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Abstract 

A relationship between the two-body portion of the Bauer-Maysenholder-

Seeger (BMS) and the Kaxiras-Pandey (KP) potential functions is established 

by means of a scaling factor to bridge parameters of these two potentials. The 

scaling factor was obtained by equating, at the equilibrium bond length, the 2-

body portion derivatives of BMS and KP from the zeroth up to the third orders. 

The scaling factor based on derivatives up to the second order gives excellent 

agreement for bond extension but limited validity for bond-compression. The 

scaling factor based on derivatives up to the third order gives good correlation 

for both bond-compression and bond-extension. 

 

 

1 Introduction 
Although the quantum mechanical approach is known to be exact, the 

practicality of empirical potential energy functions in many-body systems 

remain relevant due to their ease of usage especially in the computation of 



large scale and dynamical cases. With the availability of numerous potential 

functions for many-body systems (e.g. Erkoc [1] reviewed 38 potential 

functions), there is a need to understand how these potential functions differ 

from one another, how can they be related, and to which extent are their 

relatedness. One way to understand how these potential functions are related 

is to analytically connect their parameters. As such, graphical plots of two or 

more potential functions based on one set of potential function parameters 

reveals any discrepancy and the extent of their relatedness. Parametric 

relationships are also helpful when available or preferred parametric data and 

adopted potential function in software are based on different sets of potentials. 

Recently, parametric relationships have been developed amongst potential 

functions used in bond-torsion [2], bond-bending [3], bond-stretching [4,5] and 

van der Waals [6-8] interactions, thereby resulting in a molecular potential 

function converter [9,10], which takes advantage of series expansions [11]. 

Most of the developed relationships are, however, limited to the case of near 

equilibrium. Likewise, Stoneham et al. [12] performed a comparison of eight 

valence-force potentials, which are useful only for describing small distortions 

from equilibrium. Balamane et al. [13] gave a good review on six potential 

functions, but no analytical relationships were established amongst the 

considered potentials. In this paper, a set of analytical relationship is 

developed for relating parameters from the 2-body interaction portion of the 

Bauer-Maysenholder-Seeger (BMS) [14] and the Kaxiras-Pandey (KP) [15] 

potential functions by means of a scaling factor akin to previous works by Lim 

[6,8,16-21]. 

 

2 Analysis 
One common characteristic of the BMS and the KP potential function that 

paves a way for relating the parameters is the fact that both of them quantify a 

system’s energy as a summation of 2-body and 3-body interactions 
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In addition, the 2-body portion for both potentials consists of two distinct parts, 

namely a repulsive term and an attractive term: 
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Specifically, the 2-body portion of the BMS and KP potentials are 
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respectively, where r  is the interatomic distance. Equating the derivatives at 

the equilibrium bond length R , 
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from the zeroth to the third orders ( 3,2,1,0=m ), we have 
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where the scaling factors, ξ , 1ψ  and 2ψ  are defined as 

        
ρ

ξ R
=       (7a) 

and 
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Since the minimum well-depth is defined at Rr = , equating the second row of 

Eq.(6) as zero gives 

         ( ξ )ξ
−= expA
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and 
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Substituting Eqs.(8) and (9) into the first and third rows of Eq.(6) enables the 

terms )exp( ξ−A  and  to be eliminated such that we obtain the 

BMS scaling function. 
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The BMS function expresses the BMS scaling factor in terms of KP 

parameters. Alternatively, substituting Eqs.(8) and (9) into the third and fourth 

rows of Eq.(6) and solving similarly leads to another BMS scaling function 

( ) [ ] [ ]5)(2)1(43)(2
2
1

2
3 2

21
22

21
2

21 −−++−−+±−+= nRnRR ααααααξ .

            (11) 

As such, the scaling functions described by Eqs.(10) and (11) correspond to 

orders up to  and  respectively. Considering Eq.(8) and the first 

row of Eq.(6) , the 2-body portion of the BMS potential as described by Eq.(3) 

can be rewritten in the loose form 
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with the following magnitude of the minimum well-depth 
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and the scaling function, ξ , in terms of KP parameters and the equilibrium 

bond length. The loose form displayed in Eq.(12) is analogous to the loose 

form of Exponential-6 potential 
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in terms of the Lennard-Jones parameters ( ) where , with scaling 

factors 13.772 and 12.0 for near equilibrium and long range respectively [6,22-

25]. Since the equilibrium bond length is not reflected in both the original form 

of BMS and KP potentials, it is hence not a parameter for these two functions. 

