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Abstract

An upper bound is given on the variance of degrees of graphs with n vertices, m edges and

maximum degree ∆. Particular cases of chemical interest, i.e., graphs with ∆ = 3 or 4 and at

most 2 cycles are examined, and conditions for the bound to be sharp derived.

1 Introduction

Graphs are extensively used to model molecules. Chemical graphs designed for that purpose

have bounded degrees, with a maximum degree ∆ usually equal to 4. Irregularity of graphs has

been studied intensively [1] – [5] through a variety of indices. A comparison of the most prevalent

ones for chemical trees was done in [6]. We consider here a classic index, i.e., the variance of

degrees. A best possible bound and corresponding families of extremal graphs have been found

by Bell [2] when the number of vertices n and the number of edges m are given and degrees

are unbounded, i.e., ∆ ≤ n− 1. We consider here values of ∆ < n− 1, and particulary ∆ = 3

and 4, which appear to be the most relevant to chemistry. Experiments with the AutoGraphiX

(AGX) system [7] [8] gave presumably optimal graphs, and are described in the next section.

These graphs pointed the way to formulate and then prove the general result, given in Section

3. Special cases are considered in Section 4 and conclusions drawn in Section 5
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2 Experiments

The variance of degrees of a graph G is defined by

VAR(G) =
1

n

n−1∑
i=1

ni

(
i−

2m

n

)2

(1)

where n is the number of vertices and ni is the number of vertices of degree i in G. This

definition shows that the variance of degrees depends only on the values of the ni, i.e., on the

sequence of degrees.

We first used the system AGX [7] [8] to find graphs with a fixed ∆ and optimal or near-

optimal values for the maximum variance of degrees. In order to get an idea of the dependence of

the maximum degree ∆ on these extremal graphs, we launched the system on different problem

fixing the value of ∆ and number of edges m. For example, Figure 1 shows the extremal graphs

obtained by the system for m = n− 1 (trees) and ∆ = 3 and Figure 2 when m = n (unicyclic

graphs) and ∆ = 5.

Figure 1: Some extremal trees with ∆ = 3 found by AGX

As the variance depends only on the sequence of degrees, the observation of these extremal

graphs leads quickly to the following conjecture : the extremal graphs have only vertices of

degree ∆ and 1 if this is compatible with the existence of a graph. We also observe that all

extremal graphs, found by the system for different values of m and ∆, have at most one vertex

which has a degree different from 1 or ∆.

3 Results

For a fixed value of n, there are only two connected graphs with ∆ = 2, the path Pn and the

cycle Cn; the variance of their degrees is readily computed as VAR(Pn) = (2n − 4)/n2 and

VAR(Cn) = 0. Hence, it is not restrictive to assume that ∆ > 2 in the following theorem.
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Figure 2: Some extremal unicyclic graphs with ∆ = 5 found by AGX

Theorem 1 For all connected graphs G with maximum degree ∆ ≥ 3, n vertices and m edges,

VAR(G) ≤
2m(∆ + 1)− n∆ + (1− k)(∆− k)

n

−

(
2m

n

)2

, (2)

where

k =
[
(2m− n)(mod ∆− 1)

]
+ 1.

with equality in (2) attained if and only if at most one vertex of G has degree different from 1

and ∆.

Proof. A simple rearrangement of the definition of VAR(G) yields

VAR(G) = (M1)/n− (2m/n)2 (3)

where M1 =
n−1∑
i=1

i
2
ni is the first Zagreb index [9] – [14] and ni denotes the number of vertices

of degree i. Eq. (3) shows that for fixed values of ∆, m and n, VAR will be maximum if M1 is

maximum.

By definition of ∆ and ni,

M1 =

∆∑
i=1

i
2
ni. (4)

For all connected graphs with n nodes, m edges and bounded degree ∆, summing numbers

of vertices of all degrees yields

n1 + n∆ +

∆−1∑
i=2

ni = n, (5)
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and summing degrees :

n1 + ∆n∆ +

∆−1∑
i=2

i ni = 2m. (6)

Solving (5) and (6) in n1 and n∆ gives

n1 =
1

∆− 1

[
n∆− 2m+

∆−1∑
i=2

(i−∆)ni

]
, (7)

and

n∆ =
1

∆− 1

[
2m− n+

∆−1∑
i=2

(1− i)ni

]
. (8)

