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Abstract

The Wiener index of an n-vertex tree T can be calculated by means of the expression

W (T ) =
∑
e

[n1(e)n2(e)],

where n1(e) and n2(e) = n−n1(e) are the number of vertices on the two sides of the edge
e, and the summation goes over all edges of T . Here we generalize this result to the case
of hypertrees and we propose formulas for the Wiener index and the eccentric distance
sum of distance-regular hypergraphs in terms of its intersection array. Moreover, using
the alternating polynomials and the Laplacian polynomials, we obtain upper bounds on
the eccentric distance sum and Wiener index of hypergraphs.

1 Introduction

Throughout this paper H = (V,E) denotes a connected, simple and finite hypergraph with
vertex set V = V (H), |V | = n, and edge set E = E(H), |E| = m. A hypergraph in which
all edges have the same cardinality r is called r-uniform. The class of r-uniform hypergraphs
contains, for instance, the class of graphs (r = 2) and the class of block designs. In the particular
case of graphs we will use de notation Γ instead H.

The distance ∂(u, v) between two vertices u and v is the minimum of the lengths of paths
between u and v. The eccentricity of a vertex v is defined as

ε(v) := max
u∈V (H)

∂(u, v)

and the diameter D(H) of a hypergraph H is defined as

D(H) := max
v∈V (H)

ε(v).
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The distance of a vertex v in a connected hypergraph H is defined by

S(v) :=
∑

u∈V (H)

∂(u, v).

The Wiener index W (Γ) of a graph Γ with vertex set {v1, v2, ..., vn} defined as the sum of
distances between all pairs of vertices of Γ,

W (Γ) :=
1

2

n∑
i=1,j=1

∂(vi, vj) =
1

2

∑
v∈V (Γ)

S(v),

is the first mathematical invariant reflecting the topological structure of a molecular graph.
This topological index has been extensively studied, for instance, a comprehensive survey

on the direct calculation, applications and the relation of the Wiener index of trees with other
parameters of graphs can be found in [2]. Moreover, a list of 120 references of the main works
on the Wiener index of graphs can be found in the referred survey.

The eccentric distance sum, denoted by ξDS, is a novel graph invariant introduced in [9]. It
can be defined as the summation of product of eccentricity and distance of each vertex in the
graph,

ξDS(Γ) :=
n∑
i=1

[ε(vi) · S(vi)].

In [9] the relationship of eccentric distance sum and the Wiener index with anti-human
immunodeficiency virus (HIV) activity of dihydroseselins has been investigated to facilitate the
development of potent and safe anti-HIV agents. The relationship of eccentric distance sum and
the Wiener index with physical properties in data sets of diverse nature was also investigated
in the referred article.

The hypergraphs as mathematical model for representation of nonclassical molecular struc-
tures with polycentric delocalized bonds have been investigated in [11].

The purpose of this work is to find closed formulas or bounds for the Wiener index of
hypergraphs. As consequence of the study we derive similar results on the eccentric distance
sum. The plan of the paper is the following: in Section 2 we propose a closed formula for
the Wiener index of hypertrees that generalizes the previous one on trees. In Section 3 we
present closed formulas for the Wiener index and the eccentric distance sum of distance-regular
hypergraphs in terms of its intersection array. Section 4 is devoted to obtain spectral-like bounds
on the studied parameters.

2 The Wiener index of hypertrees

The following result is well known [2, 10].

Theorem 1. (Harold Wiener, 1947) Let T be a tree on n vertices. Then

W (T ) =
∑
e

[n1(e)n2(e)],

where n1(e) and n2(e) = n − n1(e) are the number of vertices on the two sides of the edge e,
and the summation goes over all edges of T .

