract

A proof for the existence of five stereogenicity types, which has once been demon-
strated intuitively by means of stereoisograms, is mathematically given on the basis
of the five factor groups derived from RS-stereoisomeric groups. These factor groups
are proved to correspond to five types of subgroups appearing in RS-stereoisomeric
groups. Thereby, the relationship between the concept of chirality and the concept
of stereogenicity is clarified after the latter concept is replaced by a more spec-
ified concept, i.e., RS-stereogenicity. Moreover, the concepts of holantimers and
RS-diastereomers gain a sound mathematical basis.

1 Introduction

The concept of stereogenicity has been frequently confused with the concept of chirality.
For example, the CIP (Cahn-Ingold-Prelog) system of stereochemical nomenclature has



originally proposed to specify the chirality of molecules [1], but later revised to specify the
stereogenicity [2]. Although there appeared a convincing discussion so as to differentiate
the stereogenicity from the chirality [3], the difference has not been fully demonstrated
even in standard textbooks on stereochemistry [4, 5].

We discussed chirality and prochirality both theoretically [6] and intuitively [7] so
that various concepts obtained by these discussions were applied to isomer enumerations
and classification of symmetries [8]. Recently, we discussed chirality and stereogenicity
in terms of observance/violation of chirality fittingness [9] and in terms of stereoisomeric
groups [10]. Although these results revealed several points concerned with the difference
between stereogenicity and chirality, a more detailed investigation on a common stand-
point was desirable so that it enabled us to discuss both stereogenicity and chirality.

For this purpose, the symmetries of molecules of ligancy 4 have been studied theo-
retically or intuitively in previous articles for tetrahedral molecules [11, 12], in Part 1 of
this series for allene molecules [13], and in Part 2 for square-planar complexes [14], where
the modes of inclusion for relevant groups (i.e., point groups, RS-stereoisomeric groups,
stereoisomeric groups, and isoskeletal groups) have been clarified to be altered variously
according to the molecular symmetries. Through these studies, the importance of RS-
stereoisomeric groups has been emphasized as a key for discussing both stereogenicity and
chirality. In particular, the RS-stereoisomeric groups have been used to specify five stere-
ogenicity types through the concepts of holantimers and stereoisograms [12]. However,
the usage has limited within intuitive discussion on molecules of ligancy 4.

As clarified in the previous paragraphs, the purpose of the present article to investigate
RS-stereoisomeric groups more generally in terms of abstract group theory, where the
existence of only five types of subgroups in each RS-stereoisomeric group will be proved
in general so as to correspond to the existence of five stereogenicity types. Thereby, the
concepts of holantimers and stereoisograms [12] will gain a sound theoretical basis to be
applied to molecules other than those of ligancy 4.

2 RS-Stereoisomeric Groups

For the sake of convenience, the present section is devoted to a brief restatement on the
definition of RS-Stereoisomeric groups. In this paper, the concepts of proligands and
promolecules are used as defined in a previous article [15].

2.1 Definitions

Consider n positions of a given skeleton, which are governed by the coset representation
G(/Gi) of a point group G, where the group Gi is a subgroup of G and the degree of the
coset representation is calculated to be n = |G|/|Gi| [6, 8]. The n positions accommodate
n (pro)ligands selected from a set of chiral and achiral (pro)ligands so as to generate a
(pro)molecule of the point group H (⊂ G). When Gi runs over all of the subgroups
(up to conjugate subgroups) through the subscript i, all the coset representations of the
point group G can be examined exhaustively. In general cases in which n positions are
governed by a sum of coset representations

∑
i αiG(/Gi) (αi: the multiplicity of G(/Gi)),

each G(/Gi) can be considered separately without losing generality.
The coset representation G(/Gi) is regarded as a permutation group GCσ, where a
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permutation corresponding to an improper rotation (rotoreflection) is designated by a
symbol with an overbar in order to represent the inversion of ligand chirality.

Def. 1 Three types of groups, i.e., achiral/chiral groups (point groups); ascleral/scleral
groups (inversion groups); and RS-astereogenic/RS-stereogenic groups (RS-permutation
groups), are defined on the basis of a point group G. Then, RS-stereoisomeric groups are
defined by combining these three types of groups.

