
MATCH 
Communications in Mathematical 

and in Computer Chemistry 

MATCH Commun. Math. Comput. Chem. 54 (2005) 195-208  
 

                                          ISSN 0340 - 6253  
 

A Unified Approach to the Extremal Trees for

Different Indices ∗

Xueliang Li and Jie Zheng

Center for Combinatorics and LPMC

Nankai University, Tianjin 300071, P.R. China

Email: lxl@nankai.edu.cn; jzheng@eyou.com

(Received July 13, 2004)

Abstract

Many chemical indices have been invented in theoretical chemistry, such as
the Wiener index, Merrifield and Simmons index, Hosoya index, Randić index
and several kinds of Zagreb indices, etc. The extremal trees for these chemical in-
dices are interested in existing literature. Though the definitions of these indices
are quite different, the extremal trees have the same or very similar structures,
i.e., stars or paths, but the proofs are quite diverse. This paper presents a unified
and simple approach to these results by introducing two kinds of uniform trans-
formations. Our transformations very clearly show that all the chemical indices
mentioned above are indices acceptable as measures of branching.

1 Introduction

Half a century ago, in 1947, Harold Wiener introduced the first chemical index,

now called the Wiener index. He published a series of papers [15, 16, 17, 18, 19] to
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show that there are excellent correlations between the Wiener index of the molecular

graph of an organic compound and a variety of physical and chemical properties of the

organic compound. In the past fifty years, a large number of other chemical indices

of molecular graphs, including Merrifield and Simmons index, Hosoya index, Randić

index and Zagreb indices, have been proposed and widely used in chemistry. There

have been many publications on these chemical indices, see [1, 3, 4, 7, 8], etc.

For convenience of our discussion, we first recall some relevant terminology and

notations. For other definitions and notations not defined here, we refer to [2] and [14].

Let G = (V (G), E(G)) denote a molecular graph with V (G) as the set of vertices

and E(G) the set of edges. Two vertices u and v of G are said to be adjacent if

uv ∈ E(G). We denote by NG(u) the set of vertices adjacent to u in G. A subset of

V (G) containing no two mutually adjacent vertices is called an independent set. We

say that two edges of G are independent if they share no vertex in common, otherwise

they are called adjacent. An independent edge set, also called a match, is defined to be

a subset of E(G) containing no two mutually adjacent edges.

We next list the definitions of some topological indices with which we are particu-

larly concerned in this paper.

(1) The Wiener index of G, defined in [15], is

W (G) =
∑

{u,v}
dG(u, v), (1)

where dG(u, v) denotes the distance between u and v in G and the sum goes over all

of the unordered pairs of vertices.

(2) The Merrifield and Simmons index of G is defined to be the total number of

independent sets of G including the empty set, denoted by σ(G), i.e.,

σ(G) =
∑

k≥0

i(G, k), (2)

where i(G, k) denotes the number of k-independent sets of G. Note that i(G, 0) = 1.
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(3) The Hosoya index of G, defined in [8], is the total number of independent edge

sets of G, also including the empty set, usually denoted by Z(G), i.e.,

Z(G) =
∑

k≥0

m(G, k), (3)

where m(G, k) denotes the number of k-independent edge sets. Similarly, m(G, 0) = 1.

(4) The Randić index of G is defined by

R(G) =
∑

uv∈E(G)

1√
dG(u)dG(v)

, (4)

where dG(u) denotes the degree of u in G. The general Randić index of a molecular

graph G is defined by

Rα(G) =
∑

uv∈E(G)

(dG(u)dG(v))α, (5)

where α ∈ R and α 6= 0.

(5) The first Zagreb index M1(G) and the second Zagreb index M2(G), defined in

[1], are

M1(G) =
∑

u∈V (G)

(dG(u))2 (6)

and

M2(G) =
∑

uv∈E(G)

dG(u)dG(v), (7)

respectively. Motivated by the first Zagreb index and the general Randić index, as well

as the generalized topological index introduced in [12], we define an index in a more

general setting, called the first general Zagreb index and defined as follows:

Mα(G) =
∑

u∈V (G)

(dG(u))α, (8)

where α ∈ R, α 6= 0 and α 6= 1.

It is not difficult to see that there are close relations between these topological

indices. For example, we can check that R1(G) = M2(G), m(G, 2) = 1
2
|E(G)|(|E(G)|+

1)− 1
2
M1(G), and so on. Nevertheless, it is not difficult to observe from [3, 5, 6, 7, 13]
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that among all the trees with n vertices, the extremal structures of different chemical

indices mentioned above are in most cases Sn and Pn, the star and the path with n

vertices, respectively. These results were proved by different means. Some proofs were

simple but some were considerably complicated. Some authors used inductive methods

but some did not. A natural question to ask is whether we can use a unified approach

to find the extremal trees for different chemical indices instead of dealing with the

indices separately.