Here we propose the generalization, to the case of hypertrees, of Theorem 1. We recall that
a walk of length k in an hypergraph H, between the vertices u and v or u − v walk, to be a
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finite sequence u = v0e1v1 · · · vk−1ekvk = v of vertices vi and edges ei of H such that vi ∈ ei+1

for i = 0, ...k− 1, and vi ∈ ei for i = 1, ..., k. A u− v walk is closed if u = v. A path is a walk in
which no vertex is repeated. A cycle is a closed walk in which the first and last vertex coincide,
but, apart from that, neither vertices nor edges repeat.

We say that a hypergraph H is a hypertree if it is connected, has no cycles and |a ∩ b| ≤ 1,
∀a, b ∈ E(H).

Note that a path in a hypertree is not necessarily a shortest path. For instance, the path
3e12e11e25 in the hypertree of Figure 1 is not the shortest path between 3 and 5.

Figure 1: Example of hypertree. It has two edges, e1 = {1, 2, 3} and e2 = {1, 4, 5}

Lemma 2. There is a unique shortest path between two vertices of a hypertree.

Proof. Let u and v be two vertices of a hypertree T such that ∂(u, v) = k. Suppose that
u = v0e1v1 · · · vk−1ekvk = v and u = v0e

′
1v
′
1 · · · v′k−1e

′
kvk = v are two shortest paths between u

and v such that they are different from each other. We shall show that in fact they are equal.
We claim that if vr = v′r′ , then r = r′. That is, if vr = v′r′ and r < r′, then the path u =

v0e1v1 · · · vre′r+1v
′
r+1 · · · v′k−1e

′
kvk = v has length less than k, thus contradicting that ∂(u, v) = k.

Similarly we can see that the case er = e′r′ , with r 6= r′, is not possible.
If vi = v′i, i = 0, ..., k, then ej+1 6= e′j+1 for some j, 0 ≤ j ≤ k − 1. Thus, T has a cycle

vjej+1vj+1e
′
j+1vj, in contradiction to T being a hypertree.

If there are two integers j and r such that, 0 ≤ j < r ≤ k, r − j ≥ 2, vi 6= v′i for every i
such that j < i < r, vj = v′j and vr = v′r, then we consider the following cases:

• If et+1 6= e′t+1 for every t such that j ≤ t < r, then T has a cycle

vjej+1vj+1 · · · vre′rv′r−1 · · · v′j+1e
′
j+1vj,

thus contradicting that T is a hypertree.

• If et = e′t and et+1 = e′t+1 for some t such that j < t < r, then |et ∩ et+1| ≥ 2. This fact
contradicts the hypothesis that T is a hypertree.

• If et+1 6= e′t+1 for every t such that j ≤ t < t′, where t′ < r and et′+1 = e′t′+1, then T has
a cycle vjej+1vj+1 · · · vt′et′+1v

′
t′ · · · v′j+1e

′
j+1vj, thus contradicting that T is a hypertree.

• The case et+1 6= e′t+1 for every t such that t′ < t < r, where j ≤ t′ and et′+1 = e′t′+1, is
analogous to the previous one.

• If ej′ = e′j′ and et′+1 = e′t′+1 for some j′ and t′ such that j < j′ < t′ < r and et+1 6= e′t+1

for every t with j′ ≤ t < t′, then T has a cycle v′j′ej′vj′ · · · vt′et′+1v
′
t′ · · · v′j′+1e

′
j′+1v

′
j′ . This

cycle contradicts the hypothesis that T is a hypertree.

Therefore, the result follows.
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After a labelling (v1(e), v2(e), ..., v|e|(e)) of the endpoints of an edge e ∈ E(T ), we say that
a vertex u ∈ V (T )\{e} is on the side vi(e) of the edge e if there is a path, that does not contain
the edge e, from vi(e) to u. We denote by Vi(e) the set of vertices of T\{e} on the side vi(e) of
the edge e. Let ni(e) = 1 + |Vi(e)|, i = 1, 2, ..., |e|.

Theorem 3. With the notation above, the Wiener index of a hypertree T is

W (T ) =
∑

e∈E(T )

∑
i6=j

[ni(e)nj(e)].