Achiral/chiral groups (point groups) When the point G is an achiral point group,
the group GCσ is obtained in terms of coset representations of G as follows:

GCσ = GC + σGC , (1)

where the permutation group GC corresponds to the maximum chiral subgroup of G
and σ represents a permutation corresponding to a rotoreflection. Since the group
GCσ is isomorphic to the point group G, it is also called point group for the sake of
simplicity. As a subgroup of the point group G is classified into a chiral group or
an achiral group, a subgroup of the group GCσ is classified into a chiral group or an
achiral group. Such a chiral subgroup is a subgroup of the maximum chiral subgroup
GC . Note that each operation of the coset σGC represented by a permutation with
an overbar provides a reflection of the skeleton as well as the reflections of ligands.
The coset σGC corresponds to a set of enantiomers. The representative σ of the
coset σGC can be selected according to the purpose of discussions.

Ascleral/scleral groups (inversion groups) Let the symbol Ĩ represent an operation
which provides the reflection of ligands, but does not provide the reflection of the
skeleton. Thereby, another group G

CĨ
called inversion group is obtained as follows:

G
CĨ

= GC + ĨGC . (2)

A subgroup of the inversion group is classified into a scleral group or an ascleral
group. A scleral subgroup is a subgroup of the maximum scleral group, which is
identical with the chiral group GC . An ascleral subgroup contains at least one
element of ĨGC .

The coset ĨGC corresponds to a set of holantimers [12]. It should be noted that the
element Ĩ is recognized as a definite element. If the identity element I is represented
by the permutation (1)(2) · · · (n), the element Ĩ is represented by the permutation
(1)(2) · · · (n), where each number with an overbar represents a 1-cycle with the
reflection of a ligand.

RS-Astereogenic/RS-stereogenic groups (RS-permutation groups) Consider a
permutation σ̃, which satisfies σ̃ = Ĩσ = σĨ. The operation σ̃ is represented by the
same permutation as σ, which in turn has no overbar because it does not provide
the reflection of ligands. Thereby, another group called an RS-permutation group
is obtained as follows:

GCσ̃ = GC + σ̃GC (3)

The group GCσ̃ is isomorphic to the point group G, so long as the reflection of
ligand chirality is not taken into consideration. A subgroup of the RS-permutation

- 41 -



2

1
3

4

H

H

H

H

1

≡ C C C
��

��

H3

H2

��

1H

4H

2

⇐= (View)

Figure 1: Convention for drawing allene derivatives

group is classified into an RS-stereogenic group or an RS-astereogenic group. An
RS-stereogenic subgroup is a subgroup of the maximum RS-stereogenic group that
is identical with a chiral group GC . An RS-astereogenic subgroup contains at least
one element of σ̃GC . The coset σ̃GC corresponds to a set of RS-diastereomers.

RS-Stereoisomeric groups By combining eqs. 1, 2, and 3, a supergroup G
Cσσ̃Ĩ

is ob-

tained:
G

Cσσ̃Ĩ
= GC + σGC + σ̃GC + ĨGC , (4)

which represents a coset decomposition. This group is called an RS-stereoisomeric
group.

It should be noted that the normal subgroup GC is a chiral group, a scleral group,
and an RS-stereogenic group at the same time, as found in eqs. 1, 2, and 3. Because
GCσ represented by eq. 1 is one of the largest subgroups of G

Cσσ̃Ĩ
(eq. 4), the former

is called the maximum point group of the latter. Because G
CĨ

represented by eq. 2 is
another one of the largest subgroups of G

Cσσ̃Ĩ
(eq. 4), the former is called the maximum

inversion group of the latter. Because GCσ̃ represented by eq. 3 is a further one of the
largest subgroups of G

Cσσ̃Ĩ
(eq. 4), the former is called the maximum RS-permutation

group of the latter.
As for the elements σ (eq. 1) and Ĩ (eq. 2), there are two cases, i.e., σ �= Ĩ and σ = Ĩ.