We extract from Eq.(9) to obtain the equilibrium bond length 

RDLJ , 6=n
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On the other hand, solving for the KP scaling factors using Eqs.(8), (9), and 

the first, third and fourth rows of Eq.(6), gives the KP scaling function, 
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which describes the KP scaling factor in terms of BMS parameters. With 

reference to Eq.(9) and the first row of Eq.(6), the 2-body portion of KP as 

shown in Eq.(4) can be rewritten as 
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with the magnitude of the minimum well-depth 
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and the scaling functions, )2,1( =iiψ , in BMS parameters and the equilibrium 

bond length. A summary of parametric relationships for the 2-body portion of 

BMS and KP potentials is listed in Table 1. 

 

Table 1: Parametric relationships between the 2-body portions of BMS and 
KP potentials 
Potentials (2-body 
portion) 

Parametric relationships 
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and ξ  is given in the upper solutions of Eqs.(10) or 
(11) based on the second or third order derivatives 
respectively, whilst 1ψ  and 2ψ  are given in the upper 
and lower solutions of Eq.(15) respectively based on 
the second and third orders. 

 

 

3 Results and discussion 
For the purpose of illustration, we choose 6=n  as this is a value most 

consistently adopted in a number of pair potentials (see Table 2). Applying the 

KP parameters ( 2121 ,,, ααAA ) as listed in Table 3 [15] and  for Eq.(14) 

gives 

6=n
Ο

Α= 401657.2R . Substituting these values into Eqs.(10) and (11), we 

have the upper solutions for the scaling factors as 805016.7=ξ  and 

094231.8=ξ  respectively. The corresponding lower solutions are not valid 

since they are lower than , which changes the sign of the repulsive and  6=n
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Table 2: Examples whereby 6≅n  
Potential 
functions 

2-body portion References

Buckingham 
potential ( ) 6
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where  for Pd, 5=n 7=n  for Kr, but a majority 
with  for Xe, Al, Cu and Pb. 6=n

[29] 

 

Table 3: Kaxiras-Pandey parameters for silicon 
Parameters Value 

1A  57.316072 eV 

2A  6.4373054 eV 

1α  
0.8233523 

2−Ο

Α  
2α  

0.19061589 
2−Ο

Α
 

attractive terms. Hence the BMS curves, based upon KP parameters, were 

plotted using 805016.7=ξ  and 094231.8=ξ  in Figures 1(a) and 1(b) 

respectively. The KP 2-body energy is also plotted for comparison. We 

observe that adopting derivatives up to 2=m  gives very good approximation 

except for bond compression, as shown in Figure 1(a). On the other hand, 

considering , as depicted in Figure 1(b), extends the applicability of the 

present parametric relationship to a further extent of bond compression with a 

minor penalty in the accuracy for bond extension. In practical consideration, 

Eq.(10) is suggested for bond-stretching whilst Eq.(11) is recommended when  

3=m
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(a) 

 
(b) 

Figure 1: Two-body curve of BMS potential based on KP parameters [15] and 
 considering derivatives up to the (a) second order 6=n 805016.7=ξ , and (b) 

third order 094231.8=ξ . 
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both bond-stretching and bond-compression are modeled. Both sets of scaling 

factors, however, give equally accurate description for small distortion about 

the equilibrium due to the imposition of equal curvature at the minimum well-

depth. No illustration is made herein for the case of comparing the KP 

potential using BMS parameters with the purely BMS potential due to the lack 

of BMS parametric data. However, with the use of up to  for obtaining 

both 

3=m

1ψ  and 2ψ  simultaneously, the parametric relationship in this case is 

comparable to that described in Eq.(11). 

 

4 Conclusions and recommendation 
By equating the derivatives of the 2-body portions of the BMS and KP 

potential functions, a set of parametric relationships has been established. 

Two scaling factors were extracted by equating derivatives from the zeroth 

order up to second and third orders at the equilibrium bond length. The former 

is highly suitable for bond-stretching whilst the latter is generally applicable for 

both compression and stretching of bonds. With the parametric relationship 

between the 2-body portion of BMS and KP obtained, it is hereby suggested 

that parametric relationship be obtained for the 3-body portion of these two 

potential functions. 
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