Proof. As there is a unique shortest path between any two vertices of T (Lemma 2), and the
number of edges traversed in the shortest path joining two vertices is the distance between
them, we only need to count the number of shortest paths containing each edge of T .

The number of shortest path containing the edge e in T can be calculated by∑
i,j∈{1,2,...,|e|},i6=j

[ni(e)nj(e)].

Thus, the result follows.

The above result can be regarded as a generalization of Theorem 1 to a more general class of
graphs. That is, a hypertree T can be seen as a block graph ΓT considering that V (T ) = V (ΓT )
where two vertices of ΓT are adjacent if they are adjacent in T . In such case, each edge of T
induces a complete subgraph in ΓT , two complete subgraphs of ΓT only can share one vertex
and ΓT has no cycles of complete subgraphs. See, for instance, Figure 2.

Figure 2: The graph ΓT associated to the hypertree T whose edges are e1 = {1, 2, 3, 4}, e2 =
{4, 5, 6, 7, 8}, e3 = {6, 9, 10, 11} and e4 = {8, 12, 13}.

3 The Wiener index of distance-regular hypergraphs

We can obtain an explicit formula for the Wiener index in the case of distance-regular hyper-
graphs in terms of its intersection array

{b0, b1, ..., bD−1; c1 = 1, c2, ..., cD}.

We say that a distance-regular hypergraph is a connected hypergraph with diameter D, for
which following holds. There are natural numbers b0, b1, ..., bD−1, c1 = 1, c2, ..., cD such that for
each pair (u, v) of vertices satisfying ∂(u, v) = j we have

(1) the number of vertices in Hj−1(v) adjacent to u is cj (1 ≤ j ≤ D);
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(2) the number of vertices in Hj+1(v) adjacent to u is bj (0 ≤ j ≤ D − 1),

where Hi(v) = {u ∈ V (H) : ∂(u, v) = i}.
For example, the (12,3,5)-design whose blocks are

{0, 1, 2}, {0, 2, 3}, {0, 3, 4}, {0, 4, 5}, {0, 1, 5},

{1, 2, 8}, {1, 5, 7}, {1, 7, 8}, {2, 3, 9}, {2, 8, 9},
{3, 4, 10}, {3, 9, 10}, {4, 5, 11}, {4, 10, 11}, {5, 7, 11},
{6, 7, 8}, {6, 7, 11}, {6, 8, 9}, {6, 9, 10}, {6, 10, 11},

is a distance-regular hypergraph whose intersection array is (5,2,1;1,2,5).

Theorem 4. Let H be a distance-regular hypergraph whose intersection array is

{b0, b1, ..., bD−1; c1 = 1, c2, ..., cD}.

Then we have

W (H) =
nb0
2

(
1 +

D∑
i=2

i

∏i−1
j=1 bj∏i
j=2 cj

)
.

Proof. For any vertex v ∈ V (H), each vertex of Hi−1(v) is joined to bi−1 vertices in Hi(v) and
each vertex of Hi(v) is joined to ci vertices in Hi−1(v). Thus

| Hi−1(v) | bi−1 =| Hi(v) | ci. (1)

Therefore, it follows from (1) that the number of vertices at distance i of a vertex v, |Hi(v)|, is
obtained directly from the intersection array

|Hi(v)| =
∏i−1

j=0 bj∏i
j=2 cj

(2 ≤ i ≤ D) and |H1(v)| = b0. (2)

The result is a direct consequence of the definition of the Wiener index.

We remark that, in the case of graphs, (2) is a well-known result (see, for instance [1]).
Another example of distance-regular hypergraphs (graphs) is the family of the hypercubes,

Hk (k ≥ 2), whose intersection array is {k, k − 1, ..., 1; 1, 2, ..., k}. Thus, from Theorem 4 we
obtain that the Wiener index of the hypercube Hk is

W (Hk) = 2k−1k

k−1∑
l=0

(
k − 1

l

)
= k22(k−1).