If we place σ = Ĩ (∃σ ∈ σGC), the group GCσ coincides with the group G
CĨ

. In this

paper, we focus our attention on the case of σ �= Ĩ (∀σ ∈ σGC) as a more general case
than the case of σ = Ĩ (∃σ ∈ σGC).

Example 1: Throughout the present paper, an allene skeleton of D2d is taken as an
example (Fig. 1). The four positions of the allene skeleton are governed by the coset
representation D2d(/Cs), the degree of which is calculated to be |D2d|/|Cs| = 8/2 = 4.

As found in Fig. 2, we place GCσ = D2d(/Cs) and σ = σd(1) = (1)(2 3)(4). Note that
we take account of the coset representation D2d(/Cs) in place of the D2d-point group itself.
The RS-permutation group GCσ̃ for this case is represented by D2σ̃, which is isomorphic

with S
[4]
7 , i.e., a subgroup of the symmetric group of degree 4 (S[4]). The inversion group

G
CĨ

for this case is the combination of the diagonal parts appearing in Fig. 2. This group
is designated by the symbol D

2Ĩ
as follows:

D
2Ĩ

= {(1)(2)(3)(4), (1 4)(2 3), (1 2)(3 4), (1 3)(2 4);

(1)(2)(3)(4), (1 4)(2 3), (1 2)(3 4), (1 3)(2 4)} (5)
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D2σ̃ (= S
[4]
9 )

S
[4]
7 (1)(2 3)(4)S

[4]
7

I ∼ (1)(2)(3)(4) (1)(2 3)(4)

C2(3) ∼ (1 4)(2 3) (1 4)(2)(3)
D2




C2(1) ∼ (1 2)(3 4) (1 2 4 3)

C2(2) ∼ (1 3)(2 4) (1 3 4 2)

σd(1) ∼ (1)(2 3)(4) (1)(2)(3)(4)

σd(2) ∼ (1 4)(2)(3) (1 4)(2 3)
D2σd(1)




S4 ∼ (1 2 4 3) (1 2)(3 4)

S3
4 ∼ (1 3 4 2) (1 3)(2 4)

point group: D2d(/Cs)

RS-stereoisomeric group: D
2dσ̃Ĩ

(= S
[4]
9 × {I, σ})

Figure 2: RS-Stereoisomeric Group and Its Subgroups for characterizing an allene skele-
ton.

Finally, the RS-stereoisomeric group G
Cσσ̃Ĩ

for this case can be constructed so as to be

designated by the symbol D
2dσ̃Ĩ

, as shown in Fig. 2.

2.2 Homomer Sets

The n positions of a G
Cσσ̃Ĩ

-skeleton generate a set of skeletons on the action of permuta-

tions of the G
Cσσ̃Ĩ

group. Then, the n positions of each permuted skeleton accommodate

n ligands or proligands according to a function f : f(1), f(2), . . . , f(n) so as to a set of
RS-stereoisomers.

Theorem 1 The group GC is a normal subgroup of G
Cσσ̃Ĩ

.

Proof: Because the group GC is the maximum chiral group of the achiral point group
GCσ (= GC + σGC), the group GC is a normal subgroup of the latter. Hence, we obtain
gGCg−1 = GC for g (∈ GC) and for g (∈ σGC). Because the group GCσ̃ (= GC + σ̃GC)
is isomorphic to GCσ, the group GC is a normal subgroup of GCσ̃. Hence, we obtain
gGCg−1 = GC for g (∈ σ̃GC). Let be g̃ = Ĩg (∈ ĨG) for g (∈ GC). Then, we have
g̃GC g̃−1 = ĨgGCg−1Ĩ−1 = ĨGC Ĩ−1 = GC Ĩ Ĩ−1 = GC , where we use ĨGC = GC Ĩ.
According to eq. 4, we can summarize the results as follows: gGCg−1 = GC for g (∈
G

Cσσ̃Ĩ
).

