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Abstract 
A new n-dimensional vector space of the DNA sequences on the Galois field of the 64 codons 

(GF(64)) is proposed. In this vector space gene mutations can be considered linear 

transformations or translations of the wild type gene. In particular, the set of translations that 

preserve the chemical type of the third base position in the codon is a subgroup which 

describes the most frequent mutations observed in mutational variants of four genes: human 

phenylalanine hydroxylase (PAH), human beta globin (HBG), HIV-1 Protease (HIVP) and 

HIV-1 Reverse transcriptase (HIVRT). Furthermore, an inner pseudo-product defined 

between codons tends to have a positive value when the codons code to similar amino acids 

and a negative value when the codons code to amino acids with extreme hydrophobic 

properties. Consequently, it is found that the inner pseudo-product between the wild type and 

the mutant codons tends to have a positive value in the mutational variants of the genes: PAH, 

HBG, HIVP, HIVRT.  
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1. Introduction 
It was recently reported that two dual genetic code Boolean lattices –primal and dual- were 

obtained as the direct third power of the two dual Boolean lattices B(X) of the four DNA 

bases: C(X)=B(X)×B(X)×B(X) (Sánchez et al., 2004a and 2004b). The most elemental 

properties of the DNA bases and amino acids were used to establish the Boolean lattices B(X) 

which are isomorphic , respectively,  to ((Z2)2, ∨, ∧) and ((Z2)2, ∧, ∨), (Z2={0,1}). 

Consequently, the lattices C(X) are  isomorphic , respectively, to the dual Boolean lattices 

((Z2)6, ∨, ∧) and ((Z2)6, ∧, ∨).  

Here, we used the isomorphism ϕ: B(X)→(Z2)2 and the biological importance of base  

positions in the codons to state a partial order in the codon set and represent every codon as a 

binary sextuplet. The importance of the base position is suggested by the error frequency 

found in the codons. Errors on the third base are more frequent than on the first base, and, in 

turn, these are more frequent than errors on the second base (Woese, 1965; Friedman and 

Weinstein, 1964; Parker, 1989). These positions, however, are very conservative with respect 

to changes in polarity of the coded amino acids (Alf-Steinberger, 1969).  

The principal aim of this work is to show that a simple Galois field of the genetic code (Cg) 

can be defined on the DNA sequence space allowing us to describe the mutations pathways in 

the molecular evolution process through the use of the transformations F: (Cg)N→(Cg)N, 

defined on the Galois field of 64 elements (GF(64)).  

  

2. Theoretical Model 
 

Here, we start from Boolean lattices of the four DNA bases. It is possible to develop our 

theoretical model using both Boolean lattices, primal and dual, but as we will see later the 

primal Boolean lattice leads us to a most significant biological model. So, we will use the 

binary representation of the four DNA bases of this lattice: G↔00, A↔01, U↔10, C↔11. We 

have two reasons to use this representation: first, the complementary bases in the DNA 

molecule are in correspondence with complementary digits and second, this is not an arbitrary 

base codification, this is the result of an isomorphism between two Boolean lattices, ϕ: 

B(X)→((Z2)2, ∧, ∨), Z2 = {0. 1} (Sánchez et al., 2004a). In addition, to state a correspondence 

between the codon set and the elements of GF(64), the polynomial representation of the 

GF(64) will be used (see Appendix).  
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2.1. Nexus between the Galois Field Elements and the Set of Codons 
 

Next, the order of importance of the bases positions in the codons and the isomorphism ϕ: 

B(X)→(Z2)2 allow us to state a function Ψ: GF(64) → Cg, such as: 
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The bijective functions fk have the form: 

 

fk(ai(k)ai(k)+1) =Xk, 

 

where k=1, 2, 3 denote the codon base position, i(k)=2⋅k mod 6, ai(k), ai(k)+1∈{0,1} and Xk∈{G, 

U, A, C} (or Xk∈{C, A, U, G}). The functions fk are equal to the inverse ϕ--1 of function ϕ and 

state the correspondence, in the primal Boolean algebra of the four bases: 

 

00→G; 01→A; 10→U; 11→C 

 

It is not difficult to prove that the function Ψ is bijective, i.e. for every X1X2X3∈Cg there is 

a unique polynomial p(x)∈GF(64) and vice verse, such that: 

 

Ψ(p(x)) = X1X2X3 

 

Notice that the polynomial coefficients a5 and a4 of the terms with maximal degree, a5x5 

and a4x4 respectively, correspond to the base in the second codon position. Next, we found the 

coefficients which correspond to the first base, and finally those in the third codon position. 

That is, the degree of polynomial terms decreases from the most biologically important base 

to the less biologically important one. As a result the ordered codon set showed in Table 1 is 

obtained. Note that, in the table, for every codon its sequence of binary digits is the reverse of 

the binary digits sequence computed to the corresponding integer number. We have, for 

instance, 
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11→  001011→110100 (AGC) → 1+ x+ x3 

25→ 011001→ 100110 (AUU) →1 + x3+x4 

34→ 100010→ 010001 (GAA) → x + x5  

 

2.2. Vector Spaces on the Genetic Code Galois Field 
 

Now, by mean of the function Ψ we can define a product operation in the set of codons. Let 

Ψ-1 be the inverse function of Ψ then, for all pair of codons X1Y1Z1∈Cg and X2Y2Z2∈Cg, their 

product “⋅” will be: 

 

X1Y1Z1 ⋅ X2Y2Z2 = Ψ [Ψ-1(X1Y1Z1) Ψ-1(X2Y2Z2) mod g(x)]   

 

That is to say, the product between two codons is obtained from the product of their 

corresponding polynomials module g(x), where g(x) is an irreducible polynomial of six 

degree on the GF(2) (see Appendix). Since there are nine irreducible polynomials of six 

degrees, we have nine possible variants to choose the product between two codons. It is not 

difficult to prove that the set of codons Cg\{GGG}= C*
g with the operation product “⋅” is an 

Abelian group (C*
g, ⋅). Likewise, we define a sum operation making use the sum operation in 

GF (64). In this field the sum is carried out by means of the polynomial sum in the usual 

fashion with polynomial coefficients reduced module 2 (see Appendix). 

Then, for all pair of codons X1Y1Z1∈Cg and X2Y2Z2∈Cg, their sum “+” will be: 

 

X1Y1Z1 + X2Y2Z2= Ψ [Ψ-1(X1Y1Z1) + Ψ-1(X2Y2Z2) mod 2] 

 

As a result the set of codon (Cg, +) with operation “+” is an Abelian group and the set (Cg, 

+, ⋅) is a field isomorphic to GF(64). Actually, we have two duals Galois field of codons. 