From ε(v) ≤ D(H), ∀v ∈ V (H), we have the following relation between the Wiener index
and the eccentric distance sum:

ξDS(H) ≤ 2D(H)W (H). (3)

If all vertices of H are diametral, the equality holds. In the case of a distance-regular hyper-
graphs, Theorem 4 and (3) lead to the following result.

Corollary 5. Let H be a distance-regular hypergraph whose intersection array is

{b0, b1, ..., bD−1; c1 = 1, c2, ..., cD}.

Then we have

ξDS(H) = nD(H)b0

1 +

D(H)∑
i=2

i

∏i−1
j=1 bj∏i
j=2 cj

 .
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4 Bounding the Wiener index and the eccentric distance

sum

In this section we derive several spectral type tight upper bounds on the studied parameters.
To begin with, we present some additional terminology and the main tools: the alternating
polynomials and the Laplacian polynomials.

4.1 Laplacian Matrix

We denote by A = A(H) the adjacency matrix of H. Given two distinct vertices vi, vj ∈ V (H)
the entry aij of A is the number of edges in H containing both vi and vj; the diagonal entries
of A are zero.

If vi, vj ∈ V (H), then the number of walks of length k in H, from vi to vj, is the entry in
position (i, j) of the matrix Ak (see [16]).

A hypergraph is walk-regular if for every k the number of walks of length k with both
endpoints at v does not depend on the vertex v. In other words, any power Ak has its diagonal
entries all equal to Tr

(
Ak
)
/n. The class of walk-regular graphs contains the class of vertex

transitive graphs and the class of distance-regular graphs.
We define the Laplacian degree of a vertex vi ∈ V (H) as δ`(vi) :=

∑n
j=1 aij. We say that

the hypergraph H is Laplacian regular of degree δ` if any vertex v ∈ V (H) has Laplacian degree
δ`(v) = δ`. Obviously, every walk-regular hypergraph is Laplacian regular.

A simple count shows that the Laplacian degree of an (n, r, δ)-design1 satisfies

δ` = (r − 1)δ =
mr(r − 1)

n
· (4)

Moreover, if H is a graph then δ`(vi) = δ(vi).
The Laplacian matrix of a hypergraph H, denoted by L = L(H), is defined as L := D−A

where D = diag(δ`(v1), δ`(v2), . . . , δ`(vn)). This version of Laplacian matrix was introduced by
author of this paper in [14] to extend, to the case of hypergraphs, results related with several
metric parameters of graphs.

We recall that the matrix L is symmetric and positive semidefinite, the smallest eigenvalue
of L is µ = 0 and a corresponding eigenvector is j = (1, 1, . . . , 1). Moreover, the multiplicity of
µ = 0 is equal to the number of connected components of H.

The eigenvalues of L are denoted by µ0 = 0 < µ1 < · · · < µb and their multiplicities are
denoted by m0 = 1,m1, . . . ,mb. Hence, the Laplacian spectrum of H is denoted by Spec(H) =
{µ1

0, µ
m1
1 , ...., µmb

b }.
Thus, the total adjacency index [18], defined as A :=

∑n
i,j=1 aij, can be calculated by

A =
b∑
l=1

mlµl =
n∑
i=1

δ`(vi). (5)

Moreover, in the case of an (n, r, δ)-design, by (4) and (5), we have A = n(r− 1)δ = mr(r− 1).
We denote by λ0 > λ1 > · · · > λd the adjacency eigenvalues of a Laplacian regular hyper-

graph H of degree δ`. Then, since L = δ`I−A, the eigenvalues of both matrices, A and L, are
related by

µl = δ` − λl, l = 0, . . . , b = d. (6)

Notice also that δ` is the trivial eigenvalue of A with j as eigenvector. Hence, in this case, the
matrices A and L lead to equivalent spectral results.

1An r-uniform, δ-regular hypergraph, of order n, is called (n, r, δ)-design
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As principal tools we will use the so-called alternating polynomials and the Laplacian
polynomials.