Theorem 2 Each of the cosets appearing in the right-hand side of eq. 4 represents a set
of homomers.
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Proof: Since the group GC is a normal subgroup of G
Cσσ̃Ĩ

, the GC is a stabilizer of each

coset appearing in eq. 4, i.e., GC(= GCI), σGC , σ̃GC , or ĨGC . This means that each of
the four cosets appearing in eq. 4 corresponds to a homomer set which contains homomers
generated by the action of the elements of the coset.

Def. 2 A set of homomers that corresponds to the coset GC(= GCI) is called the original
(reference) molecule. A set of homomers that corresponds to the coset σGC is defined as
its enantiomer; a set of homomers that corresponds to the coset σ̃GC is defined as its
RS-diastereomer; and a set of homomers that corresponds to the coset ĨGC is defined as
its holantimer.

Practically speaking, anyone molecule can be selected as a representative from each
set of homomers. Then, it represents the original molecule, the enantiomer, the RS-
diastereomer, or the holantimer according to Def. 2.

In terms of Defs. 1 and 2, an achiral molecule is regarded as being self-enantiomeric;
an RS-astereogenic molecule is regarded as being self-RS-diastereomeric; and an ascleral
molecule is regarded as being self-holantimeric.

Example 2: Suppose that the four positions of an allene skeleton (Fig. 1) are permuted
on the action of the RS-stereoisomeric group D

2dσ̃Ĩ
(Fig. 2). Then, the function, f(1) =

A, f(2) = B, f(3) = C, and f(4) = p, is applied to the resulting numbered skeletons so
that sixteen molecules are generated, as shown in Fig. 3.
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Figure 3: Homomer Sets for ABCp under the RS-stereoisomeric group G
Cσσ̃Ĩ

.

As found easily, (1) molecules 3a to 3d appearing the upper-left part of Fig. 3 are
homomeric so as to give a homomer set that is assigned to the original molecule. This
part corresponds to the coset D2. (2) Molecules 4a to 4d appearing the upper-right part
of Fig. 3 are homomeric so as to a homomer set that is assigned to the RS-diastereomeric
molecule. This part corresponds to the coset σ̃d(1)D2. (3) Molecules 3a to 3d appearing
the bottom-left part of Fig. 3 are homomeric so as to give a homomer set that is assigned
to the enantiomeric molecule. This part corresponds to the coset σd(1)D2. (4) Molecules
4a to 4d appearing the bottom-left part of Fig. 3 are homomeric so as to give a homomer
set that is assigned to the enantiomeric molecule. This part corresponds to the coset ĨD2.
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The four cosets correspond to different molecules. The homomer set concerning 3a
corresponds to the coset D2. This means that 3a is chiral, RS-stereogenic, and scleral.

2.3 Stereoisograms of Five Types

Since stereoisograms of five types have been described in Part I [13], a minimum set of
relevant items is described here. Let us select the first molecule as a representative from
each part of Fig. 3: the original molecule, its RS-diastereomer, its enantiomer, and its
holantimer, where a function, f(1) = A, f(2) = B, f(3) = C, and f(4) = p, is applied
according to the numbering shown in Fig. 3. Thereby, we can construct a diagram, which
is shown as Type III in Fig. 4. This diagram is called stereoisogram.

The other stereoisograms shown in Fig. 4 are obtained similarly by using the following
functions: f(1) = A, f(2) = B, f(3) = C, and f(4) = D for Type I; f(1) = p, f(2) = A,
f(3) = A, and f(4) = p for Type II; f(1) = B, f(2) = A, f(3) = A, and f(4) = B for
Type IV; and f(1) = p, f(2) = B, f(3) = A, and f(4) = p for Type V.

Each stereoisogram contains three distinct relationships: RS-diastereomeric (horizon-
tal double-headed arrows or equality symbols), enantiomeric (vertical double-headed ar-
rows or equality symbols), and holantimeric relationships (diagonal double-headed arrows
or equality symbols).