After that, we can define the product of a codon XYZ∈Cg by the element αi∈GF(64). For all 

αi∈GF(64) and for all XYZ∈Cg, this operation will be defined as: 

 

αi (XYZ) = Ψ [αi Ψ -1(XYZ) mod 2]  
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Table 1. Primal ordered set of codons corresponding to the elements of GF(64). In the table is 
showed the bijection between the codon set and the binary sextuples of (Z2)6, which are also 
the coefficients of the polynomials in the GF(64) (see Appendix). It is also showed the 
corresponding integer number of every binary sextuple. 

G U A C 
No. GF(64) I II No. GF(64) I II No. GF(64) I II No. GF(64) I II 
0 000000 GGG G 16 000010 GUG V 32 000001 GAG E 48 000011 GCG A 
1 100000 GGU G 17 100010 GUU V 33 100001 GAU D 49 100011 GCU A 
2 010000 GGA G 18 010010 GUA V 34 010001 GAA E 50 010011 GCA A 
3 110000 GGC G 19 110010 GUC V 35 110001 GAC D 51 110011 GCC A 
4 001000 UGG W 20 001010 UUG L 36 001001 UAG - 52 001011 UCG S 
5 101000 UGU C 21 101010 UUU F 37 101001 UAU Y 53 101011 UCU S 
6 011000 UGA - 22 011010 UUA L 38 011001 UAA - 54 011011 UCA S 
7 111000 UGC C 23 111010 UUC F 39 111001 UAC Y 55 111011 UCC S 
8 000100 AGG R 24 000110 AUG M 40 000101 AAG K 56 000111 ACG T 
9 100100 AGU S 25 100110 AUU I 41 100101 AAU N 57 100111 ACU T 

10 010100 AGA R 26 010110 AUA I 42 010101 AAA K 58 010111 ACA T 
11 110100 AGC S 27 110110 AUC I 43 110101 AAC N 59 110111 ACC T 
12 001100 CGG R 28 001110 CUG L 44 001101 CAG Q 60 001111 CCG P 
13 101100 CGU R 29 101110 CUU L 45 101101 CAU H 61 101111 CCU P 
14 011100 CGA R 30 011110 CUA L 46 011101 CAA Q 62 011111 CCA P 
15 111100 CGC R 31 111110 CUC L 47 111101 CAC H 63 111111 CCC P 

I,  Codons. 
II, One letter symbols of amino acids.  
 

This operation is analogous to the multiplication rule of a vector by a scalar. So, (Cg, +, ⋅) 

can be considered a one-dimensional vector space on GF(64). The canonical base of this 

space is the codon GGU. We shall call this structure the genetic code vector space on GF(64). 

Such structure can be extended to the N-dimensional sequence space (S) consisting of the set 

of all 64N DNA sequences with N codons. Evidently, this set is isomorphic to the set of all N-

tuples (x1,…,xN) where xi∈Cg. Then, set S can be represented by all N-tuples (x1,…,xN)∈(Cg)N. 

As a result, the N-dimensional vector space of the DNA sequences on GF(64) will be the 

direct sum  

 

S = (Cg)N= Cg ⊕ Cg ⊕...⊕ Cg (N times) 

 

The sum and product in S are carried out by components (Redéi, 1967). That is, for all 

α∈GF(64) and for all s, s’∈S  we have: 

 

s + s’ =( s1, s2,…, sN) + (s1’, s2’,…, sN’) = (s1 + s1’, s2 + s2’,…, sN + sN’) 

- 7 -



 

α s = α ( s1, s2,…, sN) = (α s1, α s2,…, α sN) 

 

Next, it can proved that (S, +) is an Abelian group with the N-tuple se = (GGG, GGG,…, 

GGG) as its neutral element. The canonical base of this space is the set of vectors: 

 

e1=(GGU, GGG, … , GGG), e2=( GGG,GGU,…, GGG), . . . , eN=(GGG, GGG,..., GGU) 

 

As a result, every sequence s ∈S has the unique representation as: 

 

s = α1 e1 +α2 e1+…+αN eN  (αi∈GF(64)) 

 

It is usually said that the N-tuple (α1, α2,..., αN) is the coordinate representation of s in the 

canonical bases {ei∈Cg , i=1,2,…,N} of S. 

In the vector space Cg if we represented the codons as binary sextuplets then the “natural” 

distance between two codons X and Y is the Hamming distance (dH(X,Y)). This distance 

between two codons corresponds to the number of different digits between their binary 

representations. That is,  

 

 dH(CGU, AUC)= dH (110010, 011011) = 3 

 dH(AAG, UGA) = dH(010100, 100001) = 4 

 

Next, we shall define in Cg the digital root r(X1X2X3) of a codon X = X1X2X3 as the sum of 

digits in its binary representation. That is, for instance: 

 

r(AUG) = r(000110) = 2 

r(CAU) = r(101101) = 4 

 

As a result the Hamming distance between two codons X and Y will be: 

 

dH(X, Y) = r(X + Y) 

The digital root of one gene will be the binary digits sum of its binary representation. 
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2.3. Inner pseudo-product in Cg and in S 
 

In the Cg we shall define the inner pseudo-product 〈X, Y〉 of two codons X = X1X2X3 and 

Y=Y1Y2Y3 as: 

 

〈 X, Y 〉 = r( X • Y ) – dH(X, Y ) = r( X • Y ) – r(X + Y ) (1) 

 

It is not difficult to see that the inner pseudo-product 〈X, Y〉  has the following properties:  

 

1) 〈X, Y〉 = 〈Y, X〉 

2) 〈X, X〉 ≥ 0, for all X∈Cg, and 〈X, X〉 = 0 if, and only if, X=GGG. 

 

Property (1) follows due to both the operation product and the Hamming distance are 

commutative. Property 2 is due to 〈X, X〉 = r( X • X ) > 0, for all X ≠ GGG, X∈Cg. The inner 

pseudo-product 〈 g1, g2 〉 of two DNA sequence g1=(c11,…, c1n) and g2 = (c21,…, c2n)  will be 

defined as: 

 

〈 g1, g2 〉 = r(g1 • g2) – r(g1 + g2) (2) 

 

Since the digital root of a gene is the sum of digital roots of their coordinates we have: 

 

∑
=

=
n

i
ii ccgg

1
2121 ,,  (3) 

 

3. Results and Discussion 
 

As we see above the Galois field of codons is not unique. Actually, we have obtained nine 

isomorphic Galois fields, each one with the product operation defined from one of the nine 

irreducible polynomials. It is convenient, however, to choose a most biologically significant 

Galois field. 
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The most attractive irreducible polynomials are the primitive polynomials. If α0 is a root of 

a primitive polynomial then its powers α0
n (n = 1,…, 63) are the elements of the 

multiplicative group of GF(64), i.e. α0 is a group generator. Just six of the nine irreducible 

polynomials are primitives. A common root for all of them is the simplest α (see Table 2). 