The aim of the article is trying to answer the above question. Our main idea is as

follows: To avoid handling the indices one by one we try to discover a transformation

from a tree T to another tree T ′ which makes the values of these indices of the two trees

monotonically change, and then by iteratively using the transformation step by step,

finally we obtain the extremal tree for different indices. In Section 2, a transformation

f is defined which changes a tree T 6= Sn to another tree T ′ = f(T ) such that from

T to T ′, the Wiener index decreases, the Merrifield and Simmons index increases, the

Hosoya index decreases, the Randić index decreases, the second Zagreb index increases

and the first general Zagreb index increases when α < 0 or α > 1 but decreases when

0 < α < 1. Using a similar argument, in Section 3 we find another transformation g

from a tree T 6= Pn to another tree T ′′ = g(T ) such that the Wiener index increases,

the Merrifield and Simmons index decreases, the Hosoya index increases, the second

Zagreb index decreases and the first general Zagreb index decreases when α < 0 or

α > 1 but increases when 0 < α < 1.

2 The star Sn as the extremal tree

Let T 6= Sn be a tree with n vertices and u be a vertex with the maximum degree.

Then there is an element v in NT (u) satisfying dT (v) > 1. Without loss of generality,

assume

NT (u) = {v, u1, u2, · · · , up} and NT (v) = {u, v1, v2, · · · , vq},
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where 1 ≤ p ≤ n− 3 and 1 ≤ q ≤ p.

We make the following changes on T : delete the edges vvi(i = 1, 2, · · · , q) and

connect vi(i = 1, 2, · · · , q) to u. Then we get a tree T ′. The following figure explains

the changes. In fact, f : T → T ′ is a transformation on trees that are not Sn.
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It is not hard to check that for a given tree T 6= Sn, we can iterate the transformation

f step by step until T is changed into Sn. The following fact is easily seen:

Theorem 2.1 Let I(G) be any index of a graph G. If I(T ) < I(f(T )) (I(T ) >

I(f(T ))), then among all trees with n vertices Sn is the unique extremal structure with

the largest (smallest) I-index.

Our aim in this section is to prove the following crucial lemma.

Lemma 2.2 For two trees T (T 6= Sn) and T ′ = f(T ), we have

(1) W (T ) > W (T ′).

(2) σ(T ) < σ(T ′).

(3) Z(T ) > Z(T ′).

(4) R(T ) > R(T ′).

(5) M2(T ) < M2(T
′).

(6) Mα(T ) < Mα(T ′) if α < 0 or α > 1; Mα(T ) > Mα(T ′) if 0 < α < 1.
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Proof. (1) Color the vertices of T with two colors, red and blue, by the following

method: Delete the edge uv and denote the remaining subgraph by T \uv. The elements

in R = {w|w and u are in a same component of T \ uv} are colored red, while the

elements in B = {w 6= v|w and v are in a same component of T \uv} are colored blue,

and finally v is colored red. By straightforward observation, we have that from T to T ′

the distance between any pair of the vertices that have the same color does not change,

and the distance between any pair of vertices having form w1w2, w1 ∈ R, w2 ∈ B

decreases 1. There are altogether |R||B| such pairs. On the contrary, the distance

between the pair of vertices that have form vw2, w2 ∈ B increases 1. The number of

such pairs is |B|. Since u is a vertex that has the maximum degree in T , we have

|R| > 1. Then

W (T )−W (T ′) = |R||B| − |B| > 0.

(2) From T to T ′, an essential observation is that the independent sets in T that con-

tain u and some elements of {v1, v2, · · · , vq} disappear, while the independent sets that

contain v and some elements of {v1, v2, · · · , vq} appear in T ′. Suppose {vj1 , vj2 , · · · , vjk
}

is a nonempty subset of {v1, v2, · · · , vq}. Delete the vertices u, vj1 , vj2 , · · · , vjk
and the

vertices adjacent to them from T , we get T́ . Obviously, σ(T́ ) is the number of inde-

pendent sets in T that contain u, vj1 , vj2 , · · · , vjk
. Similarly, we can delete the vertices

v, vj1 , vj2 , · · · , vjk
and their neighbors from T ′ to get T̀ and the number of independent

sets in T ′ that contain v, vj1 , vj2 , · · · , vjk
is exactly σ(T̀ ). By comparison, it is easy to

get σ(T́ ) < σ(T̀ ). Since vj1 , vj2 , · · · , vjk
are chosen arbitrary, the following assertion is

true:

σ(T ) < σ(T ′).

(3) From T to T ′, the matchings in T that contain uui and vvj for some 1 ≤ i ≤ p

and some 1 ≤ j ≤ q disappear and no new matchings are produced in T ′. Therefore,

Z(T ) > Z(T ′).

