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Abstract

The first Zagreb index M1 is equal to the sum of the squares of the degrees of the

vertices, and the second Zagreb index M2 is equal to the sum of the products of the

degrees of pairs of adjacent vertices of the underlying molecular graph. We present

upper bounds for M1 and M2 in terms of the number of vertices, number of edges,

minimum vertex degree and maximum vertex degree.

INTRODUCTION

Let G be a graph without loops and multiple edges. The first Zagreb index M1

and the second Zagreb index M2 of G are defined as follows:

M1 = M1(G) =
∑

vertices
(du)

2 (1)

M2 = M2(G) =
∑

edges
du dv



where du stands for the degree of the vertex u .

The Zagreb indices M1 and M2 were introduced in [1] and elaborated in [2].

The main properties of M1 and M2 were summarized in [3, 4]. Some recent results

on the Zagreb indices are reported in [5–8], where also references to the previous

mathematical research in this area can be found. These indices reflect the extent of

branching of the molecular carbon-atom skeleton, and can thus be viewed as molecular

structure–descriptors [9, 10].

In this article, we present upper bounds for M1 and M2 in terms of the number

of vertices (n), the number of edges (m), minimum vertex degree (δ) and maximum

vertex degree (∆).

In what follows it will be required that δ ≥ 1 and that δ < ∆. The former relation

is satisfied by all connected graph. Recall that molecular graphs are necessarily

connected. The latter relation is satisfied by all non-regular graphs. The majority

of graphs of interest in chemical graph theory are non-regular. Note, however, that

the molecular graph of ethane/ethylene is regular of degree 1, the molecular graphs

of annulenes are regular of degree 2, whereas the molecular graphs of fullerenes are

regular of degree 3. For these molecular graphs the bounds deduced in the present

paper are not applicable. For all other molecular graphs these bounds are applicable.

UPPER BOUNDS FOR M1

In [8], within a study of the variance of vertex degrees, an upper bound for M1

was established, in terms of n , m , and ∆ . Employing a similar proof technique as

in [8], we now provide a further upper bound for M1 .

Theorem 1. Let G be a graph with n vertices, m edges, minimum vertex degree

δ ≥ 1 , and maximum vertex degree ∆ > δ . Then

M1(G) ≤ 2m (δ + ∆)− n δ ∆ + (δ − k)(∆− k) (2)

where k is the integer defined via

2m− n δ ≡ k − δ (mod (∆− δ)) , δ ≤ k ≤ ∆− 1 (3)

i. e.,

k = 2m− δ (n− 1)− (∆− δ)

⌊
2m− n δ

∆− δ

⌋
.

Equality in (2) is attained if and only if at most one vertex of G has degree different

from δ and ∆ .
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Proof. Let ni be the number of vertices of degree i in the graph G , δ ≤ i ≤ ∆.

Then Eq. (1) can be rewritten as

M1(G) =
∆∑

i=δ

i2 ni . (4)

In addition to this,

∆∑

i=δ

ni = n (5)

∆∑

i=δ

i ni = 2m . (6)

By solving (5) and (6) in the variables nδ and n∆ we obtain

nδ =
1

∆− δ


n ∆− 2m +

∆−1∑

i=δ+1

(i−∆) ni


 (7)

n∆ =
1

∆− δ


2m− n δ +

∆−1∑

i=δ+1

(δ − i) ni


 . (8)

By substituting Eqs. (7) and (8) back into (4) we arrive at

M1(G) =
1

∆− δ

[
δ2 (n ∆− 2m) + ∆2 (2m− n δ)

]

+
1

∆− δ

∆−1∑

i=δ+1

[
δ2 (i−∆) + ∆2 (δ − i) + i2 (∆− δ)

]
ni

from which it follows

M1(G) = 2m + (δ + ∆)− n δ ∆ +
∆−1∑

i=δ+1

(δ − i)(∆− i) ni . (9)

Observe that the term (δ − i)(∆ − i) is strictly negative for δ + 1 ≤ i ≤ ∆ − 1 .

Therefore, for fixed values of n , m , δ , and ∆ , the first Zagreb index of a graph G

will be maximum if ni = 0 for i = δ + 1, . . . , ∆ − 1 , provided such a choice of the

parameters is possible. In this case, (7) and (8) lead to

nδ =
n ∆− 2m

∆− δ

n∆ =
2m− n δ

∆− δ
.

The above formulas require that

2m− n δ ≡ 0 (mod (∆− δ)) (10)
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since nδ and n∆ must be integers, and n ∆− 2m = n δ − 2m + n (∆− δ) .