This fact is biologically significant because the element α correspond to the codon GGU that 

code to the simplest amino acid, glycine. From a molecular stand point we can say that 

glycine structure is present in all amino acids, i.e. glycine has, basically, the structure from 

which every amino acid is built. In addition, as we show in the Appendix, the product 

operation in a Galois field generated by a primitive polynomial is carry out in a very simple 

way. 

 

3.1 The Best Biologically Significant Polynomial 
 

It is expected that some algebraic properties of codons will be connected with the 

physicochemical properties of amino acids. So, this relationship will allows us to choose one 

of the six primitive polynomials to define the product operation in GF(64). We expect that, 

for instance, the difference between algebraic inverse codons will be proportional to the 

differences between the physicochemical properties of the amino acids coded by them. 

In the Boolean lattice of the genetic code it was pointed out a correlation between the mean 

of Hamming distance (dH) among amino acids –computed from their codons– and the 

Euclidean distance (dE), stated from their representation as vector of physicochemical 

properties (Sánchez et al., 2004a).  

 

 

 

Table 2. Primitive polynomials of six degree on GF(2) and their roots (see Golomb, 1982). 
Polynomials Polynomial roots 
1+x +x6 α α2 1+ α3 α2+α3 α4 1+α+α4 
1+x+x3+x4+x6 α α2 α4 1+α+α4 α+ α4+α5 1+α+α2+α4+α5 
1+x5 +x6 α α2 α4 α+α3+α4 1+α+α2+α5 α+α3+α5 
1+ x + x2+x5+x6 α α2 α4 α2+α3+α4 1+α2+α4+α5 α+α2+α3+α4+α5 
1+ x2+ x3+x5+ x6 α 1+α α2 1+α2 α4 1+α4 
1+x+x4+x5+x6 α α2 α4 α+α3 α+α3+α5 1+α+α2+α4+α5 
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Since the nexus between the Boolean lattice and the Galois field of the genetic code, their 

metric properties are topologically equivalents. Hence, we can use the distances dH and dE to 

choose the polynomial with the best biological signification. The finest polynomial should 

produce the best fitting of the equation: 

 

dH = m dE (4) 

 

In this way for every primitive polynomial was computed its multiplicative group in 

GF(64) and the Hamming distance between the pairs of inverse codons. Next, the Euclidian 

distance between the pair of amino acids was computed too from their representation as 

vectors of 12 physicochemical properties. The properties used here are: Mean of area buried 

on transfer from the standard state to the folded protein, Residue Volume, Normalized van der 

Waals volume, Polarizability parameter, Polarity, Transfer free energy from octanol to water, 

Transfer free energy from ciclohexane to water, Transfer free energy from ciclooptanol to 

water, Transfer free energy from vapor to ciclohexane, Transfer free energy surface, 

Optimized transfer energy parameter, Optimized side chain interaction parameter. These 

properties were taken from the public database AAindex 

(http://www.genome.ad.jp/pub/db/genomenet/aaindex/).  

Since the numerical scales of all properties are different and ever expressed in different 

unit the values of all variables were standardized. The measurement employed here was: 

 

mij = (mij-µij)/σj 
 

, where mij is the raw measurement for amino acid i, property j; µij  the mean of values for the 

property j over all amino acids and σj the standard deviation of values for property j over all 

amino acids.   

 

In the Table 3 the statistical summary of the regression analysis Hamming distance versus 

Euclidean distance for the six primitive polynomials is shown. The best fitting is obtained 

with the polynomial 1+x + x3 + x4 + x6. This polynomial gives us an adjusted R square of 0.87 

and fulfills all regression hypotheses. In the Fig 1 the graph of this regression is shown. 
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Table 3. Statistical summary of the regression analysis Hamming distance versus Euclidean 
distance. The polynomials are represented by means of their coefficients on GF(2). 

95% Confidence 
Interval Primitive 

Polynomial 
Regression 
Coeficient Signification Lower 

Bound 
Upper 
Bound 

Adjusted 
R Square 

Durbin 
Watson 

1100111 1.152 0.000 0.940 1.364 0.79 2.090 
1101101 1.305 0.000 1.127 1.483 0.87 1.809 
1110011 1.225 0.000 0.971 1.479 0.75 1.802 
1000011 1.225 0.000 0.995 1.455 0.79 1.548 
1100001 1.280 0.000 1.089 1.471 0.85 2.492 
1011011 1.107 0.000 0.932 1.282 0.84 1.759 
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Figure 1. Graph of the regression Hamming distance versus Euclidean distance with the 
polynomial 1+x + x3 + x4 + x6. 
 

3.2. Linear Transformations of the DNA Sequences on the GF(64)  
 

Gene mutations can be considered linear transformations of the wild type gene in the n-

dimensional vector space of the DNA sequences. These lineal transformations are the 

endomorphisms and the automorphisms. In particular, there are some remarkable 

automorphisms. The automorphism are one-one transformations on the group (Cg)N,  such 

that: 

 

f(a⋅ (α+β))= a⋅f(α) + a⋅f(β) for all genes α and β in (Cg)N and a∈GF(64) 

 

That is, automorphisms forecast mutation reversions, and if the molecular evolution 

process went by through automorphisms then, the observed current genes do not depend of 
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the mutational pathway followed by the ancestral genes. In addition, the set of all 

automorphisms is a group.  

 

For every endomorphism (or automorphism) f: (Cg)N → (Cg)N, there is a N×N matrix: 
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

NNN

N

aa

aa
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...
...

...
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111

 

 

whose rows are the image vectors f(ei), i=1,2,…N. This matrix will be called the representing 

matrix of the endomorphism f, with respect to the canonical base {ei. i=1,2…,N}.  