4.2 Laplacian and Alternating Polynomials

In [7] Fiol, Garriga and Yebra defined and studied the properties of the local spectrum of a
graph. In [16] we extend this concept to the case of the Laplacian matrix of a hypergraph as
follows. For a given vertex vi we can consider the spectral decomposition of the corresponding
unit vector ei

ei =
b∑
l=0

zil, where zil ∈ Ker(L(H)− µlI). (7)

The vi-local multiplicity of the Laplacian eigenvalue µl is defined as mi(µl) := ‖zil‖2. Thus,
the vi-local multiplicity of µ0 = 0 is mi(0) = 1

n
. The vi-local eigenvalues of L are denoted by

0 < ψ1 < · · · < ψbi and they are defined as the Laplacian eigenvalues with nonnull vi-local

multiplicities. The vi-local spectrum of L is defined as Speci(L) =
{

0
1
n , ψ

mi(ψ1)
1 , . . . , ψ

mi(ψbi
)

bi

}
.

When we “see” the hypergraph from a given vertex, its local spectrum plays a similar role as
the global spectrum, thus justifying the terminology used.

By using the vi-local spectrum of L, we define the vi-local k-Laplacian polynomials that we
will use as tool in the following sections. The study of these polynomials is completely analogous
to the study of the local adjacency polynomials defined and studied by Fiol and Garriga in [8],
therefore, we collect here some of its main properties, referring the reader to [8] for a more
detailed study.

Let ψ0 = 0 < ψ1 < · · · < ψbi be the vi-local eigenvalues of L. For each k = 0, ..., bi, the
mapping ‖ ‖i: Rk[x] 7→ R defined by ‖P‖i = ‖P (L)ei‖ is a norm of the space Rk[x]. In this
normed space, we consider the closed unit ball Bk = {P ∈ Rk[x] : ‖P‖i ≤ 1}. On this compact
set, the linear continuous function P 7→ P (0) attains its maximum at a point qik, which we call
vi-local k-Laplacian polynomial. Notice that, such a point must be on the border of Bk; that is,
‖qik‖i = 1.

Between the main properties of the vi-local k-Laplacian polynomials we emphasize the
following.

• Each vi-local k-Laplacian polynomial has degree k.

• 1 = qi0(0) < qi1(0) < · · · < qibi(0) =
√
n.

As we are going to see in the following sections, in practice, we only need the independent
term qik(0) of qik.

In the case of walk-regular hypergraphs, the polynomials qik do not depend on vi (see [16]).
Hence we call these polynomials k-Laplacian polynomials and they will be denoted as qk. The
independent term of qk can be calculated by the following constrained optimization problem
[16]:

maximize α0, subject to

α2
0 +

b∑
l=1

ml(α0 + α1µl + · · ·+ αkµ
k
l )

2 = n. (8)

Now we collect some results that we will use in the following sections.
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We define for any k = 0, 1, . . . , D(H), the k-excess of a vertex u ∈ V (H), denoted by ek(u),
as the number of vertices which are at distance greater than k from u. That is,

ek(u) := |{v ∈ V : ∂(u, v) > k}|.

Then, trivially, e0(u) = n − 1, eD(H)(u) = eε(u)(u) = 0 and ek(u) = 0 if and only if ε(u) ≤ k.
The excess of a vertex of a graph was studied by Fiol and Garriga [8] using the adjacency
eigenvalues and by Yebra and the author of this paper [17] using the Laplacian eigenvalues.

Lemma 6. ([16], and see [8] for the previous result on graphs) Let vi be a vertex of a hypergraph
of order n, and let qik be its vi-local k-Laplacian polynomial. Then,

qik(0) >
√
n− 1 ⇒ ε(vi) ≤ k. (9)

ek(vi) ≤
⌊
n−

(
qik(0)

)2⌋
. (10)

The k-excess of H denoted by ek, is defined as

ek := max
vi∈V (H)

{ek(vi)}.