Suppose now that the condition (10) is not satisfied. If so, then let k be the integer

defined via relation (3). It is always possible to choose ni such that nk = 1 and ni = 0

for all i = δ + 1, . . . , ∆− 1 , except for i = k . Then Eqs. (7) and (8) become

nδ =
n ∆− 2m + k −∆

∆− δ

n∆ =
2m− (n− 1) δ − k

∆− δ

which have integer values and which satisfy the conditions (5) and (6). There always

exists a graph with n vertices and all degrees equal to δ (except one vertex with

degree 0 if n and δ are both odd) [11]. By adding edges to this graph we may

increase the vertex degrees one at a time up to ∆ , as long as this is possible. Since

2m − n δ ≡ k − δ (mod (∆ − δ)) , the degree of one more vertex can be increased,

up to k . Consequently, there exists a graph with n vertices and m edges, possessing

a unique vertex of degree different from δ and ∆ , whose degree is equal to k .

Assume now that in the graph G there are two vertices, of degree i and j , such that

δ+1 ≤ i ≤ j ≤ ∆−1 . Reducing the degree of the first vertex by 1 and increasing the

degree of the second vertex by 1 leaves the sum of vertex degrees unchanged, whereas

– in view of Eq. (9) – the value of the first Zagreb index is changed by

[δ − (i− 1)][∆− (i− 1)]− (δ − i)(∆− i) +

[δ − (j + 1)] [∆− (j + 1)]− (δ − j)(∆− j) = 2(j − i + 1) > 0 .

This means that if the condition (10) is not obeyed, then the optimal choice for the

quantities ni is ni = 0 for all i , δ+1 ≤ i ≤ ∆−1 , except for i = k , for which nk = 1 .

If so, then by (9),

M1(G) ≤ 2m (δ + ∆)− n δ ∆− (δ − k)(∆− k) . (11)

Observe that if condition (10) is satisfied, then (3) gives k = δ , which is tanta-

mount to the fact that for δ + 1 ≤ i ≤ ∆− 1 , all ni are equal to zero. Consequently,

relation (11) remains valid.

Form the above arguments, it immediately follows that the equality in (2) holds

if and only if at most one vertex of G has degree different from δ and ∆ . 2

It is easy to see that

2m (δ + ∆)− n δ ∆ + (δ − k)(∆− k) ≤ 2m (1 + ∆)− n ∆ + (1− k)(∆− k)
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with equality if and only if δ = 1 . Therefore, by setting δ = 1 in the statement of

Theorem 1 we arrive at the upper bound previously reported in [8]:

Corollary 2. Let G be a connected graph with n vertices, m edges and maximum

vertex degree ∆ ≥ 3 . Then

M1(G) ≤ 2m (1 + ∆)− n ∆ + (1− k)(∆− k) (12)

where k is the integer defined via

2m− n ≡ k − 1 (mod (∆− 1)), 1 ≤ k ≤ ∆− 1

i. e.,

k = 2m− n + 1− (∆− 1)
⌊
2m− n

∆− 1

⌋
.

Equality in (12) is attained if and only if at most one vertex of G has degree different

from 1 and ∆ .

From Corollary 2 we immediately obtain:

Corollary 3. Let G be a chemical graph with n ≥ 2 vertices and m edges. Then

M1(G) ≤




10m− 4n if 2m− n ≡ 0 (mod 3) ,

10m− 4n− 2 otherwise

with equality if and only if either (i) every vertex of G is of degree 1 or 4 (in which

case it must be 2m− n ≡ 0 (mod 3) ), or (ii) one vertex of G has degree 2 or 3, and

all other vertices are of degree 1 or 4.

Recall that in the hydrogen–filled molecular graphs of saturated hydrocarbons

(sometimes referred to as plerograms) [12] all vertices have degrees 1 or 4.

AN UPPER BOUND FOR M2

We deduce now an upper bound for M2 by using the bound for M1 from Theorem

1.

Theorem 4. Let G be a graph with n vertices, m edges, minimum vertex degree

δ ≥ 1 , and maximum vertex degree ∆ > δ . Then

M2(G) ≤ 2 m2 − (n− 1) mδ +
1

2
(δ − 1) [2m (δ + ∆)− n δ ∆ + (δ − k)(∆− k)]

where k is the integer defined by relation (3).
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Proof. Let E stand for the edge set of G , and let N(vi) be the neighborhood of

vertex vi of G . Note that [5]

M2(G) =
∑

vi vj∈E

dvi
dvj

=
1

2

n∑

i=1

dvi

∑

vj∈N(vi)

dvj

≤ 1

2

n∑

i=1

dvi
[2m− di − (n− 1− dvi

) δ]

= 2m2 − (n− 1) mδ +
1

2
(δ − 1) M1(G) .

Theorem 4 follows now from Theorem 1. 2

Clearly, the upper bound in Theorem 4 can be attained if and only if for every

vertex vi either dvi
= n − 1 or all the vertices vj not adjacent to vi are of degree δ ,

and at most one vertex of G has degree different from δ and ∆ .
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