In particular, the single point mutations can be considered local endomorphisms. An 

endomorphism f: S→S will be called local endomorphism if there is k∈{1, 2,…, N} and    

there are  aik∈GF(64) (i=1, 2,…,N) such that: 

 

f(ei)  = aikek + ei, for i≠k,  

And 

f(ek)  = akkek 

This means that:  

)...,,...,(),...,(
1

2121 n

n

i
ikin xaxxxxxxf ∑

=

=  

It is evident that a local endomorphism will be a local automorphism if, and only if, the 

element akk is different from cero. The local endomorphism f will be called diagonal if 

f(ek)=(0,…,akk,…,0)=akkek and f(ei)=ei, for i≠k. This means that: 

 

f(x1,x2,…xN) =(x1,x2,…akkxk,…xN) 

 

The previous concepts allow us to present the following theorem: 

  

Teorema 1. For every single point mutation that change the codon αi of the wild type gene 

α = (α1, α2,…, αi,…, αN) (α different of the null vector) by the codon βi of the mutant gene β 

= (α1, α2,…,βI,…, αN ), there is: 
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i. At least a local endomorphism  f  such that f(α) = β. 

ii. At least a local automorphism f such that f(α) = β. 

iii. A unique diagonal automorphism f such that f(α) = β if, and only if, the codons αi and 

βi of the wild type and mutant genes, respectively, are different of GGG. 

 

Proof: Since for every endomorphism (or automorphism) f: (Cg)N → (Cg)N, there is a N×N 

matrix A and vice verse then, to prove the theorem it is sufficient to build one endomorphism 

or automorphism matrix.  For every endomorphism f(α) = (f1(α),…, fN(α)) = (β1, …, βN) the 

vector components fi(α) = βi are the linear combinations of the ith-column components of the 

endomorphism matrix A. In particular, for the local endomorphism f(α) = (f1(α),…, fi(α),…, 

fN(α)) = (α1, …, βi,…, αN) it is always possible to build the linear combination: 

 βαδααα)(
11

iiiiiiii

N

ik
k

kik

N

k
kiki aaaaf =+=+== ∑∑

≠
==

α  

In this linear combination the coefficients aki (k ≠ i) −of the ith-column components of the 

endomorphism matrix A− can be arbitrarily chosen and the value of δi fixed. This allows us to 

solve the equation δi +αiail= βι that always has solution in the GF(64) for αi ≠ 0. If αi = 0 we 

always can fix δi=βι. As a result, all ith-column components aki of the endomorphism matrix A 

are determined, and the remaining components are: akk = 1 and akl = 0 for k, l ≠ i. 

It is sufficient assure det(A) ≠ 0 to prove ii. We do it by fixing the coefficient aii ≠ 0 to 

obtain the value δi from the equation δi +αiaii= βι. Next, the coefficients aki (k ≠ i) are 

arbitrary chosen so that i

N

ik
k

kik a δ=∑
≠
=1

α    

After that, if αi ≠ GGG and βi ≠ GGG then chosen the coefficients aki = 0 (k ≠ i) we have a 

unique diagonal automorphism because the equation βi = αi aii has a unique solution aii ≠ 0 

and this implies det(A) ≠ 0. Conversely, if the local diagonal automorphism is unique then this 

automorphism leads to the equation βi = αi aii that means αi ≠ GGG, βi ≠ GGG y aii ≠ 0. � 

 

According to the last theorem, any mutation point presented in the Tables 4 and 5, or any 

combination of these can be represented by means of automorphisms. Specifically, the most 

frequent mutation can be described by means of diagonal automorphisms.     
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3.3. Gene Mutations as Translations in GF(64)  
 

Gene mutations can be considered translation of the wild type gene in the N-dimensional 

vector space of the DNA sequences. In the Abelian group (Cg, +), for two codons a, b∈(Cg, +) 

the equation a+x=b always has solution then, for all pair of genes α, β∈(Cg, +)N always there 

is a gene κ∈(Cg, +)N so that α+κ=β. That is, there exists the translation T: α→α+κ =β. We 

shall represent the translation Tk with constant k that act on codon x as:  

 

Tk (x) = x + k 

 

Any mutation can preserve or change the chemical type of third base in the codon. 

According to Table 1 for all codon with a pyridine base (C or U) the corresponding integer 

number of every binary sextuple is an odd number; these codons will be called odd codons. 

While for all codon with a pyrimidine base (G or A) the corresponding integer number is an 

even number; these codons will be called even codons.  Evidently, those translations with 

constant k equal an even codon preserve the parity of codons in mutational events. We shall 

call even translations this kind of translation. In Tables 4 and 5 we can see that the most 

frequent mutations keep the codon parity, i.e. they preserve the chemical type of the third base 

position. Thus the even translation could help us to model the gene mutation process.  

 

Next, we shall consider the composition of translations. Given YXW gf ⎯→⎯⎯→⎯ the 

composition YWfg →:o  of translations g and f is defined by ))(())(( xfgxfg =o . It is not 

difficult to see that the set of all translation with composition operation is a group (G), and the 

subset of all even translation GT is a subgroup of G. Next, any mutational pathway followed 

by genes in the N-dimensional vector space will be described by a translation subset of the 

subgroup GT. 
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3.4. The Inner Pseudo-product and the Physicochemical Properties of Amino 

Acids 
 

We shall show that the inner pseudo-product is connected with physicochemical properties 

of amino acids and could help us to understand the gene mutation process. In Table 6 the 

average of the inner pseudo-product between the codon sets XAZ, XUZ, XCZ and XGZ is 

shown. The most negative values of the inner pseudo-product correspond to the transversions 

in the second base of codons. It is well-known that such transversions are the most dangerous 

since they frequently alter the hydrophobic properties and the biological functions of proteins. 

By contrast, transitions in the second position have the most positive values. In particular, the 

inner pseudo-product between codons XAZ that code to hydrophilic amino acids and codons 

XUZ that code to hydrophobic amino acids have, in general, negative values. This effect is 

reflected in the average of inner pseudo-products computed for all pairs of amino acids. For 

the amino acids a1 and a2 with n and m codons the average of inner pseudo-products is 

computed as: 

 

∑∑
= =

=
n

i

m

j
ji cc

nm
aa

1 1
2121 ,1,  (5) 

 

The inner pseudo-product average for all amino acid pairs are shown in the Table 7. In 

general, the inner pseudo-product between amino acids with extreme hydrophobic difference 

is negative. This is the case, for instance, of the inner pseudo-product average between the 

hydrophobic amino acids from the set {L, I, M, F, V} and the hydrophilic amino acids from 

the set {E, D, H, K, N, Q, Y}. Since mutations in genes tend to keep the hydrophobic 

properties of amino acids, it is natural to think that the inner pseudo-product 〈c1, c2〉 between 

codons should be connected with the protein mutation process. 