Then, substituting (7) and (8) into (4) yields

M1 = 1

∆−1

[
n∆− 2m+ 2m∆2 − n∆2 +

∆−1∑
i=2

(
i−∆ + ∆2 − i∆2 + i

2∆− i2
)
ni

]

= 1

∆−1

[(
∆− 1

)(
2m(∆ + 1)− n∆

)
+

∆−1∑
i=2

(
(∆− 1)(1 − i)(∆− i)

)
ni

]

As ∆ > 1,

M1 = 2m(∆ + 1)− n∆ +
∆−1∑
i=2

f(i)ni, (9)

where f(i) is the quadratic function

f(i) = (1− i)(∆− i). (10)

Observe that f(i) is strictly negative for 2 ≤ i ≤ ∆− 1. This implies that, for fixed values

of n, m and ∆, the first Zagreb index M1 (and VAR also) will be maximum if ni = 0 for

i = 2, 3, . . . ,∆− 1.

In this case, Eqs (8) and (7) lead to

n1 =
n∆− 2m

∆− 1
, (11)

and

n∆ =
2m− n

∆− 1
. (12)

However, n1 and n∆ should have integer values which, as n∆− 2m = n− 2m+ n(∆− 1), is

true in (11) and (12) if 2m− n is a multiple of ∆− 1, i.e., if

(2m− n)(mod ∆− 1) = 0. (13)

Suppose now that condition (13) is not respected. In this case, we have to maximize
∆−1∑
i=2

f(i)ni. Let k denote the value of the left-hand side of (13) plus 1; then k is an integer
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between 2 and ∆− 1. It is always possible to choose the ni such that

nk = 1,

ni = 0 ∀i(6= k) = 2, 3, . . . ,∆− 1.

and Eqs. (5) and (6) are satisfied. Indeed, as

k =
[
(2m− n)(mod ∆− 1)

]
+ 1, (14)

Eqs. (7) and (8) become

n1 =
n∆− 2m+ k −∆

∆− 1
, (15)

and

n∆ =
2m− n+ 1− k

∆− 1
, (16)

which then have integer values.

Observe that k is the degree of the unique vertex of degree different from 1 and ∆. Indeed,

the sum of all degrees is 2m. Then consider a graph with all degrees equal to 1; this reduces

this sum by n. Furthermore increase degrees one at a time up to ∆, as long as this is possible;

this reduces the sum to (2m−n)(mod ∆− 1), which is equal to k− 1, so the degree of one more

vertex can be increased, up to k.

Now assume there are at least two vertices of degree i and j, with i not greater than j and

both i and j in the interval [2,∆− 1]. Reducing the degree of the first vertex by 1 changes (9)

by

(1− i)(∆− 1)− (1− i− 1)(∆− i− 1) = ∆− 2i;

augmenting the degree of the second vertex by 1 changes (9) by

(1− j)(∆− j)− (1− j + 1)(∆− j + 1) = −∆ + 2j − 2.

The net effect of both operations leaves the sum of degrees unchanged and changes (9) by

∆− 2i−∆ + 2j − 2 = 2(j − i+ 1)

which is positive.

This means that the optimal choice for the ni with i ∈ {2, . . . ,∆ − 1}, if condition (13) is

not respected, is to choose only one nk positive and equal to 1. In this case, by Eq. (9),

M1 ≤ 2m(∆ + 1)− n∆ + (1− k)(∆− k). (17)

Observe that if condition (13) is respected, Eq. (14) gives k = 1, which expresses the fact

that all ni with 2 ≤ i ≤ ∆− 1 are then equal to zero. Hence, the bound (17) is still valid when

k = 1.

Substituting (17) in (3) gives the result. 2
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Note that in this proof we use a technique based on linear programming arguments which

was first introduced in [15] and also used in Ref [6] and [16] – [18].

4 Particular cases

Theorem 1 is valid for all connected graphs. However, the bound is sharp only if the values

of n, m and ∆ are compatible with the existence of a graph which has the specific sequence

of degrees described in the proof of this theorem. Given a general condition on n, analysing

the dependence of the values of m and ∆ requires a long discussion which break down in many

particular cases. In this section, we restrict the graphs considered to some classes of chemical

interest, and show how the theorem can be applied for such classes. In these cases, the bound

is often sharp for reasonable values of n.