Lemma 7. [16] Let H be a walk-regular hypergraph and let qk be its k-Laplacian polynomial.
Then,

qk(0) >
√
n− 1 ⇒ D(H) ≤ k. (11)

ek ≤
⌊
n− (qk(0))

2⌋ (12)

In this work, we also use the k-alternating polynomials studied by Fiol, Garriga and Yebra
in [3]. These polynomials can be defined as follows: let M = {µ1 < · · · < µb} be a mesh of real
numbers. For any k = 0, 1, ..., b− 1 let Qk be the k-alternating polynomial associated with M.
That is, the polynomial of Rk[x] with norm ‖Qk‖∞ = max1≤i≤b{|Qk(µi)|} ≤ 1, such that

Qk(µ) = sup {P (µ) : P ∈ Rk[x], ‖P‖∞ ≤ 1}

where µ is any real number smaller than µ1. In [3] it was shown that, for any k = 0, 1, ..., b− 1,

• There is a unique Qk which, moreover, is independent of the value of µ(< µ1);

• Qk has degree k;

• Q0(µ) = 1 < Q1(µ) < · · · < Qb−1(µ);

• Qk takes k + 1 alternating values ±1 at the mesh points;

• There are explicit formulae for Q0(= 1), Q1, Q2, and Qb−1, while the other polynomials
can be computed by solving a linear programming problem (for instance by the simplex
method).

The alternating polynomials have been applied extensively to the study of metric properties
of graphs and hypergraph [3–6, 12–15]. For instance, here we collect some results that we will
use in the following sections.

Lemma 8. ([14], and see [3] for the previous result on graphs) Let Qk be the k-alternating
polynomial associated to the mesh of the Laplacian eigenvalues of a hypergraph H of order n.
Then,

Qk(0) > n− 1 ⇒ D(H) ≤ k. (13)

ek ≤
⌊

n(n− 1)

Q2
k(0) + n− 1

⌋
· (14)
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4.3 Bounds

In the case of graphs, we obtain the following upper bound on the Wiener index

W (Γ) ≤ 1

2

n∑
i=1

[δ(vi) +D(Γ) (n− δ(vi)− 1)] = m+D(Γ)m,

where m denotes the size of Γ and m denotes the size of the complement of Γ. The equality
holds if and only if Γ = Kn or D(Γ) = 2. Moreover, it is well-known that if b + 1 denotes the
number of Laplacian eigenvalues of Γ, then D(Γ) ≤ b. Therefore,

W (Γ) ≤ m+ bm (15)

An analogous result for the adjacency matrix is obtained by replacing in (15) the number
b+1, of different Laplacian eigenvalues, by the number d+1 of different adjacency eigenvalues.
We recall that in the non-regular case b and d may be different. Obviously, the best bound is
obtained with the matrix that has the smallest number of eigenvalues.

If D(Γ) ≤ k < b, we can improve the above bounds. Let Qk be the k alternating polynomial
defined over the Laplacian eigenvalues of a graph Γ. Then,

Qk(0) > n− 1 ⇒ W (Γ) ≤ km+m (16)

The above result immediately follows from (13) and (15).
However we can improve the above bounds from bounds on the k-excess.

Lemma 9. Let W (H) be the Wiener index of a hypergraph H. Then

W (H) =
1

2

∑
v∈V (H)

D(H)−1∑
k=0

ek(v)

Proof. The distance of a vertex v in a connected hypergraph H

S(v) =
∑

u∈V (H)

∂(u, v)

Satisfies

S(v) =

D(H)∑
k=1

k(ek−1(v)− ek(v)).