 
In accordance with Tables 6 and 7, in the most frequent codon mutations observed in 

genes, the inner pseudo-product between the wild type and the mutant codons should be a 

positive value.  
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Table 4. Mutations in two human genes: beta globin and phenylalanine hydroxylase. The 
most frequent point mutations are local automorphisms. Beside this, the majority of mutations 
keeps the codon parity and, consequently, can be described as translations (see the text). 
Those mutations that alter codon parity are in bold type. The inner pseudo-product between 
the wild type and mutant codons and the absolute difference |〈cW, cW〉a - 〈cM, cM〉a| for each 
gene are written. 

1Human Beta Globin 2Human PHA 
3Amino 

Acid 
Change 

Codon 
Mutation 〈cW, cM〉 4Diff

Amino 
Acid 

Change 

Codon 
Mutation 〈cW, cM〉 2Diff

P36H CCU-->CAU 3.00 3 Y204C UAU-->UGU 2.00 1 
T123I ACC-->AUC 0.00 1 A104D GCC-->GAC 2.00 1 
V20E GUG-->GAG 2.00 2 A165P GCC-->CCC 3.00 1 
V20M GUG-->AUG 0.00 2 A246V GCU-->GUU 2.00 1 
V126L GUG-->CUG 1.00 1 A259T GCC-->ACC 2.00 0 
V111F GUC-->UUC 2.00 1 A259V GCC-->GUC 3.00 1 
H97Q CAC-->CAA 0.00 1 A300S GCC-->UCC 1.00 1 
V34F GUC-->UUC 2.00 1 A300V GCC-->GUC 3.00 1 

E121Q GAA-->CAA 1.00 1 A309D GCC-->GAC 2.00 1 
L114P CUG-->CCG 0.00 1 A309V GCC-->GUC 3.00 1 
A128V GCU-->GUU 2.00 1 A313T CGA-->ACA -2.00 1 
H97Q CAC-->CAG 1.00 2 A313V GCA-->GUA 3.00 3 
D99E GAU-->GAA -1.00 2 A322G GCC-->GGC 1.00 0 
D21N GAU-->AAU 3.00 2 A322T GCC-->ACC 2.00 0 
N139Y AAU-->UAU 2.00 3 A342P GCA-->CCA 2.00 1 
V34D GUC-->GAC 3.00 0 A342T GCA-->ACA 2.00 2 
E121K GAA-->AAA 1.00 0 A345S GCU-->UCU 3.00 1 
A140V GCC-->GUC 3.00 1 A345T GCU-->ACU 2.00 0 
K82E AAG-->GAG 1.00 0 A373T GCC-->ACC 2.00 0 
G83D GGC-->GAC 4.00 1 A395G GCC-->GGC 1.00 0 
D99N GAU-->AAU 3.00 2 A395P GCC-->CCC 3.00 1 
G15R GGU-->CGU 1.00 1 A403V GCU-->GUU 2.00 1 
V111L GUC-->CUC 1.00 1 A447D GCC-->GAC 2.00 1 
G119D GGC-->GAC 4.00 1 A47E GCA-->GAA 0.00 3 
E26K GAG-->AAG 1.00 4 A47V GCA-->GUA 3.00 3 
N108I AAC-->AUC 0.00 0 C203C UGC-->UGU 3.00 1 
H146P CAC-->CCC 3.00 2 C217G UGU-->GGU 1.00 1 
H92Y CAC-->UAC 3.00 5 C217R UGU-->CGU 3.00 0 

C112W UGU-->UGG 1.00 4 C265Y UGC-->UAC 1.00 1 
A111V GCC-->GUC 3.00 1 C334S UGC-->UCC 2.00 0 
A123S GCC-->TCC 1 1 C357G UGC-->GGC 1.00 1 

1All of the mutation information was taken from the world wide web site:  http://globin.cse.psu.edu/ . 2All of the 
mutation information was taken from the PAHdb World Wide Web site: http://www.pahdb.mcgill.ca/. 3The 
amino acid is represented using the one letter symbol. 4Diff: Absolute difference: |〈cW, cW〉a - 〈cM, cM〉a|.  
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Table 5. Mutations in two HIV-1 genes: protease and reverse transcriptase. The most frequent 
point mutations are local automorphisms. Besides this, the majority of mutations keeps the 
codon parity and, consequently, can be described as translations (see the text). Those 
mutations that alter codon parity are in bold type. The inner pseudo-product between the wild 
type and mutant codons and the absolute difference |〈cW, cW〉a - 〈cM, cM〉a| for each gene are 
written. 

1Protease 1Reverse transcriptase 

Amino 
Acid 

Change 

Codon 
Mutation 〈cW, cM〉 2Diff

Amino 
Acid 

Change 

Codon 
Mutation 〈cW, cM〉 2Diff

A71I GCU-->AUU 1.00 1 A62V GCC-->GUC 3.00 1 
A71L GCU-->CUC 0.00 1 A98G GCA-->GGA 4.00 0 
A71T GCU-->ACU 2.00 0 D67A GAC-->GCC 2.00 1 
A71V GCU-->GUU 2.00 1 D67E GAC-->GAG 0.00 0 
D30N GAU-->AAU 3.00 2 D67G GAC-->GAG 0.00 0 
D60E GAU-->GAA -1.00 2 D67G GAC-->GGC 4.00 1 
G16E GGG-->GAG -1.00 3 D67N GAC-->AAC 3.00 2 
G48V GGG-->GUG -1.00 5 E138A GAG-->GCG 0.00 1 
G52S GGU-->AGU 1.00 2 E138K GAG-->AAG 1.00 0 
G73S GGU-->AGU 1.00 2 E44A GAA-->GCA 0.00 3 
H69Y CAU-->UAU 5.00 4 E44D GAA-->GAC 3.00 1 
I47V AUA-->GUA 2.00 2 E89G GAA-->GGA 4.00 3 
I50L AUU-->CUU 1.00 1 E89K GAA-->GGA 4.00 3 
I54L AUC-->CUC 3.00 1 F116Y UUU-->UAU 2.00 2 
I54M AUU-->AUG 2.00 1 F77L UUC-->CUC 2.00 2 
I54T AUC-->ACC 0.00 1 G141E GGG-->GAG -1.00 3 
I54V AUC-->GUC 2.00 0 G190A GGA-->GCA 4.00 0 
I82T AUC-->ACC 0.00 1 G190E GGA-->GAA 4.00 3 
I84A AUA-->GCA 0.00 1 G190Q GGA-->CAA 0.00 4 
I84V AUA-->GUA 2.00 2 G190S GGA-->UCA 2.00 1 