2.4 Existence of Five Types of Subgroups

2.4.1 Factor Groups

Equations 1, 2, and 3 show that GC is a normal subgroup of each of GCσ, GCσ̃, and G
CĨ

.
It follows that GC is a normal subgroup of G

Cσσ̃Ĩ
, as proved in Theorem 1. Moreover, we

can see GCσ = σGC for eq. 1, GC σ̃ = σ̃GC for eq. 2, and GC Ĩ = ĨGC for eq. 3. Hence,
the four cosets of eq. 4 construct a group of cosets:

F = G
Cσσ̃Ĩ

/GC = {GC , σGC , σ̃GC , ĨGC} (6)

This is a factor group of order 4. Each element (coset) of the factor group F is assigned to a
respective RS-stereoisomer as described above (Def. 2): i.e., the coset GC(= GCI) to the
original molecule; the coset σGC to its enantiomer; the coset σ̃GC to its RS-diastereomer;
and the coset ĨGC to its holantimer.

Theorem 3 The factor group F has five subgroups only as follows:

F1 = {GC} (7)

F2 = {GC , σ̃GC} (8)

F3 = {GC , ĨGC} (9)

F4 = {GC , σGC} (10)

F5 = F = G
Cσσ̃Ĩ

/GC = {GC , σGC , σ̃GC , ĨGC} (11)

Proof: It is easy to prove that each set listed above is a group by considering the factor
groups derived from eqs. 1, 2, 3, and 4. Any combination of three cosets appearing in
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Figure 4: Stereoisograms of five types for allene derivatives.
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eq. 6 does not construct a group. For example, consider F′ = {GC , σ̃GC , ĨGC}. Then we
have (σ̃GC)(ĨGC) = σ̃ĨGCGC = σGC �∈ F′. This means that the F′ is not so closed as

to construct a group.
Obviously, these subgroups correspond to the subgroups of G

Cσσ̃Ĩ
. Thus, we can

assign F1 to GC ; F2 to GCσ̃ (eq. 3); F3 to G
CĨ

(eq. 2); F4 to GCσ (eq. 1); and F5 to
G

Cσσ̃Ĩ
(eq. 4).

Theorem 4 Let HC be a subgroup of the GC . Then, according to the factor group F
shown in eq. 6, the group F′ defined by

F′ = H
Cσσ̃Ĩ

/HC = {HC , σHC , σ̃HC , ĨHC} (12)

is a factor group of order 4. Note that the representatives σ(∈ σGC) and σ̃(∈ σ̃GC) are
selected to satisfy σσ ∈ HC and σ̃σ̃ ∈ HC .

Proof: Presume that σσ �∈ HC (∀σ ∈ σGC). Since the possible number of different σ’s is
equal to |GC |, the possible number of σσ ( �∈ HC but ∈ GC) is also equal to |GC |. This
means that HC is a null set. The first presumption turns out false. Hence, there exists
at least one σ satisfying σσ ∈ HC . Once we have selected σ satisfying σσ ∈ HC , we can
select σ̃ satisfying σ̃ = Ĩσ. Hence, we have σ̃σ̃ = (Ĩσ)(Ĩσ) = Ĩ Ĩσσ = σσ ∈ HC . It should
be added that we can always obtain Ĩ Ĩ = I ∈ HC . This means that we are able to select
Ĩ as a representative of the coset ĨHC .

In agreement with Theorem 4, a set H
Cσσ̃Ĩ

is obtained as a group:

H
Cσσ̃Ĩ

= HC + σHC + σ̃HC + ĨHC , (13)

which is a subgroup of G
Cσσ̃Ĩ

. In a parallel fashion to Theorem 3, we arrive at the

following theorem:

Theorem 5 The factor group F′ has five subgroups only as follows:

F′
1 = {HC} (14)

F′
2 = {HC , σ̃HC} (15)

F′
3 = {HC , ĨHC} (16)

F′
4 = {HC , σHC} (17)

F′
5 = F′ = H

Cσσ̃Ĩ
/HC = {HC , σHC , σ̃HC , ĨHC}. (18)

2.4.2 Subgroups of RS-Stereoisomeric Groups

The results described in Theorems 4 and 5 can be translated to specify the group-subgroup
relationship between G

Cσσ̃Ĩ
(eq. 4) and H

Cσσ̃Ĩ
(eq. 13). Let HCσ be a subgroup of GCσ

and satisfy the following coset decompositions:

HCσ = HC + σHC , (19)

where we place σσ ∈ HC and the group HC is a subgroup of GC . Note that the σ of eq.
1 can be selected to be the same as the present representative σ.