Moreover, by a simple calculation we have

S(v) =

D(H)−1∑
k=0

ek(v). (17)

Hence, by (17) we have

W (H) =
1

2

∑
v∈V (H)

S(v) =
1

2

∑
v∈V (H)

D(H)−1∑
k=0

ek(v)

Therefore, it follows from Lemma 9 that bounds on the k-excess of H lead to bounds on
its Wiener index.
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Theorem 10. Let Qk be the k-alternating polynomial defined over the Laplacian eigenvalues of
a hypergraph H of order n. If Qk(0) > n− 1 then,

W (H) ≤ n

2

k−1∑
l=0

⌊
n(n− 1)

Q2
l (0) + n− 1

⌋
; (18)

ξDS(H) ≤ nk

k−1∑
l=0

⌊
n(n− 1)

Q2
l (0) + n− 1

⌋
· (19)

Theorem 10 can be obtained from the previous bound on the mean distance obtained in
[14].

Proof. By (14) and Lemma 9 we have

W (H) ≤ n

2

D(H)−1∑
k=0

⌊
n(n− 1)

Q2
k(0) + n− 1

⌋
and by (13) we conclude the proof of (18). It follows from (3) that bounds on the Wiener index
of H lead to bounds on its eccentric distance sum. Thus, from (18) we derive (19).

For instance, let H be the dual hypergraph of the affine plane of rank r = 2. That is, the
hypergraph dual of a sub-hypergraph obtained from the Fano plane (finite projective plane of
rank 3) by suppressing the point of a given line. This hypergraph of order n = 6 has Wiener
index W (H) = 18 and Laplacian eigenvalues µ0 = 0, µ1 = 4 and µ2 = 6. Then, Theorem 10
leads to W (H) ≤ 18.

Theorem 11. Let H be a connected hypergraph of order n and let qik be its vi-local k-Laplacian
polynomials. Then,

W (H) ≤ 1

2

n∑
i=1

k(H)i−1∑
l=1

⌊
n−

(
qil(0)

)2⌋
,

where
k(H)i = min{k ∈ {0, ..., bi} : qik(0) >

√
n− 1}.

Proof. The result is a direct consequence of Lemma 6 and Lemma 9.

Corollary 12. Let H be a walk-regular hypergraph and let qk be its k-Laplacian polynomial. If
qk(0) >

√
n− 1, then

W (H) ≤ n

2

k−1∑
l=0

⌊
n− (ql(0))

2⌋ ; (20)

ξDS(H) ≤ nk

k−1∑
l=0

⌊
n− (ql(0))

2⌋ . (21)

Corollary 12 can be obtained from the previous bound on the mean distance obtained in
[16].

Let H be the (5, 3, 3)-design whose blocks are

b1 = {1, 2, 3} b2 = {2, 3, 4} b3 = {3, 4, 5} b4 = {4, 5, 1} b4 = {5, 1, 2}.
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The hypergraph H is walk-regular, that is,

δ` =
Tr(L)

5
= 6,

T r(L2)

5
= 46,

T r(L3)

5
= 360, . . .

The Laplacian spectrum of H is

Spec(H) =

01,

(
15−

√
5

2

)2

,

(
15 +

√
5

2

)2
 .

Thus, by solving the constrained optimization problem (8), we calculated the independent terms

of qk, k = 0, . . . , 2: q0(0) = 1, q1(0) = 23
√

115
115

, q2(0) =
√

5. Corollary 12 gives W (H) ≤ 10
and the bound is attained.

Now let k(H) and es(H) be vectors of Rn defined by

k(H)i := min{k ∈ {0, ..., bi} : qik(0) >
√
n− 1}

and

es(H)i :=

k(H)i−1∑
l=0

⌊
n−

(
qil(0)

)2⌋
.

Then we obtain the following result on ξDS.

Theorem 13. With notation as above,

ξDS(H) ≤ 〈k(H), es(H)〉.

Proof. By Lemma 6 and (17) we have

ε(vi) · S(vi) ≤ k(H)i · es(H)i i = 1, ..., n. (22)

Thus, (22) leads to the result.
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[16] J. A. Rodŕıguez (2003). On the Laplacian spectrum and walk-regular hypergraphs. Linear
and Multilinear Algebra. 51 (3) 285-297.
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