K20M AAG-->AUG 3.00 0 G190T GGA-->ACA 2.00 2 
K20R AAG-->AGG 2.00 1 G190V GGA-->GUA 1.00 3 
K45I AAA-->AUA -1.00 2 G190V GGA-->GUA 1.00 3 
K55R AAA-->AGA 3.00 1 G190V GGA-->GUA 1.00 3 
L10I CUC-->UUC 2.00 2 H208Y CAU-->UAU 5.00 4 
L10R CUC-->AUC 3.00 1 I135M AUA-->AUG 2.00 1 
L10V CUC-->CGC 2.00 1 I135T AUA-->ACA 2.00 1 
L10F CUC-->GUC 1.00 1 K101Q AAA-->CAA 1.00 1 
L10Y CUC-->UAC -1.00 2 K103R AAA-->AGA 3.00 1 
L23I CUA-->AUA 3.00 1 K103T AAA-->ACA 2.00 1 
L24I UUA-->AUA 1.00 1 K70E AAA-->GAA 1.00 0 

1All of the mutation information contained in this printed table was taken from the Los Alamos web site: 
http://resdb.lanl.gov/Resist_DB.. 2Diff: Absolute difference: |〈cW, cW〉a - 〈cM, cM〉a|. 
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The inner pseudo-product between the wild type and mutant codons in mutational variants 

of two human genes: beta globin and phenylalanine hydrolase are shown in Table 4. In most 

frequent mutations the inner pseudo-product values are greater than -1. A similar situation is 

found in two HIV-1 genes: protease and reverse transcriptase (Table 5). 

In addition, it is found that the magnitude 〈a, a〉 tends to rise with the increase of the 

average of volume buried of amino acids Vb in proteins (Chothia, 1975). A similar tendency it 

is found between 〈a, a〉 and the mean of area buried on transfer from standard state to the 

folded protein (Ab) (Rose, et al., 1985). The best fit –excluding amino acid Triptophan– leads 

us to the equations:  

 

〈a, a〉 = 0.0148 Vb (R2
adjusted= 0.86) (6) 

〈a, a〉 = 0.0167Ab (R2
adjusted= 0.84) (7) 

 

So the inner pseudo-product is associated with topological variables that express the degree 

to which amino acid residues are buried by backbone atoms from covalent neighbors in the 

folded protein. In another way, as might be expected the variables Vb and Ab are proportional 

to the molecular weight of amino acids (MW). So we have the expression: 

 

Vb = 0.891 MW (8) (R2
adjusted = 0.99) 

Ab = 0.969 MW (9) (R2
adjusted = 0.969) 

 

Table 6. The average of inner pseudo-product between codon subsets XAZ, XUZ, XCZ and 
XGZ. Behind each codon subset, for example, XUZ there are 16 realizations. Thus, for every 
pair of codon subsets there is a symmetric distance matrix with 162 elements. The inner 
pseudo-product between two codon subsets is the mean of the 256 inner pseudo-products 
between their codons. 

 XGZ XUZ XAZ XCZ 

XGZ 0.531 -0.031 -0.094 -1.156 
XUZ -0.031 0.969 -0.969 0.031 
XAZ -0.094 -0.969 1.031 0.031 
XCZ -1.156 0.031 0.031 1.094 
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Table 7. Average of inner pseudo-product for all amino acid pairs. The negative values of 
inner pseudo-product are in bold type. For amino acid glycine the codon GGG was not 
considered. 

G W C R S V L F M I E D Y K N Q H A T P
G 0.67 -1.00 0.83 -0.17 -0.17 0.50 -0.39 1.17 -1.33 0.67 1.50 1.50 0.17 -0.17 -0.17 -0.83 -0.83 0.50 -0.50 -1.17