Let us next construct H
CĨ

as follows:

H
CĨ

= HC + ĨHC (20)

Then, H
CĨ

is a subgroup of G
CĨ

, because we have Ĩ Ĩ = I ∈ HC and
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hh′ ∈ HC ĨHC = ĨHCHC = ĨHC and
h′h′ ∈ ĨHC ĨHC = Ĩ ĨHCHC = HC

for h ∈ HC and h′ ∈ ĨHC .
By using the σ of eq. 19 and placing σ̃ = Ĩσ = σĨ, a set HCσ̃ is constructed as follows:

HCσ̃ = HC + σ̃HC (21)

Then, the set HCσ̃ is a subgroup of GCσ̃, because we have

hh′ ∈ HC σ̃HC = HC ĨσHC = ĨHCHCσ = ĨHCσ = ĨσHC = σ̃HC and
h′h′ ∈ σ̃HC σ̃HC = σ̃σ̃HCHC = HC

for h ∈ HC and h′ ∈ σ̃HC . Note that σ̃σ̃ = ĨσĨσ = Ĩ Ĩσσ = σσ ∈ HC .
The combination of eqs. 19, 20, and 21 produces the set H

Cσσ̃Ĩ
represented by eq. 13.

Because we have

σσ̃ = σĨσ = Ĩσσ ∈ ĨHC ,
σĨ = σ̃ ∈ σ̃HC ,

σ̃Ĩ = σĨĨ = σ ∈ σHC ,

and so on, the set H
Cσσ̃Ĩ

is concluded to be a group. This group is a subgroup of the

RS-stereoisomeric group G
Cσσ̃Ĩ

and eq. 13 represents a coset decomposition.

Equations 19, 20, and 21 show that HC is a normal subgroup of each of HCσ, HCσ̃, and
H

CĨ
. It follows that HC is a normal subgroup of H

Cσσ̃Ĩ
(eq. 13), which is in agreement

with Theorems 4 and 5. Moreover, we can arrive at the following important theorem:

Theorem 6 There exist five types of subgroups in the H
Cσσ̃Ĩ

(eq. 13): HC assigned to

F′
1 of Theorem 5; HCσ̃ (eq. 21) assigned to F′

2; H
CĨ

(eq. 20) assigned to F′
3; HCσ (eq.

19) assigned to F′
4; and H

Cσσ̃Ĩ
(eq. 13) assigned to F′

5.

3 Symmetries of RS-Stereoisomers

3.1 Stereoisograms and RS-Stereoisomeric Groups

Suppose that the n-positions of a skeleton characterized by a point group GCσ (eq. 1)
accommodate a set of (pro)ligands to generate a derivative of HCσ-symmetry (∈ GCσ).
The derivative is also considered to belong to H

Cσσ̃Ĩ
(eq. 13), which is a subgroup of

G
Cσσ̃Ĩ

(eq. 4). Before we begin with a general treatment, we examine some examples of

allene derivatives.

Example 2a: The ABCp derivative of Example 2 (Fig. 3) is an example for stereoiso-
grams of Type III. On the other hand, this derivative belongs to C1, which is ascribed to F′

1

of Theorem 6. Note that the original molecule (3a) is different from its RS-diastereomer

(4a), from its enantiomer (3a), and from its holantimer (4a).