(4) See [9] for a detailed proof.
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(5) Since dT (ui) ≥ 1(i = 1, 2, · · · , p) and dT (vj) ≥ 1(j = 1, 2, · · · , q), this allows

the following argument.

M2(T
′)−M2(T )

=

p∑
i=1

(p + q + 1)dT (ui) +

q∑
j=1

(p + q + 1)dT (vj) + (p + q + 1)

−
p∑

i+1

(p + 1)dT (ui)−
q∑

j=1

(q + 1)dT (vj)− (p + 1)(q + 1)

= q

p∑
i=1

dT (ui) + p

q∑
j=1

dT (vj)− pq

≥ pq + qp− pq = pq > 0.

(6) Comparing T and T ′, we have

Mα(T ′)−Mα(T )

= (p + q + 1)α + 1− (p + 1)α − (q + 1)α

= [(p + q + 1)α − (p + 1)α]− [(q + 1)α − 1].

Using Lagrange’s mean-value theorem, we conclude that there is number y ∈ (p +

1, p + q + 1) such that (p + q + 1)α − (p + 1)α = [(p + q + 1)− (p + 1)]αyα−1 = qαyα−1.

Analogously, there is number x ∈ (1, q + 1) such that (q + 1)α − 1 = [(q + 1) −
1]αxα−1 = qαxα−1. Hence, Mα(T ′) −Mα(T ) equals qα(yα−1 − xα−1). Since q ≤ p, we

have 1 < x < y. Again, using Lagrange’s mean-value theorem, we conclude that there

is number z ∈ (x, y) such that qα(yα−1 − xα−1) = qα(α − 1)(y − x)zα−2. Note that

q(y−x)zα−2 is a positive number and that α(α−1) is positive if α ∈ (−∞, 0)∪(1, +∞)

and negative if α ∈ (0, 1), which proves the claim.

From Theorem 2.1 and Lemma 2.2 we can get the following conclusion:

Corollary 2.3 Among all trees with n vertices, Sn is the unique extremal structure

with the smallest Wiener index [5], the largest Merrifield and Simmons index [13], the

smallest Hosoya index [6, 7], the smallest Randić index [3], the largest second Zagreb
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index [11] and the largest general Zagreb index when α < 0 or α > 1, the smallest

general Zagreb index when 0 < α < 1.

3 The path Pn as the extremal tree

Now we continue to study another extremal tree of the chemical indices mentioned

above. The result is completely similar with that in Section 2, but unfortunately, our

approach cannot unify the result for the Randić index. We will demonstrate the reason

in next section.

Let T 6= Pn be a tree with n vertices and (s1, s2, · · · , sk = u) be a longest path

in T . Assume that sj = v is the vertex satisfying the following two conditions: (1)

dT (sj) > 2, and (2) for any integer l such that j < l < k, we have dT (sl) ≤ 2. Without

loss of generality, suppose

NT (v) = {sj−1, sj+1, v1, v2, · · · , vq},

where 1 ≤ q ≤ n− 3.

We do the following transformation g on T : Delete the edges vvi(i = 1, 2, · · · , q)

and connect every vi to u. Then we get a new tree T ′′ = g(T ). The following figure is

an illustration of g.
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For a given tree T 6= Pn, we can apply the transformation g on T step by step until

it is changed into Pn. The following fact is easily seen:
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Theorem 3.1 Let I(G) be any index of a graph G. If I(T ) < I(g(T )) (I(T ) >

I(g(T ))), then among all trees with n vertices Pn is the unique extremal structure with

the largest (smallest) I-index.

The following lemma is crucial.

Lemma 3.2 For two trees T 6= Pn and T ′′ = g(T ), we have

(1) W (T ) < W (T ′′).

(2) σ(T ) > σ(T ′′).

(3) Z(T ) < Z(T ′′).

(4) M2(T ) > M2(T
′′).

(5) Mα(T ) > Mα(T ′′) if α < 0 or α > 1; Mα(T ) < Mα(T ′′) if 0 < α < 1.

Proof. (1) Use the following method to color the vertices of T with three colors,

red, blue and yellow: Delete the edges vvi(i = 1, 2, · · · , q) and vsj−1, then several

components appear. Color the vertices in the same component with v red, the vertices

in the same component with sj−1 blue and the other vertices yellow. One can observe

that, from T to T ′′, the distance between a blue vertex and a yellow one increases. The

sum of the distances between pairs of red vertices and yellow ones does not change.

Furthermore, the distances between other vertices do not change, either. This complete

the proof.