W -1.00 1.00 1.00 0.33 0.33 1.00 1.00 1.00 2.00 0.67 2.00 0.00 0.00 0.00 -2.00 0.00 -2.00 -1.00 -3.00 -1.00

C 0.83 1.00 2.75 0.75 0.58 -0.50 0.58 1.25 -1.50 -0.83 -0.75 -0.25 1.25 -0.25 0.25 -0.75 0.75 -1.00 -1.50 -1.50

R -0.17 0.33 0.75 2.08 -0.58 -0.58 0.53 -0.58 1.17 0.17 -0.42 -0.42 -0.42 0.58 0.58 0.92 0.25 -1.92 -0.58 -0.25

S -0.17 0.33 0.58 -0.58 0.14 0.33 -0.19 0.58 -1.50 0.06 -0.42 0.42 1.25 -0.75 0.08 -0.25 0.58 0.33 0.00 0.50

V 0.50 1.00 -0.50 -0.58 0.33 2.13 0.00 1.00 0.50 1.00 0.25 0.00 -0.25 -1.75 -0.50 -1.50 -2.75 0.88 0.13 -0.88

L -0.39 1.00 0.58 0.53 -0.19 0.00 1.64 1.42 1.83 0.50 -1.42 -1.92 -0.75 -1.08 -1.92 0.08 -0.42 -0.50 -0.33 0.67

F 1.17 1.00 1.25 -0.58 0.58 1.00 1.42 1.75 -1.50 0.50 -1.75 -0.25 0.25 -1.75 -2.25 -1.25 -0.75 0.00 -1.00 0.00

M -1.33 2.00 -1.50 1.17 -1.50 0.50 1.83 -1.50 3.00 1.00 -1.50 -1.50 -3.50 2.50 0.50 -1.50 -1.50 0.50 1.50 0.50

I 0.67 0.67 -0.83 0.17 0.06 1.00 0.50 0.50 1.00 2.33 -1.17 -0.83 -2.50 -0.50 0.50 -0.83 -1.17 -0.33 1.33 -0.33

E 1.50 2.00 -0.75 -0.42 -0.42 0.25 -1.42 -1.75 -1.50 -1.17 2.75 0.75 1.25 1.25 1.25 0.75 -1.25 1.25 -0.25 -0.75

D 1.50 0.00 -0.25 -0.42 0.42 0.00 -1.92 -0.25 -1.50 -0.83 0.75 2.25 1.25 1.25 1.75 -0.75 0.75 1.00 0.00 -1.50

Y 0.17 0.00 1.25 -0.42 1.25 -0.25 -0.75 0.25 -3.50 -2.50 1.25 1.25 1.75 -0.25 -0.25 0.25 3.25 -0.25 -0.75 -0.75

K -0.17 0.00 -0.25 0.58 -0.75 -1.75 -1.08 -1.75 2.50 -0.50 1.25 1.25 -0.25 2.25 0.25 2.75 0.75 0.25 0.25 0.75

N -0.17 -2.00 0.25 0.58 0.08 -0.50 -1.92 -2.25 0.50 0.50 1.25 1.75 -0.25 0.25 2.75 0.25 1.75 0.00 1.00 -0.50

Q -0.83 0.00 -0.75 0.92 -0.25 -1.50 0.08 -1.25 -1.50 -0.83 0.75 -0.75 0.25 2.75 0.25 3.75 1.25 -1.00 -0.50 0.50

H -0.83 -2.00 0.75 0.25 0.58 -2.75 -0.42 -0.75 -1.50 -1.17 -1.25 0.75 3.25 0.75 1.75 1.25 4.25 -1.25 0.25 1.75

A 0.50 -1.00 -1.00 -1.92 0.33 0.88 -0.50 0.00 0.50 -0.33 1.25 1.00 -0.25 0.25 0.00 -1.00 -1.25 2.38 1.38 0.13

T -0.50 -3.00 -1.50 -0.58 0.00 0.13 -0.33 -1.00 1.50 1.33 -0.25 0.00 -0.75 0.25 1.00 -0.50 0.25 1.38 2.13 0.88

P -1.17 -1.00 -1.50 -0.25 0.50 -0.88 0.67 0.00 0.50 -0.33 -0.75 -1.50 -0.75 0.75 -0.50 0.50 1.75 0.13 0.88 1.88  
 

It has been pointed out by Chotia that protein interiors are closely packed, each residue 

occupying the same volume as it does in crystals of amino acids (Chothia, 1975). As a result, 

allowing for equation (6) and (7), in the gene mutation process we should expect a small 

change of inner pseudo-product of codons, i.e. we should expect a small value of the absolute 

difference |〈cW, cW〉a - 〈cM, cM〉a| between the inner pseudo-product of the wild type and the 

mutant codons.  Such result is confirmed in Tables 4 and 5 where the most frequent values are 

close to 1. 

 

Now, from the equality (3) and equations (8) or (9) it follows: 
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where, the inner pseudo-product of every codon 〈ci, ci〉 is replaced by the average of inner 

pseudo-product for all corresponding synonymous codons 〈ai, ai〉 and the sum ∑
=

n

i
iMW

1
of the 

amino acid molecular weight is replaced by protein molecular weight (to form every peptide 

linkage of a polypeptide chain a water molecular is lost). The lineal regression analysis with 

471 proteins, taken from the protein data bank, confirms the previous equality given the 

expression: 
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〈 g, g 〉a = 18.30 MWp   (11) (R2
adjusted = 0.999) 

  

The graph of this regression is shown in Fig. 2.  

 

The inner pseudo-product reflects the quantitative relationships between codons in genes. 

These relationships are suggested by the codons usage found in genes (Nakamura, et al., 

2001). In all living organisms, note that some amino acids and some codons are more frequent 

than others (see http://www.kazusa.or.jp/codon). Each organism has its own "preferred" or 

more frequently used codons for a given amino acid and their usage is frequent, a tendency 

called codon bias. For all life forms, codon usage is non-random (Fuglsang, 2003) and 

associated to various factors such as gene expression level (Makrides, 1996), gene length 

(Duret and Mouchiroud, 1999) and secondary protein structures (Oresic and Shalloway, 1998; 

Tao and Dafu, 1998; Gupta et el., 2000). Moreover, most amino acids in all species bear a 

highly significant association with gene functions, indicating that, in general, codon usage at 

the level of individual amino acids is closely coordinated with the gene function (Fuglsang, 

2003).  
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Figure 2. Graph of the regression analysis of the inner pseudo-product 〈 g, g〉a versus protein 
molecular weight MWp. 95% confidence Interval for regression coefficient is: Lower bound, 
18.258, and upper bound 18.344.  
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So, the constraints observed in the values of 〈cW, cM〉 and |〈cW, cW〉a - 〈cM, cM〉a| in Tables 4 

and 5 are consequence of the codons usage which restrict the number of mutational variants in 

point mutations in genes. As a result, the connection between codon usage and protein 

structure explain the relationship between the inner pseudo product and the topological 

variables Vb and Ab. 

 
4. Conclusions 
 
The isomorphism between the Boolean lattice of the four DNA bases and the Boolean lattice 

((Z2)2, ∧, ∨) allows us to define a new Galois field of the genetic code. On this new field it 

was defined a new N-dimensional DNA sequence vector space where gene mutations can be 

considered linear transformation or translation of the wild type gene. It is proved that for 

every single point mutation in the wild type gene there is at least an automorphism that 

transforms the wild type in the mutant gene. Besides this, it is found that the set of 

translations that preserves the chemical type of the third base position in the codon is a 

subgroup which describes the most frequent mutation observed in mutational variants of four 

genes: PAH, HBG, HIVP and HIVRT.   

The inner pseudo-product 〈c1, c2〉 defined between codons showed strong connection with 

the hydrophobic properties of amino acids. This product tends to have a positive value 

between similar amino acids and a negative value between amino acids with extreme 

hydrophobic properties. As a result, we should expect that the most frequent values of the 

inner pseudo-product between the wild type and the mutant codons in gene mutation process 

should be positive values.  This fact is confirmed in the four mutational variants of genes: 

PAH, HBG, HIVP and HIVRT.   

In addition, the average of the inner pseudo-product 〈a, a〉a for every amino acid has a 

lineal correlation with the volume and area of amino acids buried in the folded protein. Due to 

the tendency of gene mutation to keep the protein structure it is expected that the difference 

between inner pseudo-products of wild type and mutant codons |〈aw, aw〉a - 〈aM, aM〉a| should 

be small. Like to the previous results this tendency was confirmed in the above mentioned 

four genes. 

Finally, it was found that there is a strong lineal correlation between the inner pseudo-

product 〈g, g〉a of genes and their molecular weight. 
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Appendix. Algebraic basic definitions 
 

For the usefulness of the reader, in this appendix we review the definitions of group, field and 

Vector space. The basic ideas were taken from the books [4, 15, 18]. Besides, we have written 

a summary about the operation sum and product in GF(64). 

 

Definition: A binary operation on S is a function from S × S to S. 

 

In other words a binary operation on S is given when to every pair (x, y) of elements of S 

another element z∈S is associated.  If “•” is the binary operation on S, then •(x, y) will be 

denoted by x• y, that is the image element z is denoted by x• y. 