Again, we assume that ∆ > 2.

4.1 Trees

If T is a tree, as m = n− 1, Theorem 1 gives after simplifications :

VAR(T ) ≤
1

n
2

[
n

2

(
∆− 2

)
+ n

(
k

2 − k(∆ + 1)−∆ + 6
)
− 4
]
, (18)

where

k =
[
(n− 2)(mod ∆− 1)

]
+ 1. (19)

If n ≥ 4, this bound is sharp because the smallest tree with ∆ ≥ 3 is the star S4. For fixed

values of n ≥ 4 and ∆ ≤ n − 1, one can always construct a tree for which the equality holds.

Starting from the star S∆+1, add ∆− 1 pending edges to a vertex of degree 1, until vertices are

exhausted.

Trees with ∆ ≤ 3

If T has degrees bounded by 3, Eqs. (18) and (19) give

VAR(T ) ≤
1

n
2

[
n

2 + n

(
k

2 − 4k + 3)− 4
]
, (20)

where

k =
[
n(mod 2)

]
+ 1. (21)

Figure 3 shows some extremal trees with ∆ ≤ 3 that can be obtained by applying the

construction method explained above. Of course, for a given n, there can be more than one

extremal graph, but they all share the following properties :

n1 =

⌊
n+ 2

2

⌋
, n2 = n(mod 2) and n3 =

⌊
n− 2

2

⌋
,

where bac denotes the largest integer not larger than a.
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Figure 3: Some extremal trees with ∆ ≤ 3

Chemical trees

If T is a chemical tree, i.e., ∆ ≤ 4, Eqs. (18) and (19) gives

VAR(T ) ≤
1

n
2

[
2n2 + n(k2 − 5k + 2)− 4

]
, (22)

where

k =
[
(n− 2)(mod 3)

]
+ 1. (23)

This problem was already solved in Ref [6] in which characterization of extremal chemical

trees was also given.

4.2 Unicyclic graphs

If U is a unicyclic graph, as m = n, Theorem 1 leads to :

VAR(U) ≤
1

n

[
n

(
∆− 2

)
+ k

2 − k(∆ + 1) + ∆
]
, (24)

where

k =
[
n(mod ∆− 1)

]
+ 1. (25)

If n ≥ 2∆−1, this bound is sharp because the smallest unicyclic graph with degrees bounded

by ∆ for which equality holds is the graph U ∗(∆) next described. This graph consists of a triangle

of vertices {u, v, w} with ∆− 2 pending edges adjacent to v and ∆− 2 pending edges adjacent

to w. For example, the graph U ∗(5) is depicted in Figure 4. These graphs have 2∆− 1 vertices.

u

v w

Figure 4: The graph U
∗(5)

Starting from U
∗(∆), one can always construct a larger unicyclic graph for which the bound

is sharp. It suffices to add ∆− 2 pending edges to the vertex u, and then ∆− 1 pending edges

to a vertex of degree 1 until vertices are exhausted.
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Unicyclic graphs with given girth

Unicyclic graphs with a triangle are not frequent in chemistry. Observe that it is possible to

construct a unicyclic graph with maximum variance and given girth g (the length of the shortest

cycle), if n ≥ g(∆ − 1) − ∆ + 2. One starts with a graph similar to U
∗ : a cycle of length

g with all vertices (except one denoted by u) adjacent to ∆ − 2 pending edges. At this point

n = g(∆− 1)−∆ + 2 and this unicyclic graph with given girth is the smallest one for which the

bound is sharp. The same reasoning than before can be applied to construct a larger unicyclic

graph for which the girth will always be g : add ∆− 2 pending edges to the vertex u, and then

∆− 1 pending edges to a vertex of degree 1 until vertices are exhausted.

Unicyclic graphs with ∆ ≤ 3

If U is a unicyclic graph with ∆ ≤ 3,

VAR(U) ≤
1

n

[
n+ k

2 − 4k + 3
]
, (26)

where

k =
[
n(mod 2)

]
+ 1. (27)

From the discussion on the unicyclic graphs, if n ≥ 5 (or n ≥ 2g − 1 if the girth is given),

the bound is sharp and all the extremal graphs have the following sequence of degrees :

n1 = n3 =
⌊
n

2

⌋
and n2 = n(mod 2).