(2) From T to T ′′, the independent sets in T that contain u and some elements in

the set {v1, v2, · · · , vq} disappear, and conversely, another kind of independent sets that

contain v and some elements in {v1, v2, · · · , vq} appear in T ′′. Choose {vj1 , vj2 , · · · , vjk
}

from {v1, v2, · · · , vq}, randomly. Delete u, vj1 , vj2 , · · · , vjk
and the vertices adjacent to

them from T , then we get Ṫ . Clearly, σ(Ṫ ) is the number of independent sets in T

containing u and {vj1 , vj2 , · · · , vjk
}. Similarly, delete v, vj1 , vj2 , · · · , vjk

and the vertices

adjacent to them from T ′′. We get T̈ , and σ(T̈ ) is the number of independent sets in

T ′ containing v and {vj1 , vj2 , · · · , vjk
}. Note that sj+1, sj+2, · · · , sk−1 are all of degree
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2. By carefully comparing, we can draw the conclusion that σ(Ṫ ) > σ(T̈ ). Since

{vj1 , vj2 , · · · , vjk
} is chosen arbitrarily, we have

σ(T ) > σ(T ′′).

(3) From T to T ′′, the matches in T that contain the edge sk−1u and the edge vvj

for some 1 ≤ j ≤ q disappear and two other kinds of matches appear in T ′′. One is the

matches that contain vsj+1 and uvj, and the other is the matches that contain vsj−1

and uvj. Delete sk−1u, vvj and the adjacent edges with them from T to get the graph

T̂ . Obviously, Z(T̂ ) is the number of matches in T that contain sk−1u and vvj. Again,

delete the edges vsj+1, uvj and the adjacent edges with them from T ′′ to obtain T̆ , and

Z(T̆ ) is equal to the number of matches in T ′′ that contain vsj+1 and uvj. Note that

all the vertices between u and v are of degree 2. It is not difficult to conclude that

Z(T̂ ) = Z(T̆ ). Because there actually exist matches in T ′′ that contain vsj−1 and uvj,

the following assertion is true:

Z(T ) < Z(T ′′).

(4) Since dT (sj−1) ≥ 1, dT (sj+1) ≥ 1 and dT (vj) ≥ 1(j = 1, 2, · · · , q), we have

M2(T )−M2(T
′′)

=

q∑
i=1

(q + 2)dT (vi) + (q + 2)dT (sj−1) + (q + 2)dT (sj+1) + 2

−
q∑

i=1

(q + 1)dT (vi)− 2dT (sj−1)− 2dT (sj+1)− 2(q + 1)

= qdT (sj−1) + qdT (sj+1) +

q∑
i=1

dT (vi)− 2q

≥ q + q + q − 2q = q > 0

(5) The proof is essentially the same as that of Lemma 2.2 (6).

From Theorem 3.1 and Lemma 3.2, we can get the following conclusion:

Corollary 3.3 Among all trees with n vertices, Pn is the unique extremal structure

with the largest Wiener index [5], the smallest Merrifield and Simmons index [13], the
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largest Hosoya index [6, 7], the smallest second Zagreb index [11] and the smallest

general Zagreb index Mα(T ) when α < 0 or α > 1, the largest general Zagreb index

Mα(T ) when 0 < α < 1.

Remark 3.4 It is easy to see that the transformation f is to increase the number of

branchings of trees, while the transformation g is to decrease the number of branchings

of trees. Meanwhile, from Lemma 2.2 and Lemma 3.2, we can see that as the number

of branchings changes, the values of those chemical indices change monotonically. So,

all the chemical indices mentioned above are really indices acceptable as measures of

branching.

4 Further Discussion

One can notice that although the extremal tree with the maximum Randić index is

Pn [10], we cannot unify the proof in Lemma 3.2. In fact, The assertion that R(T ) <

R(g(T )) is not always true. Here is a counterexample. T is the left tree in the following

figure. Apply g on T to get T ′′, the right one in the figure. The numbers in the figure

are the degrees of the non-leaf vertices.
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By computation, we obtain

R(T ) = 14.7381 > R(T ′′) = 14.7006.
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Though if g is replaced by another transformation in [10] we can show that Pn has

the maximum Randić index, we can not get the desired results for the other chemical

indices in Lemma 3.2. For example, let T be the following tree:

q q q q q q q q q q q q q q q
´

´́¡
¡

­
­

Q
QQ

@
@

J
Jq q q q qqq

q q q q qqq

´
´́¡
¡

­
­

Q
QQ

@
@

J
Jq q q q qqq

q q q q qqq

­
­

J
Jq q q

q q q

£
£
B
Bq q

q q

T

By the method in [10], we change T into the following tree T̃ :
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By calculation, we have

R(T ) < R(T̃ ) but W (T ) > W (T̃ ).

Therefore, it is natural to ask for a more unified approach that can cover extremal

results for as many chemical indices as possible.
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