 

Definition: A group is the pair (G, •) composed by a set of elements G and the binary 

operation “•” on G, which for all x, y, z∈G satisfies the following laws: 

i. Associative law: (x• y) • z = x• (y • z)  

ii. Identity law: There exists in G a neutral element e such that: x • e= e• x  

iii. Inverse law: For all element x there is the symmetric element x-1 respect to e such that:  

x•x-1= x-1 • x = e (the element e is called neutral element of G) 

In particular, the subset H⊂G is called a subgroup in G if e∈G; h1, h2∈H⇒ h1• h2∈H and 

h∈H⇒h-1∈H. Besides, the group (G, •) is called an Abelian group (a commutative group) if 

for all x, y∈G the binary operation satisfies the commutative law: x•y= y•x. For the Abelian 

group the binary operation is denoted by the symbol “+” and it is called sum operation. Now, 

the symbol 0 denotes the neutral element.  

 

Definition: A field is a set F with two binary operations, denoted by “+” and “•”, with the 

following properties: 

i. (F, +) is a commutative group 
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ii. (F*, •) is a commutative group, where F*= F\{0} and 0 denote the neutral element for 

addition.  

iii. The product “•” is distributive with respect to the addition “+”. 

 

Definition. Let F be field and let V be an Abelian group. V is called a vector space on the 

field F is there exists an external law f: F×V → V, given for f(x,u) = x u = u x that has , for all 

x, y∈F and for all u, v∈V the following properties: 

 

1. x ( u + v) = xu + xv 

2. ( x + y )  v = xv + yv 

3. ( x•y ) v = x ( yv ) 

4. 1 v=v 

 

Galois Field Operations Summary 

 

 Here we used the polynomial representation of the Galois field GF(64). This representation is 

obtained from the quotient ring F[x]/(g(x)):  

 

h(x) mod g(x) 

 

where, F[x] is a polynomial set on the field GF(2), h(x)∈F[x] and g(x) is an irreducible 

polynomial of six degree on GF(2). From the finite field theory it is known that the ring 

F[x]/(g(x)) is a finite field representative of the GF(64).  

In GF(64) the sum operation is carried out by means of the polynomial sum in the usual 

fashion with polynomial coefficients reduced module 2, while the product is the polynomial 

product module g(x). That is, for all p1(x), p2(x)∈F[x]/(g(x)),  we  have: 

 

p1(x) + p2(x) mod 2 = p(x)∈F[x]/(g(x)) 

p1(x) ⋅ p2(x) mod g(x) = q(x)∈F[x]/(g(x)) 

 

 For instance, on GF(2) the polynomial 1+t5+t6 is an irreducible polynomial and we have: 
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(1+t 3 ) + (t+t 3) mod 2 = t + 1 

(1+ t + t2) (1+ t) mod (1+t5+t6) = t 3 + 1 

(t+t2 +t4 + t5) (1+ t2+t3+t5) mod (1+t5+t6) = t + t3 

 

The expression p (x) mod g(x)) is the polynomial remainder obtained from the division of 

p(x) by g(x) according to the Euclidean algorithm for polynomial division. 

It can be noted that for every integer number there is a binary representation that leads to 

polynomial coefficients. We have for instance: 

 

Integer 

number 

Binary 

representation 

Polynomial 

coefficients 

Polynomial 

 

S = 11 1011 110100 1+ x + x3 

S = 13 1101 101100 1+ x2+ x3 

S = 25 11001 100110 1+ x3+ x4 

S = 34 100010 010001 x + x5 

 

That is to say, there is a bijective function f[s] such that f`: s → GF(64), between the subset 

of the integer number s = {0, 1,…, 63} and the elements of GF(64). According to the above 

example f[11] = 1+ x + x3, f[13] = 1+ x2+ x3, f[25] = 1+ x3+ x4 and  f[34] = x + x5. 

In the GF(64) one element  is called primitive if for all x∈GF(26), x ≠ 0 we have x =α i, 

where i∈{0, 1,…, 63}. If the irreducible polynomial g(x) has a root which is a primitive 

element of GF(64) then g(x) is called primitive polynomial. In a Galois field generated by 

primitive polynomial it is very ease to carry out the product between two elements. In this 

field any root of the primitive polynomial is a generator of the multiplicative group. This fact 

suggests the definition of a logarithm function. If α is a primitive root of the polynomial g(x), 

we shall call it logarithm base α of the element β to the number n for which holds the 

equality:  

 

αn mod g(x) = β 

 

Now, we can write: 
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f[s] = αn mod p(α) 

And  

n = logaritmoα f[s] = logα f[s] 

 

The properties of this logarithm function are alike to the classical definition in Arithmetic: 

 

i. logα (f[x]*f[y]) = (logα f[x] + logα f[y]) mod 63 = (nx + ny) mod 63 

ii. logα (f[x]/f[y]) = (logα f[x] - logα f[y]) mod 63 = (nx - ny) mod 63 

iii. logα f[x]m = m logα f[x] mod 63 

 

The logarithm table for the primitive polynomial 1+ x + x3 + x4 + x6 is shown in the Table 

1. We can compute, for instance: 

 

f[34]*f[21]→ logα (f[34]*f[21]) = logα f[34] + logα f[21] mod 63= (36 + 40) mod 63 = 13 

after that, according to Table 1:  

 

f[34] * f[21] = f[9] 

 
 
Table 1. Logarithm table of the elements of the GF(64) generated by the primitive 
polynomial g(x) = 1+ x + x3 + x4 + x6. Here, the primitive root α is the simplest root x, i.e.  f[s] 
= xn mod g(x) and n = logarithm base α of f[s] = logα f[s]. 

Element  f[1] f[2] f[3] f[4] F[5] f[6] f[7] f[8] f[9] f[10] f[11] 
n   0 1 56 2 49 57 20 3 13 50 53 

Element  f[12] f[13] f[14] f[15] F[16] f[17] f[18] f[19] f[20] f[21] f[22] 
n   58 25 21 42 4 35 14 16 51 40 54 

Element  f[23] f[24] f[25] f[26] F[27] f[28] f[29] f[30] f[31] f[32] f[33] 
n   18 59 31 26 6 22 46 43 37 5 30 

Element  f[34] f[35] f[36] f[37] F[38] f[39] f[40] f[41] f[42] f[43] f[44] 
n   36 45 15 34 17 39 52 12 41 24 55 

Element  f[45] f[46] f[47] f[48] F[49] f[50] f[51] f[52] f[53] f[54] f[55] 
n   62 19 48 60 10 32 28 27 9 7 8 

Element  f[56] f[57] f[58] f[59] F[60] f[61] f[62] f[63] 
n   23 11 47 61 44 29 38 33 
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