Figure 5 shows some unicyclic graphs with ∆ ≤ 3 and a girth equal to 6 for which the bound

is sharp.

Unicyclic chemical graphs

If U is a unicyclic chemical graph,

VAR(U) ≤
1

n

[
2n+ k

2 − 5k + 4
]
, (28)

where

k =
[
n(mod 3)

]
+ 1. (29)

If n ≥ 7 (or n ≥ 3g− 2 for a fixed girth), the bound is sharp and the extremal graphs have :

n1 =

⌊
2n

3

⌋
, n4 =

⌊
n

3

⌋
,

n2 = n3 = 0 if n(mod 3) = 0, n2 = 1, n3 = 0 if n(mod 3) = 1 and n2 = 0, n3 = 1 if n(mod 3) = 2.
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Figure 5: Some extremal unicyclic graphs with ∆ ≤ 3 and g = 6

4.3 Bicyclic graphs

If B is a bicyclic graph, then m = n+ 1. In this case, Theorem 1 leads to :

VAR(B) ≤
1

n
2

[
n

2

(
∆− 2

)
+ n

(
k

2 − k(∆ + 1) + 3∆− 6
)
− 4
]
, (30)

where

k =
[
(n+ 2)(mod ∆− 1)

]
+ 1. (31)

The smallest bicyclic graph with degrees bounded by ∆ for which equality holds is the graph

B
∗(∆) which consists of a cycle of successive vertices (u, v, w, x) with a diagonal edge (v, x),

∆−2 pending edges adjacent to w and ∆−3 pending edges adjacent to v and x. Figure 6 shows

B
∗(4) as an example. These graphs have 3∆− 4 nodes.

u

v

w

x

Figure 6: The graph B
∗(4)

Again, one can construct a larger bicyclic graph for which the bound is sharp, starting from
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B
∗(∆) and applying the same method than for the unicyclic graphs : add ∆−2 pending edges to

the vertex u, and then ∆− 1 pending edges to a vertex of degree 1 until vertices are exhausted.

Bicyclic graphs with given girth

If the girth g is fixed, one can starts with two cycles of length g (in place of triangles) such

that these cycle have an edge in common, and construct a larger bicyclic graph. Hence, the

smallest bicyclic graph with girth g and maximum degree ∆ for which the bound (30) is sharp

has g(2∆− 2)− 3∆ + 2 nodes.

Figure 7 shows a smallest bicyclic chemical graph with girth 6 for which the bound is sharp.

Figure 7: Extremal bicyclic chemical graph with g = 6

Bicyclic graphs with ∆ ≤ 3

If B is a bicyclic graph with ∆ ≤ 3,

VAR(B) ≤
1

n
2

[
n

2 + n

(
k

2 − k(∆ + 1) + 3∆− 6
)
− 4
]
, (32)

where

k =
[
(n+ 2)(mod 2)

]
+ 1, (33)

and the bound is sharp if n ≥ 5 (or n ≥ 4g − 7 for a fixed girth).

Bicyclic chemical graphs

If B is a bicyclic chemical graph,

VAR(B) ≤
1

n
2

[
2n2 + n

(
k

2 − 5k + 6
)
− 4
]
, (34)

where

k =
[
(n+ 2)(mod 3)

]
+ 1, (35)

and the bound is sharp if n ≥ 8 (or n ≥ 6g − 10 for a fixed girth).
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5 Conclusions

While a best upper bound for the variance of degrees of graphs has been available since 1992

[2], such a bound may provide values far from those observed for chemical graphs, where the

maximum degree ∆ is usually 3 or 4. We therefore provided a formula explicitly taking into

account the fact that degrees are bounded. We also examined when it is sharp for trees, unicyclic

and bicyclic graphs.

References

[1] M.O Albertson. The Irregularity of a Graph. Ars Combinatoria, (46):219 – 225, 1997.

[2] F.K Bell. A Note on the Irregularity of Graphs. Linear Algebra Appl., (161):45 – 54, 1992.

[3] L. Collatz and U. Sinogowitz. Spektren endlicher Grafen. Abh. Math. Sem. Univ. Hamburg,

(21):63 – 77, 1957.

[4] M. Fischermann, I. Gutman, A. Hoffmann, D. Rautenbach, D. Vidović, and L. Volkmann.
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