Example 3: Homomer sets for ABp2 under the RS-stereoisomeric group D
2dσ̃Ĩ

(a

special case of G
Cσσ̃Ĩ

) are shown in Fig. 5, where the function, f(1) = A, f(2) = p, f(3)

= p, and f(4) = B, is applied. Thereby, a stereoisogram of Type II can be obtained. See
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Figure 5: Homomer Sets for ABp2 under the RS-stereoisomeric group G
Cσσ̃Ĩ

.

eq. 3 and F2 (eq. 8) for Type II. The same conclusion can be obtained by considering the
subgroup C

sσ̃Ĩ
= {I, σd(1), σ̃d(1), Ĩ} as a special case of H

Cσσ̃Ĩ
(eq. 13). See eq. 21 and F′

2

(eq. 15) for Type II.
By the inspection of Fig. 5, the molecule 12e is identical with the original molecule

12a. In other words, the permutation (1)(2 3)(4) fixes the molecule 12a. It follows that
12a belongs to the group represented by

C1σ̃ = {I, σ̃d(1)} = {(1)(2)(3)(4), (1)(2 3)(4)}. (22)

This is a special case represented by HCσ̃ (eq. 21), where HC = C1 = {I}. The corre-
sponding factor group is represented by eq. 15, which shows F′

2 for Type II. It should be

noted that the point group of the molecule 12a is C1.
By examining the stereoisograms of Fig. 4 by virtue of the subgroups shown in Theorem

3 (eqs. 7 to 11) and Theorem 5 (eqs. 14 to 18), we obtain the following correspondence:
F1 or F′

1 to Type III; F2 or F′
2 to Type II; F3 or F′

3 to Type I; F4 or F′
4 to Type V; and

F5 or F′
5 to Type IV. Thus, we have proved the existence of five types of stereoisograms:

Theorem 7 There exist five types of stereoisograms only, as exemplified in Fig. 4,

Theorem 7 is summarized in Table 1 together with five types of factor groups, where
relevant subgroups are categorized in terms of chirality/achirality, RS-stereogenicity/RS-
astereogenicity, and sclerality/asclerality.

It should be noted that ascleral cases correspond to Types I and IV, as found in Table
1 (the symbol × in the “scleral” column). By the inspection of Fig. 4, the Types I and
IV contain achiral (pro)ligands only. If we focus our attention on the Types I and IV, we
can find by the data of Table 1 that chirality and RS-stereogenicity coincide with each
other. Thus, the traditional stereochemistry implicitly omits or pays subsidiary attention
to cases other than Type I and IV, although Table 1 teaches the further existence of
Types II, III, and V. The implicit omission is concluded to be a reason for the previous
confusion concerning chirality and stereogenicity [4, 5].

In previous discussions described in standard textbooks [4, 5], stereogenicity has been
recognized to connote chirality, as stereogenic centers etc. involve chirality centers etc.
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Table 1: Stereogenicity Types and Factor Group Types

stereogenicity factor group (sub)group properties of subgroups
type type type chiral RS-stereogenic scleral

I F3 or F′
3 G

CĨ
or H

CĨ
© © ×

II F2 or F′
2 GCσ̃ or HCσ̃ © × ©

III F1 or F′
1 GC or HC © © ©

IV F5 or F′
5 G

Cσσ̃Ĩ
or H

Cσσ̃Ĩ
× × ×

V F4 or F′
4 GCσ or HCσ × © ©

This holds true only if RS-stereogenic cases (Types I, III, and V) have been taken into
consideration and the other cases (Types II and IV) are disregarded. On the other hand,
Table 1 indicates that RS-stereogenicity and chirality are distinct from each other. Thus,
Type II indicates the presence of chiral but RS-astereogenic cases.

3.2 Minimum Subgroup for Type IV

If the σ and the σ̃ can be selected to satisfy σσ = I and σ̃σ̃ = I, the following relationships
are obtained:

σ̃σ = Ĩσσ = ĨI = Ĩ; σσ̃ = σĨσ = Ĩσσ = ĨI = Ĩ;
Ĩ σ̃ = Ĩ Ĩσ = σ; and σ̃Ĩ = σĨĨ = σ;

This means that the transversal appearing in eq. 4 constructs a group H0 as follows:

H0 = C
sσ̃Ĩ

= {I, σ, σ̃, Ĩ} (23)

Obviously, H0 is a subgroup of G
Cσσ̃Ĩ

. The subgroup H0 has only five subgroups repre-

sented by

H01 = C1 = {I} (24)

H02 = C1σ̃ = {I, σ̃} (25)

H03 = C
1Ĩ

= {I, Ĩ} (26)

H04 = Cs = {I, σ} (27)

H05 = H0 = C
sσ̃Ĩ

= {I, σ, σ̃, Ĩ} (28)

Example 4: Homomer sets for A2BC under the RS-stereoisomeric group D
2dσ̃Ĩ

(a

special case of G
Cσσ̃Ĩ

) are shown in Fig. 6, where the function, f(1) = B, f(2) = A, f(3)

= A, and f(4) = C, is applied. Thereby, a stereoisogram of Type IV can be obtained. See
eq. 4 and F5 (eq. 10) for Type IV. The same conclusion can be obtained by considering
the subgroup C

sσ̃Ĩ
(eq. 23), which is in turn regarded as a special case of H

Cσσ̃Ĩ
(eq. 13).

See also eq. 13 and F′
5 (eq. 18) for Type IV.

By the inspection of Fig. 6, the molecules 13e, 13i, and 13m are identical with the
original molecule 13a. In other words, the permutations, (1)(2 3)(4), (1)(2 3)(4), and
(1)(2)(3)(4), fix the molecule 13a invariant. It follows that 13a belongs to the group
C

sσ̃Ĩ
(eq. 23), which corresponds to Type IV. It should be noted that the point group of

the molecule 13a is Cs.
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Figure 6: Homomer Sets for A2BC under the RS-stereoisomeric group G
Cσσ̃Ĩ

.

4 Skeletons

If a reference molecule derived from a skeleton with at least one ligand pattern produces
its holantimer that is different from the reference molecule, the skeleton is capable of
generating molecules of Types I to V. Such a skeleton is called RS-distinguishable skeleton,
where RS-stereogenic molecules (Types I, III, and V) as well as RS-astereogenic molecules
(Types II and IV) can be generated. For example, the allene skeleton discussed as an
example belongs to this category of skeletons. According to the present approach, the
RS-stereoisomeric group G

Cσσ̃Ĩ
(eq. 4) contains three normal subgroups that are different

from each other, i.e., GCσ (eq. 1); G
CĨ

(eq. 2); and GCσ̃ (eq. 3). As for the elements σ

(eq. 1) and Ĩ (eq. 2), this case is realized by placing σ �= Ĩ (∀σ ∈ σGC).
On the other hand, if a skeleton generates a reference molecule and its holantimer

that always coincide with each other for any ligand pattern, the skeleton is capable of
generating molecules of Types II and IV but incapable of generating molecules of Type I,
III, and V. Such a skeleton is called RS-indistinguishable skeleton, where RS-astereogenic
molecules (Types II and IV) can be generated, while RS-stereogenic molecules (Types I,
III, and V) cannot be generated intrinsically. For example, an ethylene skeleton belongs
to this category of skeletons. As for the elements σ (eq. 1) and Ĩ (eq. 2), this case is
realized by placing σ = Ĩ (∃σ ∈ σGC). Thus, the point group GCσ (eq. 1) and the
inversion group G

CĨ
(eq. 2) coincide with each other. In other words, the corresponding

RS-stereoisomeric group G
Cσσ̃Ĩ

(eq. 4) becomes degenerate to produce the point group

GCσ (eq. 1).
In both of the two cases, RS-stereoisomeric groups are keys for comprehending the

hierarchy of groups that specifies the stereochemistry and stereoisomerism of molecules
derived from a given skeleton. Such a molecule belongs to an RS-stereoisomeric group
that is a subgroup of the RS-stereoisomeric group of the skeleton. The RS-stereoisomeric
group assigned to the molecule, which is classified into Type I, II, III, IV, or V, contains
the corresponding point group as a normal subgroup.
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5 Conclusion

The existence of five stereoisograms or of five stereogenicity types is proved generally
on the basis of the five factor groups derived from RS-stereoisomeric groups. Moreover,
the concepts of holantimers and RS-diastereomers, which have once been proposed in an
intuitive fashion, gain a sound mathematical basis. As a result, the concepts formulated
in the present series of papers (Parts 1 to 3) provide us with a succinct logical framework
for restructuring stereochemistry.
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